Retrieving alpha factor of semiconductor lasers from a self-mixing interference waveform

RIS ID

77187

Publication Details

Y. Gao, Y. Yu & J. Xi, "Retrieving alpha factor of semiconductor lasers from a self-mixing interference waveform," in Semiconductor Lasers and Applications V, 2012,

Abstract

As an active research field, the self-mixing interferometry (SMI) based on semiconductor lasers (SLs) is a highly promising and emerging technique for non-contact sensing and parameter measurement of SLs. The basic structure of an SMI system consists of an SL, a lens and an external target. When a portion of reflected light from the target travels back to the laser cavity, a new lasing field is built up leading to both amplitude and phase modulations. The modulated output power is called a self-mixing signal which carries the information of both the target and SL’s feature parameters. Alpha factor, also known as linewidth enhancement factor, is one of the most important SL’s feature parameters. It characterizes the characteristics of SLs, such as the linewidth, the chirp, the injection lock range and the dynamic performances. This paper presents a new method for retrieving alpha factor of SLs by making use of a self-mixing interference (SMI) waveform. According to the well-known Lang-Kobayashi (L-K) theory, the SMI waveform is shaped by multiple parameters, including the alpha, the optical feedback level factor (denoted as C) and other parameters related to the oscillation of the external target. In this work, we build a new equation based on the SMI model derived from the L-K theory, which can be used to calculate the alpha value. In the existing SMI based methods for measuring the alpha factor, the optical feedback level C is limited within a certain narrow range. The proposed method is able to relieve this limitation. The associated simulations and experiments are carried out for verifying the proposed method.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1117/12.1000072