Title

Modeling and simulation of droplet translocation and fission by electrowetting-on-dielectrics (EWOD)

RIS ID

34092

Publication Details

Howell, N. & Li, W. (2010). Modeling and simulation of droplet translocation and fission by electrowetting-on-dielectrics (EWOD). Frontiers of Mechanical Engineering in China, 5 (4), 376-388.

Abstract

This paper discusses methods of microfluidic droplet actuation by means of electrowetting-on-dielectrics (EWOD) and provides a technique for modeling and simulating a microfluidic device by using the computational fluid dynamics (CFD) program, Flow3D. Digital or droplet microfluidics implies the manipulation of droplets on a scale of nanoliters (10–9 L) to femtoliters (10–15 L), as opposed to continuous microfluidics that involve the control of continuous fluid within a channel. The two operations in focus here are droplet translocation (moving) and droplet fission (splitting), in which the pressures and velocities within the droplet are analyzed and compared to existing works, both theoretical and experimental. The variation in the pressure of the leading and trailing faces of a droplet indicates the variation in surface energy—an important parameter that explains how a droplet will move toward a region of higher electric potential. The higher voltage on one side of a droplet reduces surface energy, which leads to an induced pressure drop, thus resulting in fluid motion. Flow3D simulations are for both water and blood droplets at voltages between 50 Vand 200 V, and the droplet size, surface properties (Teflon coated), and geometry of the system are kept constant for each operation. Some peculiarities of the simulation are brought to light, such as instabilities of the system to higher voltages and fluids with higher dielectric constants, as well as the creation of a tertiary droplet when the applied voltage causes a large enough force during fission. The force distribution across the droplet provides a general understanding of the electrowetting effect and more specifically allows for a comparison between the effects that different voltages have on the forces at the droplet surface. The droplet position and mean kinetic energy of the droplet are also investigated and compared to other works, proving the dynamics of a droplet motion found here.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1007/s11465-010-0104-z