RIS ID

116071

Publication Details

Sun, S. S., Yildirim, T., Wu, J., Yang, J., Du, H., Zhang, S. W. & Li, W. H. (2017). Design and verification of a hybrid nonlinear MRE vibration absorber for controllable broadband performance. Smart Materials and Structures, 26 (9), 095039-1-095039-9.

Abstract

In this work, a hybrid nonlinear magnetorheological elastomer (MRE) vibration absorber has been designed, theoretically investigated and experimentally verified. The proposed nonlinear MRE absorber has the dual advantages of a nonlinear force-displacement relationship and variable stiffness technology; the purpose for coupling these two technologies is to achieve a large broadband vibration absorber with controllable capability. To achieve a nonlinear stiffness in the device, two pairs of magnets move at a rotary angle against each other, and the theoretical nonlinear force-displacement relationship has been theoretically calculated. For the experimental investigation, the effects of base excitation, variable currents applied to the device (i.e. variable stiffness of the MRE) and semi-active control have been conducted to determine the enhanced broadband performance of the designed device. It was observed the device was able to change resonance frequency with the applied current; moreover, the hybrid nonlinear MRE absorber displayed a softening-type nonlinear response with clear discontinuous bifurcations observed. Furthermore, the performance of the device under a semi-active control algorithm displayed the optimal performance in attenuating the vibration from a primary system to the absorber over a large frequency bandwidth from 4 to 12 Hz. By coupling nonlinear stiffness attributes with variable stiffness MRE technology, the performance of a vibration absorber is substantially improved.

Grant Number

ARC/DP150102636

Grant Number

ARC/LP150100040

Available for download on Tuesday, August 14, 2018

Share

COinS