Title

Evolution of bounding functions for the solution of KPP-Fisher equation in bounded domains

RIS ID

88372

Publication Details

Rodrigo, M. (2003). Evolution of bounding functions for the solution of KPP-Fisher equation in bounded domains. Studies in Applied Mathematics, 110 49-61.

Abstract

The KPP-Fisher equation was proposed by R. A. Fisher as a model to describe the propagation of advantageous genes. Subsequently, it was studied rigorously by Kolmogorov, Petrovskii, and Piskunov. In this paper, we study the dynamics of the KPP-Fisher equation in bounded domains by giving bounds on its solution. The bounding functions satisfy nonlinear equations which are linearizable to the heat equation. In addition to describing the dynamics of the KPP-Fisher equation, we also recover some previous results concerning its asymptotic behavior. We perform numerical simulations to compare the solution of the Fisher equation and the bounding functions.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1111/1467-9590.00230