Thermo-mechanical processing in a synchrotron beam

RIS ID

34595

Publication Details

Liss, K. & Yan, K. (2010). Thermo-mechanical processing in a synchrotron beam. Materials Science and Engineering A, 528 (1), 11-27.

Abstract

Well collimated, high energy X-rays of 90 keV from synchrotron sources have been used to study metals undergoing plastic deformation in situ, in real time and in the bulk of the materials. The spottiness of the Debye–Scherrer rings, showing reflections from individual crystallites, is analyzed to obtain grain statistics, mosaic spread and grain orientation. Upon cold deformation, coarse grained materials show fingerprints of subgrain formation, grain rotation, grain refinement and the evolution from a single grain into the asymptotic texture. Lattice strain, its partition and anisotropy can be simultaneously revealed. Heating of metals under continuous load drives the observation through the regimes of phase transformation and grain relationships therein, grain coarsening, dynamic recovery and dynamic recrystallization. Examples on copper, magnesium, twinning induced plasticity steel, zirconium alloy and titanium aluminium intermetallics are shown.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.msea.2010.06.017