Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide

RIS ID

108628

Publication Details

Wang, Z., Li, C. & Yamauchi, Y. (2016). Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide. Nano Today, 11 (3), 373-391.

Abstract

Electrochemical reduction of carbon dioxide powered by renewable electricity represents a promising solution for energy and environmental sustainability. To enable this technology, active and selective catalysts must be developed. Noble metals exhibit excellent activity but are hampered by their low abundance and high cost. Thus, searching for efficient nonprecious metal catalysts for practical applications is vital. In this review, the recent progress on nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide is summarized. These catalysts are classified into five categories: metals, partially oxidized metals, metal oxides and sulfides, doped carbons, and organic frameworks. The areas of focus are material synthesis, structure and components, catalytic performance, and reaction mechanisms. Several important factors that affect activity, such as particle size, interface strain, grain boundary, crystal facet, oxidation state, heteroatom configuration, and organic hybrid, are discussed. Finally, some perspectives are provided for future developments and directions of the synthesis and functionalization of nonprecious metal catalysts, with emphasis on the potential advantages of nanoporous materials for carbon dioxide reduction.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.nantod.2016.05.007