RIS ID

116249

Publication Details

Sanderson, M., Huang, S., Bao, Q. & Zhang, C. (2017). Optical conductivity of a commensurate graphene-topological insulator heterostructure. Journal of Physics D: Applied Physics, 50 (38), 385301-1-385301-5.

Abstract

The optical conductivity of a heterostructure formed by a commensurate stacking of graphene and a topological insulator (TI) is investigated using the Kubo formalism. Both the intra- and interband AC conductivities are found to be sensitive to the graphene-TI coupling. The direct interband transition in graphene which is the origin of the universal conductance is forbidden due to the topological nature is the coupling. Furthermore, the graphene-TI coupling gives rise to additional broken symmetries, resulting in both the inter- and intraband conductivity to be reduced in the graphene-TI heterostructure. By varying the Fermi energy of the heterostructure, the band that gives the largest contribution changes, which in turn affects the overall electronic transport.

Grant Number

ARC/DP140101501

Available for download on Wednesday, August 29, 2018

Share

COinS