Title

Exploring compact representation of SICE matrices for functional brain network classification

RIS ID

97991

Publication Details

Zhang, J., Zhou, L., Wang, L. & Li, W. (2014). Exploring compact representation of SICE matrices for functional brain network classification. In G. Wu, D. Zhang & L. Zhou (Eds.), Machine Learning in Medical Imaging 5th International Workshop, MLMI 2014, Held in Conjunction with MICCAI 2014, Boston, MA, USA, September 14, 2014. Proceedings (pp. 59-67). Switzerland: Springer International Publishing.

Abstract

Recently, sparse inverse covariance matrix (SICE matrix) has been used as a representation of brain connectivity to classify Alzheimer's disease and normal controls. However, its high dimensionality can adversely affect the classification performance. Considering the underlying manifold where SICE matrices reside and the common patterns shared by brain connectivity across subjects, we propose to explore the lower dimensional intrinsic components of SICE matrix for compact representation. This leads to significant improvements of brain connectivity classification. Moreover, to cater for the requirement of both discrimination and interpretation in neuroimage analysis, we develop a novel pre-image estimation algorithm to make the obtained connectivity components anatomically interpretable. The advantages of our method have been well demonstrated on both synthetic and real rs-fMRI data sets.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1007/978-3-319-10581-9_8