Document Type

Conference Paper

Publication Date


Publication Details

Luc Daigle and Ken Mills, Experience of monitoring shear movements in the overburden strata around longwall panels, in Naj Aziz and Bob Kininmonth (eds.), Proceedings of the 17th Coal Operators' Conference, Mining Engineering, University of Wollongong, 8-10 February 2017, 125-137.


Surface subsidence monitoring shows horizontal movements occur around longwall panels for a considerable distance outside the footprint of a longwall panel; typically several hundred metres to several kilometres. Less is known about how these movements are distributed between the surface and the mining horizon. A range of systems have been developed to measure how horizontal movements are distributed within the overburden strata generally and sometimes around specific geological structures. This paper describes the experience of using a range of these systems at various sites and some of the insights that these measurements bring with particular focus on the use of deep inclinometers. The capability to measure induced displacements has developed over time from surface observations to use of borehole systems such as multi-arm callipers, downhole camera imaging and specially installed inclinometers placed to depths up to 300 m. Some techniques such as open boreholes and the multi-arm, oriented calliper have mainly been used at shallow depths where breakout and squeezing ground do not compromise the measurements. Others such as the borehole camera provide context but are not so suitable for quantitative measurement. The inclinometer installed in a large diameter borehole backfilled with pea-gravel has been found to provide high resolution measurements up to a horizontal displacement on any one horizon of about 60-80 mm. Inclinometers have been used at multiple sites around Australia to measure shear displacements to depths of up to about 300m. Shaped array accelerometers are an alternative that provide temporal resolution of a few minutes and provide continuous monitoring over a limited interval but tend to be most useful for monitoring the onset of low magnitude shear displacements.