Trailing edge deformation mechanism for active variable-camber wind turbine blade

RIS ID

86352

Publication Details

Kosasih, B. & Dicker, M. (2014). Trailing edge deformation mechanism for active variable-camber wind turbine blade. Applied Mechanics and Materials, 493 444-449.

Abstract

Blade root fatigue stress, primarily resulting from wind shear and turbulence, is a critical factor in wind turbine design. Blade mounted aerodynamic control devices have been shown to have the potential to reduce this. However, limited research exists into suitable devices, with great challenges being involved in meeting the requirements for use on large turbines. The blade designed in this work addresses this by employing a piezoceramic actuated compliant mechanism, contained within a flexible matrix composite structure. The resulting mechanism design achieves a sectional change in lift coefficient of ΔCL +0.4 to 0.15. The performance of the blade is analysed with a quasi-steady time marching BEM model, employing optimal control. A reduction of 21.59% in the standard deviation of the flap-wise bending moment was achieved, a comparable result to previous load control investigations.

Please refer to publisher version or contact your library.

Share

COinS