Iron doped hexagonal ErMnO3: structural, magnetic, and dielectric properties



Publication Details

Liu, P, Cheng, ZX, Wang, XL, Du, Y, Yu, ZW, Dou, SX, Zhao, HZ, Ozawa, K & Kimura, H (2012), Iron doped hexagonal ErMnO3: structural, magnetic, and dielectric properties, Journal of Nanoscience and Nanotechnology, 12(2), pp. 1238-1241.


The single phase ErFexMn1−xO3 (0 ≤ x ≤ 0.15) compounds were synthesized by the solid-state reaction method. The doping effects on the crystal structural, magnetic, thermal, and dielectric properties were systematically investigated. The XRD patterns show all samples crystallize in the hexagonal structure with P63cm space group. The lattice parameters a and c first decrease with doping, which is followed by a subsequent increase at higher doping levels. Although both the Fe3+ and Mn3+ ions remain stable in high spin trivalent states in all samples, the magnetization is weakened with increasing Fe contents. The heat capacity data shows the antiferromagnetic transition slightly shifts from 77 K for ErMnO3 to 80 K for ErFe0.15Mn0.85O3, which can not be observed in the magnetic susceptibility data. The real part of complex impedance of these samples rises as the doping level increases, indicating the enhancement of insulativity of doped samples.

Please refer to publisher version or contact your library.



Link to publisher version (DOI)