Title

Episodes of reef growth at Lord Howe Island, the southernmost reef in the southwest Pacific

RIS ID

13234

Publication Details

Woodroffe, C. D., Dickson, M., Brooke, B. & Kennedy, D. (2005). Episodes of reef growth at Lord Howe Island, the southernmost reef in the southwest Pacific. Global and Planetary Change, 49 222-237.

Abstract

Lord Howe Island lies at the present latitudinal limit to reef growth in the Pacific and preserves evidence of episodes of reef development over the Late Quaternary. A modern fringing reef flanks the western shore of Lord Howe Island, enclosing a Holocene lagoon, and Late Quaternary eolianites veneer the island. Coral-bearing beach and shallow-water calcarenites record a sea level around 2–3 m above present during the Last Interglacial. No reefs or subaerial carbonate deposits occur on, or around, Balls Pyramid, 25 km to the south. The results of chronostratigraphic studies of the modern Lord Howe Island reef and lagoon indicate prolific coral production during the mid-Holocene, but less extensive coral cover during the late Holocene. Whereas the prolific mid-Holocene reefs might appear to reflect warmer sea-surface temperatures, the pattern of dates and reef growth history are similar to those throughout the Great Barrier Reef and across much of the Indo-Pacific and are more likely correlated with availability of suitable substrate. Little direct evidence of a Last Interglacial reef is now preserved, and the only evidence for older periods of reef establishment comes from clasts of coral in a well-cemented limestone unit below a coral that has been dated to the Last Interglacial age in a core at the jetty. However, a massive reef structure occurs near the centre of the wide shelf around Lord Howe Island, veneered with Holocene coralline algae. Its base is 40–50 m deep and it rises to water depths of less than 30 m. This fossil reef is several times more extensive than either Holocene or Last Interglacial reefs appear to have been. Holocene give-up reef growth is inferred during the postglacial transgression, but an alternative interpretation is that this is a much older landform, indicating reefs that were much more extensive than modern reefs at this marginal site.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.gloplacha.2005.09.003