Title

A method of discriminative information preservation and in-dimension distance minimization method for feature selection

RIS ID

97214

Publication Details

Huang, S., Zhang, J., Liu, X. and Wang, L. (2014). A method of discriminative information preservation and in-dimension distance minimization method for feature selection. 22nd International Conference on Pattern Recognition (ICPR 2014) (pp. 1615-1620). United States: IEEE Computer Society.

Abstract

Preserving sample's pair wise similarity is essential for feature selection. In supervised learning, labels can be used as a direct measure to check whether two samples are similar with each other. In unsupervised learning, however, such similarity information is usually unavailable. In this paper, we propose a new feature selection method through spectral clustering based on discriminative information as an underlying data structure. Laplacian matrix is used to obtain more partitioning information than other previously proposed structures such as the Eigen space of original data. The high dimension of sample data is projected into a low dimensional space. The in-dimension distance is also considered to get a better compact clustering result. The proposed method can be solved efficiently by updating the projection matrix and its inverse normalized diagonal matrix. A comprehensive experimental study has demonstrated that the proposed method outperforms many state-of-the-art feature selection algorithms with different criterion including the accuracy of clustering/classification and Jaccard score.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1109/ICPR.2014.286