RIS ID

111220

Publication Details

Mampusti, M. & Whittaker, M. F. (2017). Fractal spectral triples on Kellendonk's C*-algebra of a substitution tiling. Journal of Geometry and Physics, 112 224-239.

Abstract

.We introduce a new class of noncommutative spectral triples on Kellendonk's C*-algebra associated with a nonperiodic substitution tiling. These spectral triples are constructed from fractal trees on tilings, which define a geodesic distance between any two tiles in the tiling. Since fractals typically have infinite Euclidean length, the geodesic distance is defined using Perron-Frobenius theory, and is self-similar with scaling factor given by the Perro-Frobenius eigenvalue. We show that each spectral triple is θ-summable, and respects the hierarchy of the substitution system. To elucidate our results, we construct a fractal tree on the Penrose tiling, and explicitly show how it gives rise to a collection of spectral triples.

Grant Number

ARC/DP130100490

Available for download on Wednesday, November 22, 2017

Share

COinS