RIS ID

73090

Publication Details

Xia, G., Li, L., Guo, Z., Gu, Q., Guo, Y., Yu, X., Liu, H. & Liu, Z. (2013). Stabilization of NaZn(BH4)3 via nanoconfinement in SBA-15 towards enhanced hydrogen release. Journal of Materials Chemistry A, 1 (2), 250-257.

Abstract

In the present work, the decomposition behaviour of NaZn(BH4)3 nanoconfined in mesoporous SBA-15 has been investigated in detail and compared to bulk NaZn(BH4)3 that was ball milled with SBA-15, but not nanoconfined. The successful incorporation of nanoconfined NaZn(BH4)3 into mesopores of SBA-15 was confirmed by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, 11B nuclear magnetic resonance, nitrogen absorption/desorption isotherms, and Fourier transform infrared spectroscopy measurements. It is demonstrated that the dehydrogenation of the space-confined NaZn(BH4)3 is free of emission of boric by-products, and significantly improved hydrogen release kinetics is also achieved, with pure hydrogen release at temperatures ranging from 50 to 150 °C. By the Arrhenius method, the activation energy for the modified NaZn(BH4)3 was calculated to be only 38.9 kJ mol−1, a reduction of 5.3 kJ mol−1 compared to that of bulk NaZn(BH4)3. This work indicates that nanoconfinement within a mesoporous scaffold is a promising approach towards stabilizing unstable metal borohydrides to achieve hydrogen release with high purity.

Grant Number

ARC/DP1094261

Included in

Engineering Commons

Share

COinS