ON TWISTED HIGHER-RANK GRAPH C*-ALGEBRAS
ALEX KUMJIAN, DAVID PASK, AND AIDAN SIMS

ABSTRACT. We define the categorical cohomology of a k-graph A and show that the
first three terms in this cohomology are isomorphic to the corresponding terms in the
cohomology defined in our previous paper. This leads to an alternative characterisation of
the twisted k-graph C*-algebras introduced there. We prove a gauge-invariant uniqueness
theorem and use it to show that every twisted k-graph C*-algebra is isomorphic to a
twisted groupoid C*-algebra. We deduce criteria for simplicity, prove a Cuntz-Krieger
uniqueness theorem and establish that all twisted k-graph C*-algebras are nuclear and
belong to the bootstrap class.

1. INTRODUCTION

Higher-rank graphs, or k-graphs, are k-dimensional analogues of directed graphs which
were introduced by the first two authors [I0] to provide combinatorial models for the
higher-rank Cuntz-Krieger algebras investigated by Robertson and Steger in [23]. The
structure theory of k-graph C*-algebras is becoming quite well understood [4] [7, 8, [, 22],
and the class of k-graph algebras has been shown to contain many interesting examples
[12, 17).

In [14] we introduced a homology theory H,(A) for each k-graph A and the correspond-
ing cohomology H*(A, A) with coefficients in an abelian group A. We proved a number
of fundamental results providing tools for calculating homology, and showed that the ho-
mology of a k-graph is naturally isomorphic to that of its topological realisation. Of most
interest to us was to show how, given a k-graph and a T-valued 2-cocycle ¢, one may
construct a twisted k-graph C*-algebra C(A). Up to isomorphism, C}(A) only depends
on the cohomology class of ¢. Examples of this construction include all noncommutative
tori, and also the Heegaard-type quantum 3-spheres of [2].

The purpose of this paper is to begin to analyse the structure of twisted k-graph C*-
algebras. In particular, to provide a groupoid model for twisted k-graph C*-algebras, and
to establish versions of the standard uniqueness theorems. The path groupoid of a k-graph
was the basis for the description of k-graph C*-algebras in [10], and many key theorems
about k-graph C*-algebras flow from this description and Renault’s structure theory for
groupoid C*-algebras [21]. We therefore set out to show that each twisted k-graph C*-
algebra is also isomorphic to the twisted groupoid C*-algebra C*(Gy, o) associated to
the path groupoid G, and an appropriate continuous T-valued 2-cocycle on Gy. It is
not immediately clear how to manufacture a groupoid cocycle from a k-graph cocycle.
Part of the difficulty lies in that continuous groupoid cocycle cohomology is based on the
simplicial structure of groupoids while the k-graph cohomology of [14] is based on the
cubical structure of k-graphs.
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Our solution to this difficulty is to introduce another cohomology theory H™(A, A)
for k-graphs, defined by analogy with continuous groupoid cocycle cohomology using
the simplicial structure of the k-graph as a small category. We call this the categorical
cohomology of A (it is no doubt closely related to the standard notion of the cohomology
of a small category, see [I]), and refer to the theory developed in [I4] simply as the
cohomology of A or, if we wish to emphasise the distinction between the two theories,
as the cubical cohomology of A. Tt is relatively straightforward to see (Remark and
Theorem that the cohomology groups H°(A, A) and H'(A, A) of [14] are isomorphic
to the corresponding categorical cohomology groups H’(A, A) and H'(A, A).

Of most interest to us, because of its role in the definition of twisted C*-algebras,
is second cohomology. We show in Theorem [3.16] and Theorem that there is a
map between (cubical) 2-cocycles and categorical 2-cocycles on a k-graph A that induces
an isomorphism H?(A, A) = H?*(A, A). However, this result requires substantially more
argument than those discussed in the preceding paragraph. The proof occupies the greater
part of Section [3] and all of Section . Our approach is inspired by the classification of
central extensions of groups by second cohomology (see [3 §IV.3]). We first construct
by hand a map ¢ — ¢, from cubical cocycles to categorical cocycles which determines
a homomorphism ) : H?(A, A) — H?*(A, A). We then define the notion of a central
extension of a k-graph by an abelian group, and show that each categorical A-valued
2-cocycle ¢ on A determines a central extension &, of A by A. We show that isomorphism
classes of central extensions of A by A form a group Ext(A, A), and that the assignment
¢+ X, determines an isomorphism H?(A, A) = Ext(A, A) (cf. [, Theorem 2.3] and [21]
Proposition 1.1.14]). We show that for ¢ € Z*(A, A) there is a section o : A — X, which
gives rise to a cubical cocycle ¢ such that [cg | = [c] and [¢.,] = [¢]. This shows that
Y H* (A, A) — H*(A, A) is an isomorphism.

It is, of course, natural to ask whether H"(A, A) = H"(A, A) for all n. We suspect this
is so, but have not found a proof as yet, and the methods we use to prove isomorphism
of the first three cohomology groups do not seem likely to extend readily to a general
proof. In any case, we expect that the central extensions of k-graphs introduced here are
of interest in their own right. For example, we believe that extensions of k-graphs can be
used to adapt Elliott’s argument [6, proof of Theorem 2.2] — which shows that the K-
groups of a noncommutative torus are isomorphic to those of the corresponding classical
torus — to show that the K-groups of a twisted k-graph C*-algebra are identical to those
of the untwisted algebra whenever the twisting cocycle is obtained from exponentiation
of a real-valued cocycle.

In the second half of the paper we turn to the relationship between categorical coho-
mology and twisted C*-algebras of k-graphs. We define the twisted C*-algebra C*(A, c)
associated to a categorical T-valued 2-cocycle ¢ on a row-finite k-graph A with no sources,
and show that C7(A) = C*(A, ¢y) for each cubical T-valued 2-cocycle ¢. The advantage
of the description of twisted k-graph C*-algebras in terms of categorical cocycles is that
it closely mirrors the usual definition of the C*-algebra of a k-graph. This allows us to
commence a study of the structure theory of twisted k-graph C*-algebras. We prove
that there is map ¢ — o, which induces a homomorphism from the second categorical
cohomology of a k-graph to the second continuous cohomology of the associated path
groupoid. We then prove that for a categorical T-valued 2-cocycle ¢ on A, there is a
homomorphism from the twisted k-graph C*-algebra associated to ¢ to Renault’s twisted
groupoid C*-algebra C*(Gy,0.); this shows in particular, that all the generators of every
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twisted k-graph C*-algebra are nonzero. We then prove a version of an Huef and Rae-
burn’s gauge-invariant uniqueness theorem for twisted k-graph C*-algebras, and use it to
prove that C*(A, c) = C*(Gy, 0c).

We finish up in Section |8 by using the results of the previous sections to establish
some fundamental structure results. We use the realisation of each twisted k-graph C*-
algebra as a twisted groupoid C*-algebra, together with Renault’s theory of groupoid
C*-algebras [21] to prove a version of the Cuntz-Krieger uniqueness theorem. We also
indicate how groupoid technology applies to describe twisted C*-algebras of pullback and
cartesian-product k-graphs, and to show that every twisted k-graph C*-algebra is nuclear
and belongs to the bootstrap class N.

Acknowledgement. The first author thanks his coauthors for their hospitality.

2. PRELIMINARIES

2.1. Higher-rank graphs. We adopt the conventions of [I3] 6] for k-graphs. Given a
nonnegative integer k, a k-graph is a nonempty countable small category A equipped with
a functor d : A — NF satisfying the factorisation property: for all A € A and m,n € N¥
such that d(\) = m + n there exist unique u,v € A such that d(u) = m, d(v) = n, and
A = pv. When d(\) = n we say A has degree n. We will typically use d to denote the
degree functor in any k-graph in this paper.

For k > 1, the standard generators of N¥ are denoted ei,...,e;, and for n € N*
and 1 < i < k we write n; for the i*" coordinate of n. For n = (ny,...,n;) € N¥ let
In| == 328 n; for A € A we define |\ == |d(\)]. For m,n € N¥, we write m < n if

m; < n; for all ©+ < k, and we write m V n for the coordinatewise maximum of m and n.

For n € N* we write A" for d=*(n). The vertices of A are the elements of A°. The
factorisation property implies that o — id, is a bijection from the objects of A to A°.
We will use this bijection to identify Obj(A) with A® without further comment. The
domain and codomain maps in the category A then become maps s,7 : A — A°. More
precisely, for a € A, the source s(«) is the identity morphism associated with the object
dom(a) and similarly, 7(a) = idcod(a)- An edge is a morphism f with d(f) = e; for some
ie{l,... k}.

Let A be an element of a k-graph A and suppose m,n € N¥ satisfy 0 < m < n < d()\).
By the factorisation property there exist unique elements «, 8,y € A such that

A=afy, dla)=m, d(f)=n—m, and d(vy)=d\) —n.

We define A(m,n) := 8. Observe that & = A\(0,m) and v = A(n,d()\)).

For o, € A and E C A, we write aF for {aX : A € E,;r(\) = s(a
for {\8 : X € E,s(\) = r(8)}. So for u,v € A% we have uE = E N
Fv=Ens*v).

Recall from [19] that for p,v € A, the set uA N vA N AYWVI®) of minimal common
extensions of p and v is denoted MCE(M, V).

We allow 0-graphs with the convention that N = {0}. A O-graph consists only of
identity morphisms, and we regard it as a countable nonempty collection of isolated
vertices.

It is standard that if £ = (E° E',r,s) is a directed graph as in [I1], then its path
category is a 1-graph, and conversely, every 1-graph A is the path category of the directed
graph with vertices A%, edges A! and range and source maps inherited from A. In this
paper we shall treat directed graphs and 1-graphs interchangeably. That is, if F is a

nd Ef

)} a
r~Y(u) and
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directed graph (E°, E',r, s), then we shall also use E to denote its path category regarded
as a l-graph.

2.2. Cohomology of k-graphs. We now recall the (cubical) cohomology of a k-graph
described in [14]: For k& > 0 define

(1,...,1) ifk>0,
1k = A
0 if k=0.
Let A be a k-graph. For 0 < r < k let
Qr(A):={reA:d\) <1y, |\ =71}
For r > k let Q,(A) := 0.

Fix 0 < r < k. The set Q,(A) consists of the morphisms of A which may be expressed
as the composition of a sequence of r edges whose degrees are distinct generators of N*.
The factorisation property implies that each element of @,.(A) determines a commuting
diagram in A shaped like an r-cube. For example if A € Q3(A) with d(\) = e; +¢; + ¢
with i < j <[, then multiple applications of the factorisation property yield factorisations

A = fogoho = foh1g1 = hafigi = hagafo = gshsfe = gsfsho

such that d(f,) = e;, d(g,) = €; and d(h,) = ¢ for all n. So A determines the following
commuting diagram in which edges of degree e; are blue and solid, edges of degree e; are
red and dashed and edges of degree e; are green and dotted:

f2

re—————@

ho

.L“. fS 4

g2

h3

Q
=

(2.1)

h2 fl

935

\.u"b Yu
Jo
Each A € Q,(A) determines 2r elements of @),—;(A) which we regard as faces of A. Fix
A€ Q-(A) and express d(\) = e;, + -+ + €, where iy < --- < i,. For 1 < j < r define
FP(X) and F}'()) to be the unique elements of A7 guch that A = aF} () = F)(\)p
for some «, 3 € A% . Equivalently,

F)(N) = X0,d(X\) —¢;;,) and  F}(A) = Aes,, d(N)).
In example (2.1), F(\) = goho = higi, F§(\) = fohi = haf1 and so on.

For r € N let C.(A) = ZQ,.(A). For r > 1, define 0, : C,.(A) — C,_1(A) to be the
unique homomorphism such that

r 1
0r(N) =D ) (1)F/(A)  forall A € Q.(A).
i=1 (=0
We write dy for the zero homomorphism Cy(A) — {0}. By [14, Lemma 3.3] (C.(A), d,) is
a chain complex.
As in [14], for r € N we denote by H,.(A) the quotient group H,.(A) = ker(9,)/Im(0,11).
We call H,(A) the r*" homology group of A.
Recall that a morphism ¢ : A — T of k-graphs is a functor ¢ : A — I such that
dr(p(N)) = da(N) for all A € A. As in [14, Lemma 3.5] the assignment A — H,(A) is a
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covariant functor from the category of k-graphs with k-graph morphisms to the category
of abelian groups with homomorphisms.

Notation 2.1. Let A be a k-graph and let A be an abelian group. For r € N, we write
C"(A, A) for the collection of all functions f : @Q,.(A) — A. We identify C"(A, A) with
Hom(C,.(A), A) in the usual way. Define maps §" : C"(A, A) — C""1(A, A) by

r+1

(0" N)A) = F(0ra (V) =

+

M-

(=1 F(FF )

-
Il
-
~
Il
o

Then (C*(A, A),§*) is a cochain complex.

As in [I4], we define the cohomology H*(A, A) of the k-graph A with coefficients in A to
be the cohomology of the complex C*(A, A); that is H"(A, A) := ker(6")/Im(6"~1). For
r >0, we write Z"(A, A) := ker(d") for the group of r-cocycles, and for r > 0, we write
B"(A, A) = Im(6" 1) for the group of r-coboundaries. We define B°(A, A) := {0}. For
each r;, H"(A, A) is a bifunctor, which is contravariant in A and covariant in A.

Remark 2.2. As mentioned in the introduction, in the next section we introduce a new
cohomology theory, called “categorical cohomology” for k-graphs. When we wish to
emphasise the distinction between the two, we will refer to the version discussed here as
“cubical cohomology”.

3. CATEGORICAL COHOMOLOGY

Here we introduce a second notion of cohomology for k-graphs, obtained from the
simplicial structure of the category A in a manner analogous to Renault’s cohomology for
groupoids (see [21, Definition 1.1.11]), which he attributes to Westman (see [24]). We also
follow his use of normalised cochains.

Notation 3.1. Let A be a k-graph, and let A be an abelian group. For each integer
r>1,let A= {(M\,...,\) € [Ti—; At s(\i) = r(Aiyq) for each i} be the collection of
composable r-tuples in A, and let A* := A%, For » > 0, a function f : A*" — A is said to
be an r-cochain if f(A,...,\,) = 0 whenever \; € A° for some 0 < ¢ < r. Observe that
when 7 = 0 the last condition is vacuous, so every function f : A° — A is a 0-cochain.
Let C"(A, A) be the set of all r-cochains, regarded as a group under pointwise addition.

Definition 3.2. Fix r > 1. For f € C"(A, A) define 0" f : A*"+D) — A by
@ N0 M) = [ A)
(31) + Z::l(_l)zf<)\07 RN )\i_g, ()\i—1>\i)a )‘H—l) RN >\r)
+ (=1 (Mo, A1),
For f € C°(A, A), define 8°f : A*' — A by
(3.2) (8"F)N) = F(s(N) = f(r(N)).
Remark 3.3. Tt is routine to check that each 6" maps C"(A, A) to C" (A, A).

We sometimes emphasise the condition that f(Ay,...,\,) = 0 whenever \; € A° for
some ¢ by referring to such cochains as normalised cochains. However, since we will not
consider any other sort of cochain in this paper, we usually eschew the adjective.
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Lemma 3.4. The sequence

2

0 COA, A) 5 c (A, A) 25 c2n, ) 2
18 a cochain complex.
Proof. For f € C°(A, A) and (A\;, \2) € A*2, we have
(8" 08" F) (A1, Ae) = (8°F) (M) = (8"F)(Aid2) + (") (ho)

= f(r(A)) = f(s(A)) = (F(r(A1) = f(s(X2))) + f(r(A2)) — f(s(A2))
=0,

so dt o’ = 0. . .
To see that 6" o §° = 0 for i > 1, we calculate:

(3.3) (@ 08 )Moy -y Aig1) = (8 F)( M1y - Air)

(3.4) + Z(—l)j(éif)()\o, RO VIED V) RSP YTy
(3.5) + (=D ) Koy 5 N

We must show that the right-hand side is equal to zero. Expand each term using .
For each j, the j*" term in the expansion of cancels the first term in the expansion
of the " summand of . Likewise, the j'" term in the expansion of cancels with
the last term in the expansion of the j™ summand of (3.4). Finally, for 2 < j < i, the
ith term in the expansion of the ;'™ summand of cancels with the j*® term in the
expansion of the (i + 1)** summand. 0J

Definition 3.5. The categorical cohomology of A with coefficients in A is the cohomology
H*(A, A) of the cochain complex described above. That is,

H" (A, A) :=ker(0")/Im(8""")  for each r.

We write B"(A, A) for the group Im(8" ') of r-coboundaries, and Z"(A, A) for the group
ker(d") of r-cocycles.

Remark 3.6. For each r; H"(A, A) is a bifunctor which is covariant in A and contravariant
in A.

Remark 3.7. Definitions (3.2 and make sense for an arbitrary small category A. If the
category also carries a topology compatible with the structure maps, and A is a locally
compact abelian group, it is natural to require A-valued n-cochains on A to be continuous.
In this paper, we distinguish this continuous cocycle cohomology from its discrete cousin
by denoting the cochain groups C*(A, A), the coboundary groups B*(A, A), the cocycle
groups Z*(A, A) and the cohomology groups H*(A, A). If A is a topological groupoid
G in the sense of Renault, then we have simply replicated Renault’s continuous cocycle
cohomology of G introduced in [21].

A function from a k-graph A into a group G is called a functor if it preserves products
(see [I0 §5]). Such functors have sometimes been referred to informally as cocycles; the
following lemma justifies this informal usage.

Lemma 3.8. Let (A, d) be a k-graph, and let A be an abelian group. Then a cochain fy €
C°(A, A) is a categorical 0-cocycle if and only if it is constant on connected components; a
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cochain fi € C*(A, A) is a categorical 1-cocycle if and only if it is a functor; and a cochain
fa € C*(A, A) is a categorical 2-cocycle if and only if it satisfies the cocycle identity

(3.6) F2(A1, A2) + fa(Mid2, Az) = fa(A2, Az) + fa(A1, A2s)
for all (A1, Ao, A3) € A*3,

Proof. For the first statement, observe that f; is a 0-cocycle if and only if (6°f3)(A) = 0
for all A\, which occurs if and only if fo(s(A)) = fo(r(N)) for all A; that is, if and only if fy
is constant on connected components.

A 1-cochain f is a 1-cocycle if and only if (8" f1)(A1, o) = 0 for all (A, Xo) € A*?; that
is, if and only if

f1(>\1) — fl(/\l/\Q) + fl(AQ) =0 for all ()\1, )\2) € A*Q,

and this in turn is equivalent to the assertion that f; is a functor.
Fix fo € C*(A, A). Then f, € Z*(A, A) if and only if for all (A, Ao, A3) € A*3)

0= (0*f2) (A, A2, A3) = fo(Aay Az) — fa(Aida, Ag) + fa(Ar, A2, As) — f( A2, Ag).
Hence f; is a 2-cocycle if and only if it satisfies (3.6]). ([l

We now turn to the relationship between the cubical and the categorical cohomology
of a k-graph A. We will ultimately prove that H*(A, A) = H*(A, A) for i < 2, but sorting
this out will take the remainder of this section and all of the next.

Remark 3.9. By definition of the coboundary maps on cohomology from [14], an A-valued
O-cocycle on a k-graph A is a function ¢ : A — A which is invariant for the equivalence
relation ~,, on vertices generated by r(e) ~cu, s(e) for each edge e. As in Lemma
an A-valued categorical 0-cocycle on A is a function fy : A° — A which is invariant for
the equivalence relation ~,; on vertices generated by r(\) ~ca s(A) for all A € A. Since
every path in A can be factorised into edges, ~.u, and ~.,; are identical. Hence

HO(A, A) = H°(A, A) = {f : A° — A | f is constant on connected components}.

~

Our next result says that restriction of functions determines isomorphisms Z'(A, A)
ZY (A, A), BY(A, A) = BY(A, A) and hence H'(A, A) = H'(A, A).
Theorem 3.10. Let A be a k-graph and let f € C'(A,A). If f € Z' (A, A) then there
exists a unique element f € Z'(A, A) such that floway = f. Conversely, if g € ZY (A A),
then glo,n) € ZY (A, A). Finally, f € BY(A, A) if and only if f € B' (A, A), and the map
f— f induces an isomorphism H' (A, A) = H*(A, A).
Proof. Suppose first that g € Z'(A, A) and let gy = g|g,(a). Then for any A € Q2(A), we
have

8" (90)(A) = go(Fy (V) = go(FY(N)) — go(F3 (V) + go(F5 (1))
( (F2 (V) + 90(FL (V) = (90(FY(N)) + go(F3 (N)))-

Since FY(N)FL(N\) = FY(AN)F3()), that g is a functor implies that 6'(gg) = 0 so
do € ZI(A, A) 3

Now suppose that f € Z'(A, A). We claim that there is a well-defined functor f: A —
A such that for any path A € A and any factorisation A = A - - - Ay with each A; € Q1 (A),

Al

(3.7) fO) =2 fx
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Given a path A € A, an edge-factorisation of A is a decomposition A = Ay --- Ay € A with
each \; € Q1(A). We say that

PYREEDY) VINRRED TS FRERD 19 VINRERD VIV

is an allowable transition of edge-factorisations of X if d(X\;) = d(\, ;) = e; and d(Nij1) =
d(X;) = e; for some 1 <1 < j <k, and \; it = AN, ;. Any edge-factorisation of a fixed
path A € A can be transformed into any other by a sequence of such allowable transitions
and their inverses. Since f is a cocycle, the formula is invariant under allowable
transitions and so determines a well-defined function f from A to A, which is a functor
which extends f by definition. Moreover, any functor f: A — A which extends f must
satisfy , and so must be equal to f.

A function f: Q;(A) — A belongs to B'(A, A) if and only if there is amap b: A° — A
such that f(A) = b(s(\)) — b(r(A\)) for all A € Q,(A). It follows that f € B'(A, A) if
and only if there is a function b : A° — A such that the unique extension f : A — A of
Theorem satisfies f(A) = b(s(A\)) — b(r(\)) = (8°b)()\) for all A € A; that is, if and
only if f € BY(A, A). O

We now wish to show that each cubical 2-cocycle determines a categorical 2-cocycle,
and deduce that there is a homomorphism from Z%(A, A) to Z*(A, A) which descends to a
homomorphism ¢ : H2(A, A) — H*(A, A). The set-up and proof of this result will occupy
the remainder of this section. In the next section, we will introduce central extensions of
k-graphs by abelian groups to show that 1) is an isomorphism.

So for the remainder of the section, we fix a k-graph A and an abelian group A. By
definition of 6%, for ¢ € Z?(A, A) and any A € Q3(A),

(3.8)  A(F(N) + ¢(Fy (V) + 6(FY(N) = ¢(FL (V) + ¢(F () + o(F5 (N)).

To commence our construction of the homomorphism v : H2(A, A) — H*(A, A) we
recall the notion of the skeleton, viewed as a k-coloured graph, of a k-graph A.

Notation 3.11. A k-coloured graph is a directed graph E endowed with a map C' : E' —

{1,...,k} which we regard as assigning a colour to each edge. Using our convention
that the path-category of E, regarded as a 1-graph, is still denoted E, we extend C' to a
functor, also denoted C, from E to the free semigroup F;” = (1,2,... k) on k generators.

Given a k-graph A we write Ey for the k-coloured graph such that ES = A% E} =
Q1(A) = Ule A%, the maps r, s : Ey — E} are inherited from A, and d(«) = e¢(q) for all
a € Qi(N).

There is a surjective functor = : Eyx — A such that 7(a) = « for all & € Q1(A). Let
q : Ff — NF be the semigroup homomorphism such that ¢(i) = ¢; for 1 <4 < k. Then
goC=dom.

We define a preferred section for 7 as follows. Given A € A", we denote by A € E, the
unique path Ay ...\, in Ey such that 7(A) = A and C();) < C(Ni41) for all .

An allowable transition in E} is an ordered pair (u, w) € Ex X Fy such that 7w(u) = m(w)
and there is an i such that u; = w; for j & {i,i+ 1} and C(w;41) = C(w;) < Cluiy1) =
C(w;). The factorisation property forces w;u;11 = w;w;y1 because m(u) = m(w) in A.
Informally, if (u,w) is an allowable transition, then the edges w; and w;;; are in reverse
colour-order, and u is the path obtained by switching them around using the factorisation
property in A. If (u,w) is an allowable transition we define p(u, w) := min{j : u; # w,}

IThe ordering on the generators of F; is just the usual ordering of {1,...,k}.
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Definition 3.12. Given a k-graph A, the transition graph of A is the 1-graph F)y such that
F{ := Ej, F} :={(u,w) : (u,w) is an allowable transition in E,}, and r,s: F} — F} are
defined by r(u,w) := u and s(u, w) := w.

Let A be a k-graph. Given u € FJ, since u is a path in Ey, we will frequently write
¢(u) for the number of edges in u regarded as a path in Ex. The connected components of
the transition graph F)y are in one-to-one correspondence with elements of A. Specifically,
given a path A € A, the set 7=*(\) C F} is the collection of vertices in a connected
component Fy of Fy. We have ((u) = || for all u € FY.

Each F) (and hence Fj) contains no directed cycles. Moreover, for each A € A, the

preferred factorisation \ is the unique terminal vertex of Fy.
Define h : F) — N by

L(u)
_ Z {j <i:C(u;) > Cu)}].

An induction shows that h(u) measures the distance from w to the terminal vertex in
its connected component: that is, we have h(u) = |a| for any path a € 7(u)Fyu. In
particular, for A € A, we have h(\) = 0, and if u,w € FY, and o € uFyw, then |a| =
h(w) — h(u).

Notation 3.13. Define ¢ : Fi — A as follows: if (u,w) € F\ and p(u,w) = i, then
d(u,w) = ¢(m(ujuirr)). That is, ¢(u,w) is the value of ¢ on the element of Q,(A)
which is flipped when passing from w to u. We extend ¢ to a functor from F to A by

d(a) == 2, dlaw).
Lemma 3.14. Let 7,p € Fi with s(1) = s(p). Then there exist p € Fyr(r) and v €
Fxr(p) such that r(p) = r(v) and ¢(ut) = d(vp).
)

Proof. Let w := s(7), and let n = ¢(w) so that w = wy - - - w, with each w; € Ei. We
assume without loss of generality that p(7) < p(p). We on81der three cases.
Case 1: p(7) = p(p). Then 7 = p, and pu = v = r(r) trivially have the desired
properties.
Case 2: p(p) > p(7) + 2. Then
r(T) = Wi W1 f Wpir) 2« Wp(p)—1Wp(p) Wh(p)+1 Wp(p)+2 - Wp and
W1+ * Wp(r)—1 Wy(r) Wp(r)+1 Wp(r)+2 * * * Wp(p)—1GMWp(p)12 - - - Wn

where Wy Wpr)+1 = ef and wy,)Wy(p+1 = gh are 2-cubes of A. Let
V= W Wy(r) 1€ Wp(r)42 Wy -1 9MWp(p)42 -+ W € F,

and let p = (v,r(7)) and v = (v,r(p)). Then u € Fir(r) and v € Fir(p) with

r(p) =r(v) = v, and ¢(ur) = ¢(gh) + ¢(ef) = $(vp) as required.
Case 3: p(p) = p(7) + 1. Then A := T(Wp(r)Wp(r)+1Wp(r)+2) belongs to Qs(A). Hence we
may factorise A as in (2.1). That is,

A= fogoho = thlgl = h2f191 = h292f2 = g3h3f2 = g3f3h0
where C(f;) = C(fo) < C(g;) = C(g0) < C(g1) = C(go) for all 4,5,1. Since p and 7 are

allowable transitions, we have wy) = ha, Wyr)41 = g2 and wyr)42 = fo. We have

r(T) = w; - “Wp(r)-193N3 faWp(r) 13 - -~ wp  and r(p) =wy - Wp(r)—1ha f1g1Wp(r) 43+ W
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Define pu,v € F} by
pi= (wi - fogoho -+ Wn, wi---gsfsho- - wy) (wi-+-gsfsho -~ wn, wi---gshafo--wy),

and

vi= (w1 fogoho wn, wi - fohigi - wy) (Wi -+ fohigy -+ wn, wi---hafigr - wy).
Then p € Far(7) and v € Fyr(B) with 7(u) = r(v). Moreover,

o(ur) = ¢(fogo) + d(fsho) + ¢(gshs) = S(FS(N) + ¢(Fy (V) + ¢(FP(A))  and
d(vp) = d(goho) + d(foh1) + d(f191) = ¢(F (V) + ¢(FF(N) + ¢(F3 (N)),

so ¢(ur) = ¢(vp) by (B8 (B-3). O
Lemma 3.15. Let A be a k-graph. There is a well-defined function Sy : F} — A defined
by Sy(w) = ¢(a) for any o € m(w)Fpw.

Proof. Since each connected component of F)y has a unique sink and is finite, it suffices
to fix A € A, a vertex w € F? and two paths o, 5 € NFyw and show that ¢(a) = ¢(f).
We proceed by induction on h( ). If h(w) = 0 then w = X and the result is trivial.

Now fix n € N. Suppose as an inductive hypothesis that ¢(a) = ¢(8) whenever
a, B € AFpyw with h(w) < n. Fix w € Fj with h(w) =n+ 1 and a, 8 € AFyw.

We have |a] = || =n + 1. Write a = &’a,,41 and 8 = /8,1 where a1, Bny1 € Fi.
By Lemma @l applied to 7 := a, 11 and p := B,,1 in Fiw, there exist u € Fyr(any1)
and v € Fur(Bny1) such that r(p) = 7(v) and ¢(pans1) = G(vBps1). Since X is the
unique sink in Fy, and since FY is finite, there is a path 7 from r(u) to X. The situation
is summarised in the following diagram.

Iz Yﬂ

X [\n/—\‘ w
Bn+1
B/

Since h(r(ani1)) = h(r(Bns1)) = n, the inductive hypothesis gives ¢(nu) = ¢(a’) and
d(nv) = ¢(B'). We then have
o) = () + dlans1) = G(np) + dlani1) = (n) + G(pn ).
A symmetric calculation shows that
3(B) = b(n) + ¢(vfus).
Since ¢(pani1) = G(vBni1) by choice of p and v, it follows that ¢(a) = ¢(3). O

Lemma implies that ¢ is a 1-coboundary of Fj: specifically, ¢ = 3°(S,). We call S
the shuffle function associated with ¢. We regard it as measuring the “cost” of shuffling
the edges in a coloured path into preferred order.

Theorem 3.16. Let (A, d) be a k-graph. For ¢ € Z*(A, A), define
co: N2 — A by cs(p,v) = Sy(uv).
Then cy € Z*(A, A) and ¢ + c4 is a homomorphism from Z2(A, A) to Z*(A, A) satisfying

O/
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(1) co(f.9) = o(fg) ifd(f) = e; and d(g) = e; withi > j, and c4(f,g) =0 ifd(f) = e;

and d(g) = e; with i < j; and

(2) cyp(p,v) = 0 whenever v = fiv; in particular cs(r(X), ) = cy(X, s(A)) =0 for all
AeA.

Moreover, if ¢ € B%(A, A), then cy € B*(A, A); hence, [¢] = [cy] defines a homomorphism
v H2 (A, A) — H* (A, A).

To prove the theorem, we need some further technical results
Notation 3.17. For ¢ € Z*(A, A), define ¢, : (Ex)*™* — A by
Go(uyw) 1= Sy(uw) — Sylu) — Sylw).
Lemma 3.18. For all (u,w) € (Ep)*?, we have

So(uw) = Sy(m(u) w(w)) + Sp(u) + Sy (w)
and hence é4(u, w) = Sy(m(u) 7(w)). Moreover, éy € Z*(En, A); that is,
(3.9) Co(u,w) + C4(uw, x) = g(w, x) + ¢4(u, wr)
for all (u,w,z) € (Ep)*

Proof. Fix a path o in F) from u to m(u) and a path 8 from w to 7(w). There is a path o
from vw to 7(u)w with |o/| = |a| determined by p(c}) := p(a;) for all j < |a|. Likewise,

there is a path ' from 7(u)w to 7(u) 7w(w) with |8’| = || such that p(B}) = L(u) + p(B;)
for all j. By definition of these paths, we have
(3.10) o(o') = () = Sy(u) and  §(8") = 6(8) = Sy(w).

Since m(uw) is the unique sink in Fy(,,), there is a path v from 7(u) 7(w) to m(uw),
and we have
(3.11) o(7) = Sy(m(u) m(w)).
Then v3'a’ is a path from uw to w(uw), and hence ¢p(yf'a’) = Sg(uw). Using that bisa
functor, and then equations (3.10) and (3.11]), we now calculate:
So(uw) = o(v8'a') = 6(7) + ¢(B') + (o) = Sy(m(u) w(w)) + Sy(w) + Sy (w),
proving the first assertion of the lemma. The second assertion follows immediately from

the definition of ¢,.
For the final assertion, we calculate

Co(u,w) + p(uw, ) = (Sp(uw) — Sp(u) — Sg(w)) + (Sp(uwz) — Sy(uw) — Sy(z))
— S (uw) — Sy(us) — So(u0) — ().
A similar calculation yields
o, 2) + (1, w2) = Sy () — Sy() — Sy(w) — Sy()
also. O
Proof of Theorem[3.10. Fix ¢ € Z*(A, A). We first show that ¢, satisfies and .

For , suppose that f € A% and g € s(f)A%. If i < j, then fg = fg, so S4(fg) =0 as
required. If ¢ > j, we factorise fg = ¢'f' where d(¢’') = e; and d(f’) = e;, and note that

fg= g/f/, and S,(fg) = ¢(fg) by definition.
For 7 suppose that v = fv. Then c¢(u7 ) Ss(fiv) = 0 by definition. Since

r(A) X = X = r(\)A for all A, and similarly for X s . follows.
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To see that ¢, is a cocycle, it remains to show that it satisfies the cocycle identity
(A1, A2) + (Ao, Az) = cg(Xa, A3) + cg( A1, AaAz)

for (A1, X2, A3) € A*3. By Lemma|3.18} we have c4(m(u), m(w)) = éy(u, w) for any (u, w) €
E3%, and hence

C¢()\17 )\2> + C(Z)(/\l)\Zv )\3) = 6(75(/\_17 /\_2) + 6<Z5()\1 )‘Qa )\3)a

and
co(Ma, A3) + co (A1, Aadz) = E5(Xa, A3) + E4(A1, A2 A3),

so the cocycle identity for ¢, follows from the cocycle identity for ¢g.

To see that ¢ — ¢, is a homomorphism, observe that if ¢, p2 € Z2(A, A), then Sy, 14, =
S¢1 + S¢2, and hence 6¢1+¢2 = Ed)l + 6¢2. It then fOHOWS that C¢1+¢2 = C¢1 —+ C¢2 also.

Finally, we must show that the assignment ¢ — ¢, carries coboundaries to coboundaries.
Fix ¢ € B*(A, A) and f € C*(A, A) such that ¢ = 6'f. By definition of §' : C1(A, A) —
C*(A, A),

$(N) = F(FZ(N) + F(FL(N) = FEY(N) = F(EFG (V)

for all A € Q2(A). In particular, if d(a) = e; and d(B) = e; with ¢ < j and if aff = n(
with d(n) = e; and d(¢) = ¢;, then ¢(af) = f(a) + f(B) — f(n) = f(C)-

Define b : Ey — A by b(w) := %) f(w;). We show by induction on h(w) that

=1

Sy(w) = b(m(w)) — b(w) for all w € FY. Tt is trivial when h(w) = 0. Now suppose that

Sy(w) = b(r(w)) — b(w) whenever h(w) < n, and fix w € F} with h(w) = n+ 1. Fix
a € m(w)Fpw, and let w' := r(ay,11). Then Lemma implies that

n+1

Se(w) = Z é(oﬁ) = é(anﬂ) + Z &(Cm‘)

= Sp(an, ..., an) + QE(O‘n-&-l) = b(m) — b(w') + Qg(an-i-l)a

where the last equality follows from the inductive hypothesis. .
Let j := p(ant1), and let A := 7(wjw,41). We have ¢(a,11) = ¢(A) by definition of ¢.
Since 11 is an allowed transition, we have C(w;) > C(w;41), and hence

wj = Flo()‘)> Wi = le()‘)7 w; = F20<>‘)a and w;‘-i-l = Fll()‘>
Hence ¢(ans1) = d(N) = fwh)+ f(wh,) = f(w;) — f(wjs1). Combining this with (3.12),

we have

Se(w) =

(3.12)

(m(w)) = b(w') + f(w)) + f(w)y,) = f(w;) = flw1)
(r(w)) = (I Fw)) + Fw)) + Fw) = F(w) = f(wia).
Since w;, = w; for i & {j,j + 1}, it follows that

Se(w) = b(r(w)) — S0 f(w;) = b(m(w)) — b(w).

Define g € C*(A, A) by g(\) = —b(A) for A € A. We prove that ¢, = d'g. Fix
(u,v) € A*2. Then

e4(j1,v) = Sy(7) = b(ED) — b(ED) = b(7H) — b(7) — b(D)
= —g(uv) +g9(p) +g(v) = (8" 9) (1, v).
Hence ¢, € B*(A, A), so [#] = [c,] is a homomorphism from HZ(A, A) to H*(A, 4). O

b
b
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4. CENTRAL EXTENSIONS OF k-GRAPHS

In this section we prove that the map [¢] — [c4] of Theorem is an isomorphism (see
Theorem . To prove this, we introduce the notion of a central extension of a k-graph
A by an abelian group A. We show that the collection of isomorphism classes of central
extensions forms a group Ext(A, A) which is isomorphic to H*(A, A) (cf. [I, Theorem 2.3]
and [2I], Proposition 1.1.14]). We show that each central extension is isomorphic to one
obtained from a cubical 2-cocycle which is unique modulo coboundaries. We use this to
prove that the map [¢] — [cy] is an isomorphism H2(A, A) = H?*(A, A).

Definition 4.1. Let A be an abelian group, and let A be a k-graph. An extension of A
by A is a sequence
X:Ax A5 X DA
consisting of a small category X, a functor ¢ : A’ x A — X, and a surjective functor
q : X — A such that ¢(¢«(v,a)) = v for all v € A and a € A, and such that whenever
q(z) = q(y), there exists a unique a(z,y) € A such that x = «(r(x), a(x,y))y. We say that
X is a central extension if it satisfies ¢(r(x),a)z = xi(s(x),a) for all x € X and a € A.
As we do for k-graphs, for x € X we write r(x) for idcoars) and s(z) for idgom(a)-

Remark 4.2. Let X be an extension of a k-graph A by an abelian group A. The functor ¢ is
automatically injective and induces a bijection between A° and Obj(X). Since ¢(¢(v,a)) =
v for all (v,a) € AY x A, we have q(x) = q(y) if and only if there exists a € A such that
o(r(x), a)z =y. We then have ¢(r(z)) = ¢(c(r(x), a))q(r(x)) = ¢((r(2), a)r(z)) = ¢(r(y))-
Since ¢ is injective on objects, it follows that ¢(z) = ¢(y) implies r(z) = r(y) (and similarly
s(z) = s(y)) for all z,y € X.

Notation 4.3. Given an extension X of A by A, it is unambiguous, and frequently
convenient, to write a - x for tx(r(z),a)z and z - a for zix(s(z),a). In this notation,
q(z) = q(y) if and only if z = a(z,y)-y, and X is a central extension precisely if a-x = z-a
for all z € X and a € A. We implicitly identify A with the identity morphisms in X
via the bijection v — tx(v,0). This allows us to write a - v or v - a (as appropriate) for
tx(v,a). With this convention, we also have ¢x(v) = v.

That ¢ is a functor implies that a- (b-z) = (a+b) -z for all a,b € A and = € X. Since
composition in X is also associative, we have identities like z(a-y) = (z-a)y = (a-x)y =
a - (zy). In particular, the expression a - zy is unambiguous.

Lemma 4.4. Let A be a k-graph, A an abelian group, and
X ANxA—- XA

a central extension of A by A. If (w,x,2), (w,y,z) € X*3 and q(x) = q(y), then a(x,y) =
a(wzrz,wyz). In particular, a(xz,yz) = a(z,y) = a(wz, wy).

Moreover given elements xy,...,x, € X such that q(x1) = q(x2) = -+ = q(z,), we
have a(z1,2,) = S0 alzs, 241
Proof. Using that X is a central extension, we calculate:

a(z,y) - wyz = w(a(z,y) - y)z = wrz.

The first assertion of the lemma therefore follows from uniqueness of a(wzz, wyz). The
second assertion follows from the first applied with w = r(z) and with z = s(z).

The final assertion follows from a straightforward induction: it is trivial when n = 2.
Suppose as an inductive hypothesis that it holds for n < N, and fix zy,... 2y With
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q(z;) = q(z;) for all 7, 5. Then

N N-1
(Z a(l"z‘a mz’+1)) TN41 = (Z a(x;, xz’+1)> : CL(INa TN11) - TN41
i=1 i=1
N—-1
= ( a(%@iﬂ)) TN = T1
=1
by the inductive hypothesis. ([l

Notation 4.5. Let A be a k—graph let A be an abelian group, and let
A AxAS X A and Y:AxA LY HA

be central extensions of A by A. Let X , Y :={(z,y) € X XY : gx(x) = gy (y)}. Define
a relation ~4 on X *x, Y by (x,y) ~4 (—a-xz,a-y) for all (z,y) € X %, Y and a € A.

Lemma 4.6. With A, A, X and Y as in Notation[4.], the relation ~4 is an equivalence
relation, and satisfies

(z-a,y)=(a-z,y) ~a (v,0-y) = (2,9 - a)
for all (x,y) € X %, Y and all a € A.

Proof. The relation ~ 4 is clearly reflexive. For symmetry, observe that

(—a-za-y) ~a (a-(-a-2),—a-(a-y)) = (z,7).

For transitivity, observe that

(=b-(=a-z),b-(a-y)) = (=(a+b)-z,(a+b)y) ~a(z,y)
For the final assertion, we first establish the middle equality by calculating

(CL'.T,?J) ~ <_a' (CL'I),CL'y) - (x,a-y).
the other equalities follow because X and ) are central extensions. O
Lemma 4.7. With the hypotheses of Lemma let Z(X,Y) := X %, Y/ ~4, and for

(x,y) € X x, Y, let [x,y] denote its equivalence class in Z(X,Y). There are well-defined
maps r,s: Z(X,Y) — Z(X,Y) such that

r([z,y]) = [r(@), ()] and  s([z,y]) = [s(2),s(y)]  for all (z,y) € X+, Y.

There is also a well-defined composition determined by [x1,y1][T2, y2| = [x122, Y1y2] when-
ever s([z1, y1]) = r([22, y2)).

Proof. Suppose that (z,y) ~a (2/,v), say (z,y) = (—a-2’,a-y’). Then gx(x) = ¢x(z’) an

gy (y) = av(y'), so (r(z),r(y)) = (r(z’), r(y )) by PLem&u“k- Sor:Z(X,Y)— Z(X, )
is well defined. A similar argument shows that s is well defined.

To see that composition is well defined, fix a,b € A. Since X is a central extension, we
calculate:

(—a-z1)(=b-23) =—a-(=b-z1)xy = —(a+0b) - z125.
Similarly (a-y1)(b-y2) = (¢ +b) - y1y2. In particular,

((=a-21)(=b-2), (- y2)(b-y2)) ~a (2122, Y192). m
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If [z,y] = [2/,y] in Z(X,Y), then 2’ = —a - x for some a € A, so q(2') = q(x). So we
may define ¢ = 1zxy) : A® X A — Z(X,Y) and ¢ = qz(x,y) : Z(X,Y) — A by

(1) (0,0) = [x(0,0) iy (0,0)]  and () = ax ()
Lemma [.6] implies that
t(v,a) = [tx(v,a),ty (v,0)] = [ix (v, a), ty (v, —a)iy (v, a)]
(4.2) = [tx (v, —a)x(v,a), 1y (v,a)] = [tx(v,0),y (v, a)].

Lemma 4.8. Let A be a k-graph, let A be an abelian group, and let X and Y be central
extensions of A by A as in Notation . Then Z(X,Y) is a small category under the
operations described in Lemma [{.7] and with the identity morphism corresponding to an
object v € A° given by id, = [v,v].

Let v == 1z(x)y) and q := qz(x,y) be as in (4.1). Then q([z,y]) = qv(y) for all [x,y] €
Z(X,Y), and

X+Y:AN"xA-5Z(XY)-5HA
is a central extension of A by A and satisfies
(4.3) a([z,y], [, y]) = a(z,2") + aly, y) whenever q([z,y]) = q([', y/]).
Finally, tz7xy)(v,a) = [tx(v,b), tx(v,a —b)] for allv € A° and a,b € A.

Remark 4.9. The rather suggestive notation X + ) is justified by Example and
Proposition below.

Proof of Lemma[{.8 Routine checks show that Z(X,Y) is a category. It is small because
X and Y are.

That q(x,y) = gy (y) for all (z,y) € X %, Y is just a combination of the definitions of
the map ¢ and the space X %, Y. Using this it is routine to see that ¢ and ¢ are functors
(the operations in X *, Y being coordinate-wise). For v € A, we have

q(L(U’ 0)) = q([LX(U7 0)7 ty (v, 0)]) = qx (ex(v, 0)) =v
since X is an extension. Moreover, if ¢([x, y]) = q([2/, ¥']), then ¢x (z) = qx(2') = ¢y (V') =
gy (y), so there exists a unique element a = a(x,z’) € A such that = a -2/, and a unique
b="b(y,y’) such that y =b-y. We claim that

2.y = (a+b) - [/,
Applying in the third equality below, we calculate:
(a+b)- [2,y]=u(r(z),a+b)l,y]
= u(r(z), a)u(r(z), b) [z, y/]
= [ex(r(x), a), vy (r(2), 0)][ex (r(2), 0), vy (r(x), b)][2", /]
(a+0)-2',(0+b) -]
x,yl.

To see that a + b is the unique element with this property, suppose that c- [/, y'] = [z, y].
Then (c-a',y’) ~a (x,y), so there exists d € A such that ¢-2’ = —d -z and ¢ = d - y.
Hence y = —d - ¢y and uniqueness of b(y,y’) forces b = b(y,y’) = —d; and then

= |
= |

r=d-c-2'=(c—0b)- 2,

and uniqueness of a(z,z’) forces a = a(x,2’) = ¢ —b. Hence ¢ = a(x,z') + b(y,y’) as
required. Thus X + ) is an extension of A by A. It is central because each of X and )
is central.
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The final assertion follows from (4.2)). 0

We next construct from each ¢ € Z*(A, A) a central extension of A by A by twisting
the composition in A x A.

Notation 4.10. Let A be a k-graph, let A be an abelian group, and fix ¢ € Z*(A, A).
Let X (A, A) be the small category with underlying set and structure maps identical to
the cartesian-product category A x A and with composition defined by

(u,a)(v,b) := (pv, c(p,v) + a + b).
We will usually suppress the A and A in our notation, and write X, for X (A, A).

Ezample 4.11. Let A be a k-graph, let A be an abelian group, and fix ¢ € Z*(A, A). Define
t: A% x A — X, by inclusion of sets, and define ¢ : X. — A by ¢()\,a) := X\. Then

X A"x A X, -5 A

is a central extension of A by A.

In particular, the trivial cocycle 0 : A** — A given by 0(p,v) = 0 for all u, v gives rise
to the trivial extension Xy : A°x A — Xy — A, where Xy, = A x A is the cartesian-product
category (with un-twisted composition).

Definition 4.12. Let A be a k-graph, and let A be an abelian group. We say that two
extensions

X Ax A X 5N and YV A°xA DY DA

of A by A are isomorphic if there is a bijective functor f : X — Y such that the following
diagram commutes.

X
LX/' qx
Ax A f \A

w
Y

We call f an isomorphism from of X with )). We write Ext(A, A) for the set of isomorphism
classes of extensions of A by A.

Fix a central extension
XA x A X A
Let X := {T : 2 € X} be a copy of the category X. Define 7 : A x A — X by

I(v,a) == (v, —a). Define g: X — A by (%) = q(c). Then

—X AN x A X DA
is also a central extension of A by A. Observe that a-T= —a -z fora € A and x € X.
Proposition 4.13. Let A be a k-graph, and let A be an abelian group. Then the formula
[X] + V] = [X + )] determines a well-defined operation under which Ext(A, A) is an

abelian group with identity element [Xy|, the class of the trivial extension. Moreover,
—[X] = [=X] for each extension X of A by A.

Proof. We must first check that [X] 4 [V] is well-defined.
Suppose that X', X', V and )’ are central extensions of A by A, and that fyx is an
isomorphism of X with X’ and fy is an isomorphism of )} with ).
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Then (fx, fy) : X %o Y — X' %, Y’ determined by (fx, fy)(z,y) = (fx(x), fy(y)) is
bijective. For a € A and = € X,

fx(a-z) = fx(x(r(z), 0)z) = fx(x(r(z), 0)) fx(2) = x(r(2), a) - fx(z) = a- fx(z)
and similarly fy(a-y) =a- fy(y) for each y € Y. Hence

(fx: )(=a-z,a-y) = (fx(—a-2), fr(a-y) = (=a- fx(x),a- fy(y)) ~a ([x(2), [y (Y))-
It follows that there is a well-defined map (fx, fy)~ : Z(X,Y) — Z(X',Y") determined by
(. )~ 9]) = Lfx(2), f(3)]. This map is bijective because [t/, ] > (fx!(z), fi'(4)]
is a well-defined inverse. It is routine to see that (fx, fy)™~ is an isomorphism between
X +Yand X'+ )Y, so [X] + [V] is well-defined.

It is routine to check that [[z,y], z] — [z, [y, z]] determines an isomorphism ([X]+[V])+
[Z] = [X] + ([V] + [Z]) so addition in Ext(A, A) is associative. Likewise [z,y] — [y, 2]
determines an isomorphism [X] + [V] = [V] + [X], so the operation is commutative.

To see that [X] + [Ap] = [X] for all [X] € Ext(A, A), we show that [z, ()\,a)] — a-x
determines an isomorphism of Z(X, X) onto X with inverse given by = +— [z, (¢(x),0)].
We must show first that the formula [z, (A, a)] — a -z is well-defined. If [z, () a)] =
[y, (i, )] then there exists ¢ € A such that y = —c-x and (u,0) = ¢ (\,a) = (N, a + ¢).
In particular, ¢(z) = A = u = ¢q(y), and ¢ = b — a is then the unique element a(x,y) of A
such that z = a(x,y) - y. Hence

a.x:m((b—a)'y):b'ya

so the formula [z, (A, a)] — a -z is well-defined. The map z — [z, (¢(x),0)] is an inverse,
and these maps determine an isomorphism of X + & with X.

Finally, we must show that [X] + [-X] = [X}]. For this we show that the map [z,7] —
(q(x),a(x,y)) is an isomorphism with inverse (\,a) — [z,—a - T| for any z such that
q(z) = \. We first check that [x,7] — (q(z),a(x,y)) is well-defined. Since [x,7] = [/, V]
in Z(X,X) implies that q(z) = q(2') = q(y) = q(v/), it suffices to show that a(z,y) =

a(x’,y"). To see this, observe that since [z,7] = [2/,9'], there exists a unique b € A such
that xt = —b-2' and y=1b-9/, so y = —b-y'. Hence

ale',y) -y = (alz',y)) =b) -y = —b-2' = .
So uniqueness of a(x,y) forces a(2’,y’) = a(x,y). Thus [z,7] — (q(z),a(z,y)) is well-

defined. We claim that the formula (A, a) — [z, —a - T] does not depend on the choice of
x such that g(z) = . To see this, suppose ¢(y) = A also. Then z = a(z,y) - y. Hence,

using once again that —a(x,y) -7 = a(x,y) - y = T, we see that

[ZL’, —a- j] = [a($7y) ‘Y, —a- (—a(:v,y) ) g)] = [a($7y) Y, —CL([L’, y) ' (_a ’ g)] = [yv —a- g]
It is now routine to see that [z,7] — [¢(x),a(z,y)] determines an isomorphism from
X+ (=X) to Xp. O

Our next result shows that every central extension of A by A is isomorphic to one of
the form X, described in Example [4.11] and that the assignment ¢ — X, determines an
isomorphism from H?(A, A) to Ext(A, A).

Let A be a k-graph, and let A be an abelian group. Let

X AOxA s X I

be a central extension of A by A. A normalised section for q is a function ¢ : A — X
such that g o ¢ is the identity map on A and such that o(v) = ¢(v,0) for all v € A°. A
normalised section for ¢ is typically not multiplicative.
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Theorem 4.14. Let A be a k-graph, let A be an abelian group, and let X be an extension
of A by A. For each normalised section o for ¢ : X — A, define ¢, : A2 — A by
co(p,v) - o(pv) = o(p)o(v); that is, c,(u,v) = a(o(p)o(v),o(uv)). Then ¢, is a 2-
cocycle. If o' is any other normalised section for q, then c, and c, are cohomologous.
Finally, the assignment [X] > [c,] for any normalised section o for q is an isomorphism
0 : BExt(A, A) = H*(A, A) with inverse given by 07'([c]) = [X.].

Proof. We first check that ¢, is a 2-cocycle. Fix (u,v) € A*2. Then o(p)o(v) = (i, v) -
o(uv). If either p or v is in A% then o(u)o(v) = o(uv) so c,(u,v) = 0. Hence, ¢, €
C?*(A, A). Fix (\, p, v) € A*3. By uniqueness of a(c(\)o(u)o(v), c(Auv)) (see Lemma
it suffices to show that

(co 1) + ¢ (Mt 1)) - o) = 6N ()or(v) = (ca () + (N, 7)) - (M),

We just verify the first equality; the second follows from similar considerations. We
calculate

oMo (po(v) = co(X,p) - oMo (v) = (co (A, 1) + o (M, v)) - o (Apw).

Hence, ¢, € Z*(A, A).

Now suppose that ¢’ is another normalised section for ¢q. For each A\ € A, we have
q(a(N)) = q(o’(N\)), so there is a unique b(\) := a(o(N),0'(N)) € A such that o(\) =
b(A\) - o’(N). Since o and ¢’ are normalised, b(v) = 0 for all v € A°, so b € CY(A, A).

If s(u) =r(v)in A, then

(b(pw) = b(p) = b(v)) - o (p)o(v) = b(uv) - o' (u)o’(v)
= (b(pw) + cor(p,v)) - o' ()
= cor(p,v) - o)
= (cor(p, ) = Co (1, v)) - o ()o (v).
Hence ¢,/ (p, v) — co (11, v) = (6*0) (1, v), so ¢, and ¢, are cohomologous.

For the final assertion, we must first check that [X] — [c,] is well-defined. If f is an
isomorphism of extensions X and ), and if o is a section for ¢y, then ¢/ := foo is a
section for gy . Since

a(z, ') - f(a) = fla(z,2) - 2') = f(x)
for all z, 2" € X with q(z) = ¢(2'), we have a(f(z), f(z)) = a(z,2’) for all z,2" € X. In
particular, since f is a functor,

o1, ) = ale’ (1)’ (v), o' ()
= a(f(o (o), flo(u) = alo(w)o(v), o(ur)) = ¢y, v).

Thus ¢, = ¢,. Since we already proved that distinct normalised sections for the same
central extension yield cohomologous categorical 2-cocycles, it follows that for any pair of
sections o for gx and p for gy we have [c,] = [c,] in H*(A, A). Hence [X] +— [c,] (for any
section o for ¢) is well defined. This map is additive by , and hence a homomorphism.

To see that it is an isomorphism, it suffices to show that the map ¢ ~ [X,] from Z*(A, A)
to Ext(A, A) determines a well-defined map [c] — [X.] from H*(A, A) to Ext(A, A), and
that this map is an inverse for 6. Fix ¢ € Z*(A, A) and b € C'(A, A) and let ¢ = ¢ — (6'b)
so that [c] = [¢/] € H*(A, A). Define f : X, — Xu by f(A,a) :== (A\,a+b()\)). To see that
f is a functor, we calculate:

F(A @), a)) = FAp, (A, p) +a+a') = (A, (A, ) + b(Ap) + a+d'),



TWISTED k-GRAPH ALGEBRAS 19

and
FOa)f(p,a’) = (A a+b(A)(u, a” 4 b(p) = (A, (A, ) + b(A) + b(p) + a +a').
Since ¢ — ¢ = §'b, we have
c(A, ) = (A 1) + b(A) + b(p) — b(Aw),
and hence ¢/(X, 1) +b(A) +b(p) = c(A, ) +b(Ap), giving f((A, a)(p, @) = f(A a)f(p, a').
The functor f is bijective because (A, a) — (A, a —b(A)) is an inverse. Hence [c] — [X,] is
a well-defined map from H?(A, A) to Ext(A, A).
To see that [c] — [X,] is an inverse for 6, fix an extension
X:A"x A X DA
and a section o for ¢. We must show that &, is isomorphic to X'. We define f : X — X,
by f(z) = (q(z),a(z,0(q(z)))) and g : X., — X by g(),a) := a-o()). Then
flg(\a)) = fla-o(N) = (a(a-o(N),ala-o(X),o(gla-a(N))))) = (A ala-a(A),o(N)).
For all z € X and b € A, we have a(b- x,z) = b by definition. Thus f o g = idyx,_ .
Likewise, for x € X, we have

go f(z) = g(q(2), a(z,0(q()))) = a(z,0(q(2))) - o(q(z)) = .
So f and g are mutually inverse, and we just need to show that f preserves composition.
We fix (z,y) € X*? and calculate:

fxy) = (a(zy), alzy, o(q(2y)))) = (a(=)a(y), alzy, o(a(x)a(y)))),
and
f(@)f(y) = (9(x), a(z,0(q(2)))) (a(y), aly, o (a(y))))
= (¢(2)q(y), co(q(x), q(y)) + alz, o(q(x))) + aly,o(q(y))))
= (q(=)q(y), a(o(q(x))o(q(y)), o(q(x)q(y))) + a(z,o(q(x))) + aly, o (q(y))))-
Since X is a central extension, we have
(a(o(g(x)o(a(y)), o(a(x)q(y))) + alz,o(q(x))) + aly,o(q(y)))) - o(a(z)a(y))
= (a(z,0(q(x))) + aly, o(q(y))))o(a(x))o(q(y))
= (a(z,0(q(x))) - o(q(2))) (aly, o(q(v))) - o(q(y)))
= xy.

Hence a(a(q(x))o(q(y)), o(q(x)q(y))) +alz, o(q(x))) +aly, o(q(y))) = alzy, o(a(x)q(y))),
giving f(zy) = f(z)f(y) as claimed. This shows that f is a functor, and hence an

isomorphism of extensions. So [c] — [X.] is a left inverse for #. To see that it is a right
inverse also, fix a cocycle ¢ € Z?(A, A). Then the normalised section o, : A — (), 0) for
q: X. — A satisfies ¢,, = c. O

Theorem 4.15. The map ¢ : H2(A, A) — H?*(A, A) given by [¢] + [c4] is an isomor-
phism (see Theorem [3.16)).

Proof. Fix a central extension
X:AxA X LA
of A by A. For each v € A° let o(v) € X be the unique identity morphism such

that g(o(v)) = wv; that is, o(v) = v. For each edge ¢ € E} in the skeleton of A, fix
an element o(e) € X such that ¢(o(e)) = e. Extend o to a section for ¢ by setting
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oc(A) := c(M)a(A2) - a(Ny) where A — X is the preferred section for the quotient map
7 : Ex — A as in Notation [3.11

Define ¢ : Q3(A) — A by

$(\) = a(o(N), o (FY(N))o (F (N)));
that is, if d(\) = e; +e; with i < j, and if A = fg = ¢'f’ where f, f' € A% and g,¢' € A%,
then
o(N) - (a(g)o(f) = a(f)a(g).

We must first check that ¢ is a cubical 2-cocycle. Fix A € Q3(A), say d(\) = e;+¢€;+¢

where ¢ < j <[, and factorise

A = fogoho = foh1g1 = hafig1 = hagafo = g3hafo = g3f3ho
as in (2.1), so d(f,) = e, d(g,) = e; and d(h,,) = ¢ for all n.
By definition of ¢, we have

O(F (V) + o(Fy (V) + o(FY(N) = 6(fogo) + &(f3ho) + d(gshs).

Moreover,

¢(fogo) - 0(g3)o(fs) = o(fo)ol(go), d(fsho) - o(hs)o(f2) = o(fs)o(ho), and
¢(gshs) - o(h2)o(g2) = o(gs)o(hs).
Using this and three applications of Lemma [4.4] we deduce that

(0(fogo) + &(fsho) + d(gshs)) - a(ha)o(g2)o(f2) = a(fo)o(go)o(ho) = a(N),

and hence
G(FF(N) + 3(Fy (N) + 6(FY (V) = a(a(N), 0 (h2)a(g2)o(f2)).

Symmetric reasoning also shows that

S(FY (V) + d(FY (V) + ¢(F5 (V) = a(o(A), o(ha)o(ga)o (f2)).
In particular, ¢ satisfies , so it is a cubical 2-cocycle.

Next, we claim that the cohomology class [¢] is independent of the choices made (on the
skeleton). Let & be another section of g constructed as above. We show that the resulting
cubical 2-cocycle is cohomologous to ¢. Let b(e) = a(G(e),o(e)) for each e € Q1(A) = E}.
Then the cubical 2-cocycle ¢ built from & is defined so that if d(\) = e; + e; with i < 7,
and if A = fg = ¢'f" where f, f € A% and g,¢9 € A% then

o(N) = a(6(f)a(9).5(¢)a(f"))-

A routine computation then shows
S(N) — &(A) = b(g") +b(f") = b(f) = blg) = (8'D)(N).

Hence [¢] = [¢].
We now claim that the cocycle ¢, obtained from the section o via Theorem is

equal to —cy. To see this, fix (u,v) € A*2. By definition, c4(u,v) = Sy(uv). Fix a
sequence of allowable transitions from u7 to nv; that is, a path a;---a, in F) with
r(ay) = v and s(a,) = v, Fix i <n and let u = r(q;) and w = s(a;). Recall from No-
tation the definition of ¢ : Ff — A. For each i, we have ¢(a;) = ¢(Wp(ay) Wp(a)11) =
a(Up(a;) Up(as)+1> Wp(an) Wp(ar)+1)- Let € := |uv|. Using the first assertion of Lemma , we
see that

o(a;) = a(a(ul)a(uQ) ceo(ug), o(wy)o(wsy) - U(U]g)).
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Hence, by definition of Sy, we have

n

S517) = 3 alo(r(a)) - olr(age), o(s(a)) - -o(s(a)y)).

i=1
Now using the second assertion of Lemma [£.4] we deduce that

$4(77) = a(o () - o (@), o)+ (g )o(®) -+ 0 F) = alo (), o (1) ().
Hence cy(p,v) = a(o(pv),o(p)o(v)) = —c,(p, v) as claimed.

Now fix ¢ € Z*(A,A). By Theorem we have [c] = [¢,]| for any section o for
q : X. — A. By the preceding paragraphs, there exists a section o for ¢ : X, — A, and

a cubical 2-cocycle ¢ on A such that ¢, = —c4. In particular, we have [¢] = [¢,] = [—cy),
and it follows that the map [¢] ~ [cg] is surjective from H2(A, A) to H*(A, A). Since the
class [¢] does not depend on the choice of section o, the map is also injective. O]

5. TWISTED k-GRAPH C*-ALGEBRAS

In this section, unless otherwise noted, we restrict attention to row-finite k-graphs with
no sources and consider twisted k-graph C*-algebras. We recall the definition of a twisted
k-graph C*-algebra from [I4], and then introduce the notion of a twisted Cuntz-Krieger
(A, c)-family associated to a categorical cocycle ¢ € Z*(A,T). We show that given a
cubical cocycle ¢ € Z2(A,T), if ¢y € Z*(A, T) is the 2-cocycle of Theorem then the
twisted C*-algebra C3(A) introduced in [14, Section 7] is universal for twisted Cuntz-
Krieger cy-families for A.

For the abelian group T we break with our conventions earlier in the paper and write
the group operation multiplicatively, write Z for the inverse of z € T and write 1 for the
identity element.

For the following, recall from [I9] that a k-graph A is said to be locally convex if,
whenever e;, e; are distinct generators of N¥ and p € A% and v € A% satisfy r(u) = r(v),
both s(u)A% and s(v)A® are nonempty.

Definition 5.1 (see [14], Definitions 7.4, 7.5]). Let A be a row-finite locally convex k-graph
and fix ¢ € Z%(A, T). A Cuntz-Krieger ¢-representation of A in a C*-algebra A is a set
{p, : v € A’} C A of mutually orthogonal projections and a set {s, : A € [JI_ A%} C A
satisfying

(1) for all i <k and A € A%, s35x = ps(n);

(2) forall 1 <i<j<kandp,pu €A v, e A% such that pv = /1,

Sy = (uv)s,s,; and
(3) for all v € A and all i € {1,...,k} such that vA% # ),

We define C’;;(A) to be the universal C*-algebra generated by a Cuntz-Krieger ¢-repre-
sentation of A.

The following is much closer to the usual definition of a Cuntz-Krieger A-family. Notice,
however, that we now restrict attention to k-graphs with no sources: that is, vA™ # () for
all v € A° and n € N*. Every k-graph with no sources is locally convex. Versions of the
following definition for row-finite locally convex k-graphs or for finitely aligned k-graphs
incorporating the ideas of [19] or [20] seem likely to produce reasonable notions of twisted
k-graph C*-algebras but we do not pursue this level of generality here.
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Definition 5.2. Let (A, d) be a row-finite k-graph with no sources, and fix ¢ € Z*(A, T).
A Cuntz-Krieger (A, c)-family in a C*-algebra B is a function t : A\ — t) from A to B
such that

(CK1) {t,: v € A%} is a collection of mutually orthogonal projections;
(CK2) t,t, = c(p, V)t whenever s(p) = r(v);

(CK3) t3ta =ty for all A € A; and

(CK4) ty = > cpan taty for all v € A and n € N*.

We first show that given a T-valued 2-cocycle ¢, the universal C*-algebra C}(A) of
Definition [5.1|is universal for Cuntz-Krieger (A, ¢,)-families.

Recall from Notation that for A € A, we write \ for the path in Ex corresponding
to the factorisation A = A; --- A, of A in which edges of degree e; appear leftmost, then
those of degree e; and so on.

Proposition 5.3. Let A be a row-finite k-graph with no sources, and let ¢ € Z*(A,T). Let
cy € Z*(N,T) be the categorical 2-cocycle obtained from Theorem . Let {p, : v € A%}
and {sy : X € |_|f:1 A%} be the universal generating Cuntz-Krieger ¢-representation of A
mn C’:;(A). Forv € A%, lett, :== p, and for A € A\ A, setty = YRR WNE Thent : X\ — ty
constitutes a Cuntz-Krieger (A, cg)-family in C5(A). Moreover, this family is universal
in the sense that given any Cuntz-Krieger (A, cy)-family {t\ : X € A} in a C*-algebra B,
there is a homomorphism 7w : C3(A) — B such that w(ty) = t).

Proof. Recall from Definition that Fy denotes the transition graph associated to A,
and that for each A € A, the preferred factorisation A of \ is the terminal vertex in the
component Fy of Fy corresponding to A. Since each u € FY is a path u = u; - - - u,, € FEj,
we may define partial isometries {7, : u € FY,¢(u) > 1} by 7, := Sy, -+ 8,,. Thus for
A € A with d()\) # 0, the definition of ¢ given in the statement of the proposition can be
restated as ty = 7. For v € A%, we define t, := p,.

Suppose that (u,v) is an allowable transition in A, say u = uy---u;_ju;- - u, and
V= UL UiV qViUig - - - Uy With d(w;) = d(vim1) = e; and d(u;—1) = d(v;) = € with

j > [. Then relation of Definition gives
Sup * vy Sy Sun = O(Uin1Ui)Suy * Suy_y Suy  Sun

Hence, using the map ¢ : F}! — T defined as in Notation [3.13, we have

Ty = ¢(U, U)Tu~

So if o is a path in Fj, then 744) = gg(oc)n(a).

Fix (p,v) € A*? and a € F), with r(a) = v and s(a) = zv. By the above

é(a)tw, = (]3(04)7'#—,, = Tpp = 5Ty = t,t,.

Lemma implies that qg(a) = S4(p7), so, by the definition of ¢, in Theorem m,
co(p, V)t = tut,. Thus t : A — C5(A) satisfies relation (CK2) for the cocycle cg. It
trivially satisfies (CK1), and standard induction arguments establish (CK3) and (CK4).
Hence ¢ is a Cuntz-Krieger (A, ¢,)-family.

Let {t} : A € A} be a Cuntz-Krieger (A, ¢,)-family in a C*-algebra B. We claim that
{t/ :ve A% and {t) : A € | |\, A} constitute a Cuntz-Krieger ¢-representation of A in

B. Relations (|1)) and (3]) are special cases of (CK3) and (CK4) respectively. Let u, v, i/, v/
be as in Definition [5.1[2). By definition of ¢,, we have

colV/ 1) = $(uv) and eyl v) = L.
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Hence

tuty = co(V, 1)t 0 = co(V 1 )ey(p, V)L, = d(uv)t,t,,.
So the elements {t/ : v € A%} and {t) : X\ € [|*, A%}) satisfy the relations —.
By the universal property of Cj(A) there is a homomorphism 7 : C3(A) — B such that
m(ty) =ty for X € A°U| ", A%. An induction shows that 7(ty) =t} forall A\ € A. [

Proposition [5.3| shows that the twisted C*-algebras associated to T-valued 2-cocycles
in [14] can be regarded as twisted C*-algebras associated to the corresponding categorical
cocycles. But, while every categorical 2-cocycle ¢ is cohomologous to c, for some ¢ €
Z2(A,T), it is not clear that every categorical 2-cocycle is equal to ¢4 for some ¢.

Notation 5.4. Let (A, d) be a row-finite k-graph with no sources, and fix ¢ € Z*(A, T).
Relations (CK1) and (CK3) imply that the images of elements of a Cuntz-Krieger (A, ¢)-
family under any s*-homomorphism are partial isometries and hence have norm 1 (or 0).
A standard argument (see, for example, [18, Propositions 1.20 and 1.21]) then shows that
there is a C*-algebra C*(A, ¢) generated by a Cuntz-Krieger (A, ¢)-family s : A — C*(A, ¢)
which is universal in the sense that given any other Cuntz-Krieger (A, ¢)-family ¢, there
is a homomorphism 7, : C*(A,¢) — C*(t) such that m; o s = ¢t. This universal property
determines C*(A, ¢) up to canonical isomorphism.

The following Remark reconciles the use of s to denote the universal family in C*(A, ¢,)
with the use of the same symbol to denote the universal family in C7(A).

Remark 5.5. Let A be a row-finite k-graph with no sources, and fix ¢ € Z?(A, T). Let ¢y €
Z*(A,T) be the corresponding categorical 2-cocycle. Proposition and that C*(A, ¢)
is determined by its universal property imply that there is an isomorphism C*(A,¢,) —
C3(A) which carries each generator of C*(A, c4) associated to a vertex or an edge to the
corresponding generator of C7(A). We will henceforth identify C*(A,cy) and C}(A) via
this isomorphism without comment.

Proposition 5.6. Let A be a row-finite k-graph with no sources, fix ci,cy € Z*(A,T) and
suppose that ¢, and ¢y are cohomologous, that is, ¢; = (8'b)cy for some b € C(A,T).
Denote by s the universal Cuntz-Krieger (A, ¢;)-family in C*(A,¢;) for i = 1,2. Then
there is an isomorphism © : C*(A,c;1) — C*(A,c2) satisfying n(s§) = b(N)s? for all
A € A. In particular, if c € B*(A,T), then C*(A,c) = C*(A).

Proof. For (u,v) € A** we have ¢;(u,v) = b(p)b(v)b(uv)es(p, v), and hence

b(p)b(v)ea(p, v) = b(pw)er (p, v).
Hence relation (CK2) gives

b(p)s;2b(v)sy? = b()b(v) (ca(p, v)syi) = calp, v) (b(uv)sys,).
Since relations (CK1), (CK3) and (CK4) do not depend on the cocycle ¢, it follows
that the function t : A — C*(A, ¢2) defined by A — b(\)s$? is a Cuntz-Krieger (A, ¢1)-
family, so the universal property of C*(A,c;) yields a homomorphism 7 : C*(A,¢;) —
C*(A, cp) satisfying m(s}') = b(A\)s3? for all A € A. The symmetric argument yields a
homomorphism ¢ : C*(A, c3) — C*(A, ¢;) which is an inverse for 7 on generators. Hence
7 is an isomorphism as claimed.

For the final assertion, note that if ¢ is a coboundary, then it is cohomologous to the
trivial cocycle 1 € Z*(A,T) given by 1(u,v) = 1 for all (u,v) € A*2. Since C*(A, 1)
is universal for the same relations as the k-graph C*-algebra C*(A) of [10], we have
C*(A,1) =2 C*(A). Hence C*(A, ¢) = C*(A) by the preceding paragraph. O
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Recall that by Theorem the map [¢] — [cy] yields an isomorphism H?*(A, A) =
H?*(A, A). Combining Proposition and Proposition we obtain the following.

Corollary 5.7. Let A be a row-finite k-graph with no sources, and fir ¢ € Z*(A,T). Let
¢ € Z*(N,T) be a 2-cocycle such that cg is cohomologous to c. Then C*(A, c) = Cy(A).

The preceding corollary gives another proof that if ¢, € Z?(A,T) are cohomologous,
then C}(A) = C3(A) (see [14, Proposition 7.6]).

6. TWISTED GROUPOID C*-ALGEBRAS

Let A be a row-finite k-graph with no sources. Let G5 be the k-graph groupoid of [10]
(see Definition below) and let H2(G,,-) denote the continuous cocycle cohomology
used in [21I] (see Remark . Given a categorical 2-cocycle ¢ on A we construct a 2-
cocycle o. on the groupoid G,. Given a locally compact abelian group A we show that
¢ + 0, determines a homomorphism H2(A, A) — H2(Gy, A). If ¢ is T-valued, we show
that there is a canonical homomorphism from the twisted k-graph C*-algebra C*(A,c)
to Renault’s twisted groupoid algebra C*(Ga,o.) (see [21]). We show in §7| that this
homomorphism is an isomorphism.

We denote by A g#5 A the set {(u,v) € A x A : s(u) = s(v)}. Recall the definition of
A given in [I0, Definition 2.1]: we write € for the k-graph {(m,n) € N*¥ : m < n} with
r(m,n) = m, s(m,n) = n, (m,n)(n,p) = (m,p) and d(m,n) = n —m, and we define
A% to be the collection of all k-graph morphisms z : Q, — A. For p € N¥, we define
o? : A® — A by (¢Pz)(m,n) := x(m + p,n + p) for all (m,n) € Q. For x € A® we
denote z(0) by r(x).

Definition 6.1 ([I0, Definition 2.7]). Let A be a row-finite k-graph with no sources. Let
Gr = {(x,0 —m,y) : £,m € N¥ o'z = o™y} C A® x Z" x A,
For p,v € A with s(u) = s(v) define Z(p,v) C Ga by
Z(p,v) o= {(p, d(p) — d(v), ve) - w € A%, r(r) = s(p)}.
For A € A, we define Z(\) := Z(\, \).

The sets Z(u,v) form a basis of compact open sets for a locally compact Hausdorff
topology on G, under which it is an étale groupoid with structure maps r(z, ¢ —m,y) =
(x,0,2), s(x,L—m,y) = (y,0,y), and (x, £ —m,y)(y,p—q,2) = (x,{ —m+p—q,z). (see
[10, Proposition 2.8]). The Z(\) are then a basis for the relative topology on ggo). We
shall identify Q/(\O) = {(x,0,2) : x € A*®} with A*.

Notation 6.2. We write d for the continuous ZF-valued 1-cocycle on G, induced by the
degree map on A. That is, d(z, m,y) = m.

Our next two results show how to use an appropriate partition of G, to construct a
continuous 2-cocycle on G, (see Remark [3.7]) from a categorical 2-cocycle on A.

Lemma 6.3. Let A be a row-finite k-graph with no sources, let A be an abelian group
and let ¢ € Z*(\, A). Suppose that P is a countable subset of A o, A such that {Z(u,v) :
(n,v) € P} is a partition of Gx. For each g € Gy, let (ug,v,) be the unique element of P
such that g € Z(jg, v,).
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(i) For each (g,h) € gf), there exist o € s(pg)A, B € s(un)A, v € s(pgn)A and
y € A such that r(y) = s(a) = s(B) = s(y) and
g = (IUgOéy, d(lug) - d(l/g), I/gO[y), h = (/"Lh/By? d(ﬂ’h) - d(”h)) Vhﬁy)a and
gh = (pgnyy, d(pgn) — d(Vgn), vgnvy)-
In particular, pga = pgny, Vi = vy and voa = 3.
(ii) Fiz (g,h) € g[(\2) and «, B, satisfying (6.1). The formula
(62) (C(,ug, (1/) - C(”S]? OZ)) + (C(H’ha 6) - C(Vha 6)) - (C(ughv IY) - C(Vgha 7))

does not depend on the choice of a, 3, .

(iii) For (g,h) € 95\2), define o.(g,h) to be the value of for any choice of a, 3,7
satisfying (6.1). Then o. is a continuous groupoid 2-cocycle.

(6.1)

Proof. Recall from Notation the definition of d : Gy — ZF. Let N := d(u,) V
d(pgn) V (d(pn) — d(g)). Then routine calculations show that o := r(g)(d(pg), N), v :=
r(gh)(d(pgn), N), B :=r(h)(d(ps), N+d(g)) and y = o™ (r(g)) have the desired properties.
Fix a, 5, v and o/, ', 7/ satisfying (6.1). Let
0= r(g)(d(pge), d(pga) Vd(pga')) and e :=r(g)(d(pee), d(pge) v d(pga’))

Then ad = o’e, f6 = e and vd = e satisfy (6.1). So by symmetry, it suffices to show
that replacing o with o, § with 80 and v with vd in (6.2)) yields the same value. Since
c is a categorical 2-cocycle,

c(pg, ad) — c(vg, ad) = c(pgar, 8) — c(vga, 0) + c(pg, @) — (v, @),
c(pn, B0) — c(vp, BO) = c(punf,0) — c(vnB,8) + c(pn, B) — c¢(vn, B), and
c(pgn, ¥0) — c(Vgn, ¥0) = c(pgny, 8) — c(Vgny, 0) + cpign, v) — c(Vgn, 7).
Hence
(c(j1g, 08) — (v a6)) + (clpins 58) — (s B8)) — (clpign, 16) — c(vgn, 16)
= c(pga, 6) — c(vga, 8) + (g, o) — c(vg, @)
+ c(punB,6) — c(wnf, 8) + c(pn, B) — c(v, B)
— c(pgn,0) + c(Vgn, 0) — cpign, 7) + c(Vgn, 7)-
Since paa0 = ignY, Va3 = Vgry and vyo = /3, this simplifies to
(cpg, ad) — c(vg, ad)) + (c(un, BS) — c(vn, 86)) — (c(pgn, ¥6) — c(Vgn, ¥0))
= (clug, @) = c(vg, @) + (clpn, B) — c(vn, B)) — (c(ptgn: 7) = c(gns 7))
So does not depend on the choice of a, 3, 7.
To prove that o, is a 2-cocycle, fix (g1, g2, 93) € 91(\3). Let (wi,vi) = (fg;, vy,;) for i =

1,2,3. Let (:uijﬂyij> = (Mgigjvygigj) for ij = 12,23 and let (:u1237’/123) = (:u9192937V919293)'
Fix z € A®, and for each symbol x € {1,2,3,12,23,123}, fix o, € A such that

Gu = (a2, d(pie) — d(vy), Va0 2).
Then ((6.2)) yields
oc(91,92) + 0c(g192, 93) = (C(Nlual) - C(V1,Oé1)) + (C(,U27042) - C(VzaOéz))
- (C(,uu, 0412) - C(V12, 0é12)) + (C(um, 0412) - C(V12, Oé12))

+ (C(M?n az) — c(vs, 043)) — (C(M123, r123) — V123, 04123))
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and

0c(92,93) + 0c(91, 9293) = (C(Mz, az) — c(va, 062)) + (C<N37 az) — c(vs, 043))
- (C(M23> ro3) — c(va3, CY23)) + (C(/h, ay) — c(v, CY1))
+ (C(,U23, ro3) — ¢(va3, 0623)) - (c(u123, 3) — (Y123, 06123))-

Cancelling and comparing gives

0c(91, 92) + 0c(9192, 93) = 0c(92, 93) + (91, 9293)-

Hence, o, satisfies the groupoid 2-cocycle identity. A straightforward calculation shows
that cN(g, h) = 0 if either g or h is a unit. Since o, is locally constant, it is continuous, so
0. € ZQ(QA,A). O

Remark 6.4. The cocycle o, constructed in Lemma depends both on ¢ and on the
collection P.

Theorem 6.5. Let A be a row-finite k-graph with no sources and let A be an abelian
group. Suppose that P is a countable subset of A gxs A such that {Z(u,v) : (u,v) € P}
is a partition of Gn. Fiz c € Z*(A, A), and let 0. € Z*(Gy, A) be the continuous cocycle
of Lemma . The cohomology class [0, is independent of the choice of P and depends
only on the cohomology class of c. Moreover, [c| — [o.] is a homomorphism H*(A, A) —
H?(Gp, A).

Proof. Suppose that c is a categorical 2-coboundary on A. We show that o. is a groupoid
2-coboundary on G. Since ¢ is a categorical 2-coboundary, there is a cochain b € C! (A, A),
such that ¢ = 6'b. Hence, for (A1, \y) € A*? we have

c(A1, A2) = (8'0) (A1, A2) = b(A1) — b(A1A2) + b(A2).
Define a : Gy — A by a(g) = b(py) — b(v,). Then a is continuous because it is locally
constant. For g € gg‘” we have j1, = v, 0 a(g) = 0. Hence a € C'(Ga, A).
Fix (g, h) € QI(XQ). With notation as in Lemma , equation (6.2) gives
oc(g,h) = (c(pg, @) = c(vg, B)) + (clim, B) = c(vn, B)) — (clpgn, 1) — c(Vgn, 7))
= (b(pg) = bpger) + b(a)) — (b(rg) — b(vga) + b(ev))
+ (b(in) = b(unB) +0(8)) — (b(vn) — b(waB) + b(B))
— (0(ign) = blpgny) +b(7)) + (b(vgn) — b(vgny) +b(7))-

Since py00 = fign7, Va3 = Vgry and vyo = up 3, we obtain

ac(g,h) = b(pg) — b(vy) + b(pn) — b(vn) — b(pgn) + b(vgn)
= a(g) + a(h) — a(gh) = 6" (a)(g, h).

Hence, 0, = 6'(a) is a coboundary. Since the map ¢ — o, is a homomorphism (see
formula (6.2))) which maps coboundaries to coboundaries, the map [c] — [o.] is a well-
defined homomorphism H2(A, A) — H%(Gy, A).

It remains to verify that [o.] does not depend on the choice of P. Fix countable
subsets P and Q of A g%, A yielding partitions of Gy. For (u,v),(0,7) € A ¢x4 A, if
d(p) —d(v) # d(o) — d(7), then Z(u,v) N Z(o,7) = (. Otherwise, setting

(,v) A (0,7) = {(po, va) : pa € MCE(p, o) and vae € MCE(v, 1)},
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we have
(6.3) Zwv)nZer) = || Z0Q.
(m,Q)€(p,v)A(o,7)

Let PV Q= U, er Uwreo(s V) Ao, 7). Then {Z(n,() : (n,¢) € PV Q} is a common
refinement of {Z(u,v) : (u,v) € P} and {Z(o,7) : (0,7) € Q} such that if g € G, satisfies
g € Z(p,v) for (u,v) € P and g € Z(n,() for (n,¢) € (PV Q), then n = pX and { = v
for some A, and similarly for Q. So by replacing Q with P V Q we may assume that
{Z(n,¢) : (n,¢) € Q} is a refinement of {Z(u,v) : (u,v) € P} and that for each element
(n,¢) of Q, there is a unique element (p,r) € P and a unique A € A such that n = pA
and ( = vA.

For g € Gy, let (pg,v,) € P and (n,,(;) € Q be the unique elements such that g €
Z(ng,Cq) € Z(f1g, V) and let Ay be the unique path such that (1, ;) = (1gAg, VgAg)-

Fix (g,h) € gf). By Lemma , we may fix o/, f',7" and y satisfying
9= gy, d(ng) —d((y), Ga'y),  h= By, d(nn) — d(Cn), GB'y), and
gh = (gny'y, d(ngn) — d(Cen), ConY'y)-
The triple a = A\ja/, 5= A\, v = Agny’ then satisfies (6.1). So
g € Z(nyd!, (o) = Z(pgar, vyar)
h e Z(nhﬁ/7<-h5/) = Z(Mhﬁ? Vhﬁ)a and
gh € Zgn's ConY') = Z(1tgnys Vany)-

Fix ¢ € Z*(A, A). Let ¢F denote the groupoid 2-cocycle obtained from Lemma
applied to ¢ and P and let 02 denote the groupoid 2-cocycle obtained in the same way

from ¢ and Q. By Lemma , we have
o7 (9.h) = (c(pg, @) = c(vg, @) + (clpn, B) = c(vn, B)) = (c(ttgn, V) = c(vgn, 7)),
= (c(pag, Ag@) = c(vg, Ag@)) + (c(ttns AnB') = (v, M)
— (c(ghs Agn) = c(vgn, Agny')),  and
02(g.h) = (c(ng, @') — e(Cg, @) + (clm, B) = (G B7)) — (elngn:7") = elGgns 7))
= (clpghg, @) — c(vghg, &) + (c(unrn, B) — c(vnn, 8))
- (C(Ngh)‘gh77/) - C(Vgh)\ghﬁ/))-
Define b : Gy — A by b(g) = c(pg, Ag) — (v, Ay). Then b is continuous because it is

locally constant. If g € Q/(\O), then y1, = v, and hence b(g) = 0. So b € C'(Gy, A). The
categorical 2-cocycle identity for ¢ implies that

(clgs Age) = e(rg, Ag@)) = (elghg, @) = c(vgg, @)
= (C(:ugv >‘g> - c()‘ga O/)) - (C(Vga >‘g) - C()‘gv O/)) = b(g)
This and a symmetric calculation yield
ol (9,h) — 02(g, k) = b(g) + b(h) — b(gh) = (6'b)(g, ).
Hence 0. and &, are cohomologous. [

We now show that there always exists a set P producing a partition of G, as hypothe-
sised in the preceding results.
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Lemma 6.6. Let A be a row-finite k-graph with no sources. Then there exists a countable
subset P C A x5 A such that (X\,s(\)) € P for all X € A and {Z(p,v) : (n,v) € P} is a
partition of Gu.

Proof. First observe that Z(\, s(A\)) N Z(u,v) is nonempty if and only if 4 = Av, in which
case, Z(u,v) C Z(A,s(\)). Hence, basic open sets of the form Z(\,s())) are pairwise
disjoint. The union
X =] | Z(\s(\)
AEA
of these sets is clopen in G. So there is a countable collection U of basic open sets of the
form Z(p,v) whose union is Gy \ X.

It remains to show that there is a collection of pairwise disjoint basic open sets V such
that |JV = JU. We first show that, given two basic open sets Z(ui,v1), Z(u2,V2),
both Z(p1,v1) N Z(pe,v2) and Z(uy,v1) \ Z(u2,v2) may be expressed as finite disjoint
unions of such basic open sets. We may assume that d(u;) — d(v1) = d(u2) — d(v), since
Z(uy,v1) N Z(p2, o) is empty otherwise. Recall from that

Z(p1,v1) O Z(pa, v2) = |_| Z(n,¢).

(.)€ (p1,v1)A(p2,v2)

Since Z(p1, 1) = (o) =d(ur () Z (110, vicv), it follows that

Z(pur, 1) \ Z (2, v2) |_| {Z(ma,via) : d(ma) = d(u) V d(),
(e, ia) & (1, 11) A (p2, v2) }

Now by the standard inclusion-exclusion decomposition, Z(u1,v1) U Z(ug,12) is also a
finite disjoint union of basic open sets. The collection U = {U;,Us, ...} may now be
replaced by a pairwise disjoint collection V recursively. Set V; = {U;}. Now suppose that
V; is a collection of mutually disjoint basic open sets such that U;.:l U; =] V;. Use (6.4)
to write U1 \ U Vi = | | Wiy1 where W, is a finite collection of mutually disjoint sets
of the form Z(n, (), and let V1 :=V; UW, 1. Then U;ill U; = | Vit1. By induction we
obtain the desired family V of mutually disjoint basic open sets such that | |V =JU. O

(6.4)

We can now prove that every twisted k-graph algebra admits a homomorphism into
a twisted C*-algebra, in the sense of Renault (see [21]), of the path groupoid of the
corresponding k-graph. It follows that all of the generators of C*(A,c) are nonzero.
We will use our gauge-invariant uniqueness theorem in the next section to see that this
homomorphism is an isomorphism.

Recall from [21] that involution and convolution in the dense *-subalgebra C.(Gy, o)
of C*(Gx, 0.) are given by

(f+9)(v) =Y ocla,B)f(@)g(B) and  f*(y) = 0oy 7))

af=y

Theorem 6.7. Let A be a row-finite k-graph with no sources. Let P be a countable subset
of A sxs A containing {(\, s(N)) : X € A} such that {Z(u,v) : (n,v) € P} is a partition
of Ga. Fiz c € Z2(A,T), and let o, € Z*(Gy,T) be the cocycle constructed from P as in
Lemma Then there is a surjective homomorphism 7 : C*(A,c) — C*(Ga,0.) such
that 7(sy) = 1Z As() for all X € A. Moreover, for each (p,v) € A gxs A, there is a finite
subset F' C s(p )A such that Z(u,v) = || cp Z(pur,v7) and a function a : F — T such

that m(sus,) = > cp Grlz(urur)-

TeF
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Proof. By the universal property of C*(A,c), to prove the first statement it suffices to
show that t : A — 1550 is a Cuntz-Krieger (A, ¢)-family in C*(Gy, 0.). Calculations
like those of [11, Lemma 4.3] verify (CK1), (CK3) and (CK4). It remains only to verify
that ¢,t, = c(u, v)t,, whenever r(v) = s(u). Fix h € G5. We have

(65) (tutu)(h) = 1Z(u,s(u)) * 1Z(V,s(u))(h) = Z Oc(gag_lh)lZ(u,s(u))(g)lZ(u,s(V))(g_lh)'

geGa

For fixed g, putting ' = g~ 'h, the product 1z, s())(9)120,s0))(F') is equal to 1 if &/ =
(vz,d(v),z) and g = (uvz,d(un),vz) for some z € A*, and to 0 otherwise. So: there
is at most one nonzero term in the sum on the right-hand side of ; there is such
a term precisely when h = (uvz,d(uv), z); and then the nonzero term occurs with g =
(uvz,d(p),vz) and h' = (vz,d(v), z). Setting z := s(h), g := (pvz,d(p),vz) and h' :=
(vz,d(v), z), we have
(tuto)(h) = 0c(9, W) 2050y ()

We have g € Z(u,s(p)), h € Z(v,s(v)), and gh' € Z(pv, s(pv)). Since (u, s(p)), (v, s(v)),
(pv, s(pv)) belong to P, we have pg, = p, vy = s(p), puy = v, vy = s(v), pgy = pv, and
Vg = s(pv). Furthermore a := v and 3 = v := s(v) satisfy (6.1), and hence yields

0c(g. 1) = c(p,v) = c(v,s(v)) + c(v, 5(v)) = e(s(v), s(v) = (e(u, s(v)) = c(s(v), 5(v)),

which, since ¢ is normalised, collapses to o.(g, h') = ¢(u,v). Hence

(tutl/)(xv m, y) = C(/L, V)lZ(uV,s(V))<x> m, y) = C(,U,, V)t,uz/<x> m, y)a

establishing (CK2). Hence there is a homomorphism 7 : C*(A,c¢) — C*(Ga,0.) such
that m(sx) = 1z(ns(n)). We postpone the proof that this map is surjective until we have
established the final statement.

Fix p, v with s(u) = s(v). For g € Gy, we have

T(5u8,)(9) = ()7 (5,)"(9) = Lusu) * 1550 (9)
= Z oe(h, k)oe(k=1, k)1, s) (M) L 205 (K71).

hk=g

There is at most one nonzero term in the sum, and this occurs when g = (uz,d(p) —
d(v),vz), in which case h = (ux,d(p),z) and k = (z, —d(v),vz) for some x € A*®. So
m(sys;) is supported on Z(u,v), and for g = (px, d(pn) — d(v), va) we have

7T(81481t>(g> = GC((/LZL‘, d(ﬂ)? I)v (SL’, _d(y)v VJZ))O‘C((VZE, d(”)? I)v (SL’, _d(y)v VJZ))

*
v

Since o, is locally constant and T-valued by construction, it follows that m(s,s}) can be
written as a linear combination of the desired form.

For surjectivity, observe as in the proof of [10, Corollary 3.5(i)] that C*(Ga,0.) =
span{lz(,. @ s(u) = s(v)}, so it suffices to show that each 1;(,,) is in the image of 7.
Fix (p1,v) € AgxsA and express m(s,s5) = > cp@rlzurr) as above.

A routine calculation using the definitions of convolution and involution in C.(Gy, o.)
shows that

T(SurSyr) = Lz(urs(r) * 1*2(1/7,5(7)) =1zu- foreachre F.

That each 14(,,) € Co(G AO ), and that o, is a normalised cocycle imply that f*1z,.)(g9) =
f(9)1zwr(s(g)) for all f € Co(Ga,0.). Hence that the range map on Gx is bijective on
Z(,,y and that the Z(,, - are mutually disjoint force

12(/”7,,7-)12(1,.,-/) = (57-77/120”7,,7) for all 7, 7 eF.
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Lz(uw) = ( > aflz(m,m) ( > aflzw) = 7(susy) Y AT ($0r5],)- O

TeEF TeEF TEF

Corollary 6.8. Let A be a row-finite k-graph with no sources, and fix ¢ € Z*(A,T). Let
{sx : A € A} be the universal generating Cuntz-Krieger (A, c)-family in C*(A,c). Then
each sy # 0.

Proof. By Theorem , there exist o € Z%(Gx, T) and a homomorphism 7 : C*(A, ¢) —
C*(Ga, o) such that m(sy) = 170, sn) for all A € A. Since A has no sources, each Z(\, s(\))
is nonempty, and hence each 17() 41)) is nonzero. So each s, is nonzero. O

Thus

We conjecture that for each r > 0, there is an injective homomorphism from H" (A, A)
to H"(Gy, A). For r = 0 it is clear that there is such a homomorphism determined by the
map from C°(A, A) to C°(Gy, A) which takes f : A — A to the function z — f(r(x))
from QI(XO) to A. The following remark indicates how to define such a homomorphism for
r = 1. It is not clear to us how to proceed for r > 3.

Remark 6.9. Let A be a row-finite k-graph with no sources and let A be an abelian group.
Let ¢ € Z'(A, A). As observed in [10, §5] the function ¢ : Gy — A given by

&(x, € =m,y) = c(x(0,€)) = c(y(0,m))

defines an element of Z'(Gy, A). It is straightforward to check that ¢ — ¢ is a homo-
morphism of abelian groups and that it preserves coboundaries (indeed, if ¢ = 6'b, then
¢ = 0'b where b(z) = b(x(0))). Hence, the map [¢] — [¢ defines a homomorphism
HY(A A) — F[l(gA, A). We now show by example that this map need not be surjective

Recall that B, is the path category, regarded as a 1-graph, of the directed graph with
a single vertex x and two edges, Bi = {fi, fo}. We have Hy(B) = Z, and [14, Exam-
ples 4.11(1)] shows that H,(B,) = Z2. Hence by the universal coefficient theorem [14]
Theorem 7.3] and Theorem we have H'(B,,Z) = 7Z2. The path space B° may be
identified with the sequence space X = {(z;)32, : z; € {f1, fo} for all ¢}. By [0, Theo-
rem 2.2], Z'(Gp,,Z) = H(X,Z) (which may be identified with the group of continuous
maps h: X — Z) and

H"(Gp,,Z) = coker (1 — o™ : H(X,Z) — H°(X,Z))

where 0 : X — X is the shift and (0*h)(x) = h(ox). Given a path A € By, let hy = 1)
be the characteristic function of the cylinder set Z(\). Then H°(X,Z) is spanned by {h, :
A € A}. Observe that o*hy = hy\ + hy,a. It follows that the map ¢ : H%(X,Z) — Z[1/2]
determined by ((hy) = 279 satisfies the condition ¢(1 — ¢*) = 0. Since ¢ is surjective
and vanishes on coboundaries it determines a surjective map ¢ : H'(Ga, A) — Z[1/2].
Moreover, the range of the map

c € ZYBy,Z) — ¢ € Z'(Gp,,Z) = H(X,7Z)
is Zhy, + Zhy,. Hence, ¢([¢]) € Z and the induced map H'(A, A) — H'(Gx, A) is not
surjective.
7. THE GAUGE-INVARIANT UNIQUENESS THEOREM

As for untwisted k-graph C*-algebras, each twisted k-graph C*-algebra carries a gauge
action of the k-torus. We establish a gauge-invariant uniqueness theorem and deduce that
the homomorphism of Theorem is an isomorphism. Where arguments in this section
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closely parallel proofs of the corresponding results for untwisted k-graph C*-algebras, we
have sometimes outlined proofs without giving full details.

Remark 7.1. Let t be a Cuntz-Krieger (A, ¢)-family. Since a sum of projections is itself
a projection if and only if the original projections are mutually orthogonal, relations
(CK1), (CK3) and (CK4) ensure that for fixed n € N* and distinct p,v € A", we have
tutit,t; = 0.

Lemma 7.2. Let A be a row-finite k-graph with no sources, fix c € Z*(A,T), and let t be
a Cuntz-Krieger (A, ¢)-family. For p,v,n,¢ € A and n > d(v) V d(n),

(7.1) toty, = Z c(v,a)c(n, B)taty  and
va=nBeEA™

(72) tut;tntz = Z C(/L, Oz)C(l/, Oé)c<777 B)C(C7 ﬁ)tuatz/fj-
va=npeA™

Consequently, span{s,s} : (11, V) € A 35 A} is a dense x-subalgebra of C*(A, c).
Proof. Using (CK4), we have
Lty= Yttty
AEA™r(n)

Since n > d(v) V d(n), given A € A", the factorisation property allows us to factor
A = M2 = A3\ where d(\!) = d(v) and d(\3) = d(n), and then by (CK2), (CK3) and
Remark [7.1], we have

Bty =Y AL NN, X tstatyetitisty = Y c(v,a)e(n, Btoatatitos).

XeA™T(n) va=npBeAn
Equation follows from (CK2) because c¢ is normalised. Left-multiplying by t,, right-
multiplying by ¢; and applying (CK2) establishes ([7.2). O
Remark 7.3. If we apply Lemma [7.2| with n = d(v) V d(n), then we obtain
toty, = Z c(v,a)c(n, B)tats.  and
va=nBeMCE(v,n)
tutztﬂtz = Z C(,LL, O[)C(l/, O‘)C(U, B)C(Cv B)tuatzg-

va=nBeEMCE(u,v)

Lemma 7.4. Let A be a row-finite k-graph with no sources and ¢ € ZZ(A, T). There is a
strongly continuous action v : TF — Aut C*(A, c¢) such that

Ye(sx) = 2"Wsy  forall X € A
Moreover C*(A, )Y =span{s,s; : (u,v) € A g% A, d(p) = d(v)}.

Proof. Fix z € TF and set t; = 2¢Ms, for all A € A. It is routine to verify that A — 5
satisfies (CK1)—~(CK4) of Definition [5.2] so it is a Cuntz-Krieger (A, c)-family. There-
fore the universal property of C*(A,¢) yields an endomorphism 7, of C*(A, ¢) satisfying
7.(sy) = 15 = 275, for all A € A with inverse 7; hence, v, is an automorphism. Since
Ywz(S2) = Yw(72(sa)) for all A € A, the map v : T — Aut(C*(A, ¢)) is a homomorphism.
That z + 7,(a) is continuous for each a follows from an ¢/3-argument using Lemma [7.2]
Thus, v defines a strongly continuous action of T% on C*(A, ¢) with the desired property.

That C*(A, ¢)? =span{t,t} : (u,v) € AgxsA, d(p) = d(v)} is standard: the containment
“D” is clear and the reverse containment follows from the observation that the faithful
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conditional expectation ®°(a) := [, 7.(a)dz onto C*(A,c)” annihilates s,s} whenever

d(p) # d(v). B

Notation 7.5. Let X be a countable set. We write Iy for the universal C*-algebra
generated by matrix units {6, , : z,y € X} indexed by X (see [I8, Remark A.10]). That
is the 0., satisfy Qz’y =0y, and 0, .0, . = 0,40, .. The algebra Kx is simple, and is
canonically isomorphic to C(¢?(X)). If X is finite, then any enumeration of X induces
an isomorphism Kx = M x|(C).

Proposition 7.6. Let A be a row-finite k-graph with no sources. Fiz c € Z*(A,T).
(1) For n € N¥, span{s,s} : u,v € A"} is a C*-subalgebra of C*(A,c)?, and the
assignment s,s; — 0,,,, determines an isomorphism
span{s,s, : p,v € A"} = @ Kanay.
vEAO

(2) If m <n € N¥, then span{s,s} : u,v € A™} C span{s,s} : u,v € A"}. Moreover,

C*(A) = U span{s,s; : p,v € A"} is AF.
neNk

(3) Given a Cuntz-Krieger (A, c)-family t, the homomorphism m, induced by the uni-
versal property restricts to an injection on C*(A,c)” if and only if each t, is
nonzero.

(4) For any two cocycles c1,co € Z*(A,T), the fized-point algebras C*(A,c1)” and
C*(A, c2)Y are isomorphic.

Proof. Lemma implies that
(13)  C'(A0) = span(s,s; : d(u) = dv)} = | span{s,s; : pv € A").

neNk
Furthermore, equation and that (i, s(n)) = 1 implies that if p,v,n,¢ € A™ with
s(p) = s(v) and s(n) = s(¢), then s,s5}s,sF = 0,,,5,5¢. So for each n € N¥, the subspace
span{s,s; : p,v € A"} is closed under multiplication. Since it is clearly closed under
involution, it is a C*-subalgebra of C*(A,c)?. That s,s; +— 6, determines the desired
isomorphism with @, 0 Kan, follows from the uniqueness of the latter.

Relation (CK4) implies that if m < n € N¥, then span{s,s; : u,v € A™} C
span{s,s, : p,v € A"}. That C*(A,c)? = U, cpe sPan{s,s; : p, v € A"} follows from
Lemma [7.4] Since C*(A,¢)” is an inductive limit of AF algebras it is also AF.

(3| The “only if” follows from Corollary - For the “if” implication, observe that each
minimal projection s,sj, in span{s,s; : p,v € A"} is equivalent to $1Su = Ss(u)- So if each
S, 18 nonzero, then each sus:; is nonzero. The result then follows from the direct-limit
decomposition , the simplicity of each Kxn, and the ideal structure of direct sums of
C*-algebras.

() Fix n € N* and v € A% and fix cocycles ¢;,c; € Z*(A,T). The assignments
seH(sgh)* w0, — s52(s;?)" determine isomorphisms

n
span{s; (s;!)" 1 p,v € A"} = Kyn,, = 5pan{s;?(s;?)" : p,v € A"}

Moreover, for each pair v,w € A° and m < n € NF, the multiplicity of the partial
inclusion

Kam, = span{s;/ (s;')" : p,v € A™v} < span{s; (s;')" : p, v € AN"w} = Kpny,
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is |[uA™ "™w| which does not depend on the cocycle ¢;. Since AF algebras are completely
determined by the dimensions of the summands of the approximating subalgebras and by
the multiplicities of the partial inclusions, this proves the result. ([l

With the preceding analysis in hand, we can prove a version of an Huef and Raeburn’s
gauge-invariant uniqueness theorem for twisted k-graph C*-algebras.

Corollary 7.7 (The gauge-invariant uniqueness theorem). Let A be a row-finite k-graph
with no sources, and fiv ¢ € Z*(A,T). Lett: A — B be a Cuntz-Krieger (A, c)-family
in a C*-algebra B. Suppose that there is a strongly continuous action B of TF on B
satisfying B.(ty) = 2%ty for all X € A and z € TF. Then the induced homomorphism
7, 1 C*(A, ¢) — B is injective if and only if t, # 0 for allv € A°.

Proof. The “only if” direction follows from Corollary

The “if” direction follows from the following standard argument. Let &7 : C*(A,¢) —
C*(A, c)” and ®° : C*(t) — C*(t)” be the conditional expectations obtained by averaging
over v and 3. Then ® is a faithful conditional expectation, and 7 o ® = &% o 7. So for
a € C*(A, ), we have

m(a) =0 = 7w(a*a) =0 = ®°(1(a%a)) =0 = 7(®"(a*a)) = 0.

This forces ®7(a*a) = 0 because 7 restricts to an injection on C*(A,¢)” by Proposi-
tion . Hence a*a = 0 because ®7 is faithful on positive elements, and then a = 0 by
the C*-identity. 0

Corollary 7.8. Let A be a row-finite k-graph with no sources. Let P be a countable subset
of A gxs A such that {(\,s(N)) : A€ A} CP and {Z(u,v) : (n,v) € P} is a partition of
Gr. Fizce Z*(N,T). Then the homomorphism w : C*(A, c) — C*(Ga, 0.) of Theorem
satisfying w(sx) = Lzns) for all X € A is an isomorphism.

Proof. We showed in Theorem that 7 is a surjective homomorphism, so it remains
to show that it is injective. There is a strongly continuous action 8 of T* on C*(Gy, o)
satisfying

6Z(f>(‘r7€ -m, y) = Zf—mf(x7€ —m, y)
for all f € C.(Gr,0.), all z € T* and all (z,¢ — m,y) € Go. Moreover, 3, om = 7 o+, for
all z: for z € TF and X\ € A,

T(1:(52)) = 21200500 = B:(1zous0) = Ba(7(s1)).
Since each Z(v) # 0, each m(s,) = 1z is nonzero, so Corollary implies that 7 is
injective. 0

Corollary 7.9. Let A be a row-finite k-graph with no sources. Let P be a countable subset
of A x4 A such that {Z(u,v) : (u,v) € P} is a partition of Go. Fiz c € Z*(A,T), and
let 0. € Z*(Ga,T) be the cocycle constructed from P as in Lemma(6.5 Then C*(A,c) =
C*(Ga,0.) = CF (G, 00).

Proof. By Lemma there exists a countable set @ C A gk, A such that {Z(u,v) :
(u,v) € Q} is a partition of Gy and such that (), s()\)) € Q for all A € A. Let 02 €
Z*(Ga, T) be the cocycle constructed from Q as in Lemmal[6.3} Corollary [7.§]implies that
C*(A, ) 2 C*(Gr,02). Moreover, Theorem 6.5 implies that ¢2 and o, are cohomologous
in Z2(Ga, T), and then [2I, Proposition II.1.2] implies that C*(Gy, 0) =2 C*(Gy, 0.).

For the assertion that C*(Gy,0.) = CF(A,0.), let ¥ : C*(A,¢) — C*(Ga,02) be the

homomorphism obtained by composing the quotient map ¢ : C*(G,02) — CF(Gy,02)
with the isomorphism C*(A,c) = C*(Gy,02) of Corollary . The Z*-grading of Gy
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induces a strongly continuous T*-action on C(Gy,02) which is compatible under 1 with
the gauge action on C*(A, ¢). So the argument of the preceding paragraph also applies to
the reduced C*-algebra, giving C*(Ga, 0.) = C*(A,¢) = CF(Gp, 0c). O

8. STRUCTURE THEORY

In this section we establish some structure theorems for twisted k-graph C*-algebras.
We begin with a version of the Cuntz-Krieger uniqueness theorem and a simplicity result
that follow from Renault’s structure theory for groupoid C*-algebras [21] and Corol-
lary [7.9]

Recall from [I5, Definition 3.1] that a row-finite k-graph with no sources is said to be
aperiodic if for every pair «, 5 of distinct elements of A such that s(a) = s(f3), there exists
7 € s(a)A such that MCE(ar, f7) = 0.

Remark 8.1. The original aperiodicity condition (A) of [10] insists that for each v € A°
there exists © € A with r(z) = v such that for all p # ¢ € N*, we have 0Pz # o%.
Proposition 3.6 of [15] implies that condition (A) is equivalent to aperiodicity of A in the
sense described above, and [22, Lemma 3.2 implies that this is also equivalent to the
condition of “no local periodicity” described there.

Recall from [10} Definition 4.7] that a row-finite k-graph A with no sources is cofinal if
for every & € A and v € A° there exists n € N* such that vAx(n) # 0.

Corollary 8.2. Let A be a row-finite k-graph with no sources. Suppose that A is aperiodic.
Fiz ¢ € Z*(A\,T) and a Cuntz-Krieger (A, c)-family t in a C*-algebra B. If each t, # 0
then the homomorphism 7, : C*(A\,c) — B is injective (so C*(A,c) = C*(t)). Moreover,
C*(A, ¢) is simple if and only if A is cofinal.

Proof. By Remark [8.1] A satisfies Condition (A). Hence [10, Proposition 4.5] implies that
Gy is topologically free in the sense that the units with trivial isotropy are dense in Qf\o).
Since C*(A, ¢) = C*(Ga, 0.), the result now follows from [21, Proposition 11.4.6] and the
arguments of [10, Theorem 4.6 and Proposition 4.8]. O]

Remark 8.3. Let A be a row-finite k-graph with no sources. Combining Remark
with [22, Theorem 3.1] shows that the untwisted C*-algebra C*(A) is simple if and only
if A is both aperiodic and cofinal. This is not the case in general for twisted k-graph
algebras: [I4, Example 7.7] shows how to recover the irrational rotation algebras, which
are simple, as twisted C*-algebras of a 2-graph which fails the aperiodicity condition
quite spectacularly. So in general, simplicity of the untwisted C*-algebra C*(A) implies
simplicity of each C*(A,¢) but the converse does not hold.

We show next that each C*(A, ¢) is nuclear. Our argument follows closely that of [10],
Theorem 5.5]. We first establish a technical result.

Lemma 8.4 (cf. [I0, Lemma 5.4]). Let A be a row-finite k-graph with no sources, and
suppose that the degree map on A is a coboundary. For each ¢ € Z*(A,T), the twisted
C*-algebra C*(A, c) is AF, and is isomorphic to C*(A).

Proof. Since d is a coboundary, there exists b € C°(A,Z*) such that d(\) = (6°b)(\) =
b(s(A)) = b(r(X)) for all X € A.
Fix ¢ € Z*(A,T). For n € N*, let

A, =span{s,s; @ (1, v) € A ks A, b(s(p)) =n} C C*(A,¢),
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and for v € A with b(v) = n, let A,, = span{s,s : s(u) = s(v) = v} C A,. Ar-
guing as in the proof of [10, Lemma 5.4] we see: that A, C A, for m < n € N¥
that C*(A,¢) = hgneNk A,; that A, = @b(v):n A, , for each n; and that s,s} — 6,,
determines isomorphisms A, , = Ky, for each n,v. So C*(A, ¢) is AF.

To calculate the multiplicities of the partial inclusions A,,, — A, ., fix m < n and
v € b~'(m), and observe that if s(u) = v then

* J— _
SuS, = E SuSaSeS E E SWSW

a€vAn—m w)_n acvAw

So for w € b~!(n), the multiplicity of the partial inclusion of A,,, in A, is [vAw|
and in particular does not depend on the cocycle c. Since AF algebras are completely
determined by the dimensions of the summands of the approximating subalgebras and by
the multiplicities of the partial inclusions, the isomorphism class of C*(A, ¢) is independent
of c. OJ

Suppose that A is a k-graph, A is a discrete abelian group, and f : A — A is a functor.

The skew-product k-graph A x ;A is the cartesian product A x A with operations (1, a) =
(r(p),a), s(p,a) = (s(u),a+ f(n), (k,a)(v,a+ f(p) = (uv,a) and d(u,a) = d(u) (see
[10, Definition 5.1]).
Lemma 8.5 (cf. [I0, Corollary 5.3]). Let A be a row-finite k-graph and let ¢ € Z*(A,T).
Let A be a locally compact abelian group and f : A — A a functor. There is a strongly
continuous action o of A on C*(A, ¢) such that ol (sy) = x(f(X))sx for all x € A and
A € A. There is a cocycle ¢ € Z*(A x; A, T) given by &((u,a), (v,a + f(u)) = c(p,v). If
A is discrete, then C*(A Xy A, ¢) is isomorphic to the crossed-product C*(A, c) X s A.

Proof. Our proof follows that of [10, Corollary 5.3] except that we must take into account
the cocycles ¢ and ¢.

The existence of the action a/ follows from the universal property of C*(A, ¢): for each
X € A, the map t : A — x(f(\))sy determines a Cuntz-Krieger (A, ¢)-family in C*(A, ¢).
Continuity follows from an ¢/3-argument.

The map ¢ is a 2-cocycle because ¢ is a 2-cocycle and (p, a) — p is a functor.

Suppose that A is discrete. Let P be a countable subset of AgxsA containing {(\, s())) :
A € A} and such that {Z(p,v) : (u,v) € P} is a partition of G5 as in Lemma [6.6] Then
Q = {((m,a+ f(p), (v,a+ f(v))) : (n,v) € P,a € A} gives a partition of Gy, 4 with
the same properties. Let f be the I-cocycle on G, given by f(az,d(a) — d(B),Bz) =
f(a)— f(B). Let Go(f) be the skew-product groupoid of [21], and let o; be the cocycle on
Gax ;4 obtained from Lemmaapplied toc e Z*(A x A, T)and Q. Let o, be the cocycle
on G, obtained in the same way from ¢ € Z*(A, T) and P. If ¢ denotes the quotient map
Ga(f) — Ga then 0. 0 ¢ is a continuous 2-cocycle on Go(f). By [10, Theorem 5.2], the
groupoid Gax 4 is isomorphic to Ga(f). Moreover, this isomorphism carries ¢z to o, o q.
We can now apply [21, Theorem I1.5.7] as in the proof of [10, Corollary 5.3]. O

Remark 8.6. Note that ¢ is the pull-back of ¢ under the functor A xy A — A (given by
(A, a) = A).

Corollary 8.7 (cf. [I0, Theorem 5.5]). Let A be a row-finite k-graph and let ¢ € Z*(A,T).
Then C*(A, c¢) belongs to the bootstrap class N, and in particular is nuclear.

Proof. We follow the proof of [10, Theorem 5.5]. By Takai duality, we have

C* (A, ¢) ~are C*(A, €) x, TF x5 Z".



36 ALEX KUMJIAN, DAVID PASK, AND AIDAN SIMS

Lemma implies that C*(A, ¢) x., TV = C*(A x4 Z*,¢). Define b: (A x4 Z%)° — Z* by
b(v,m) = m. Then the degree map on A x47Z* is equal to 3%, so Lemma implies that
C*(A, ¢) x, T" is AF. Hence C*(A, ¢) is Morita equivalent to a crossed product of an AF
algebra by Z*, which proves the result. 0

Finally, we consider pullbacks and cartesian products of k-graphs. Recall from [10] that
if A is a k-graph and f : N — N* is a homomorphism, then the pullback I-graph f*A
is defined by f*A = {(\,m) € A x N' : d(\) = f(m)} with coordinatewise operations
and degree map d(A,m) = m. Recall also that if A; is a kj-graph and A, is a ko-
graph, then A; x Ay is a (k; + ko)-graph with coordinatewise operations and degree map
d(A1, A2) = (d(A1), d(A2)).

Corollary 8.8. (1) Let A be a row-finite k-graph with no sources. Fix ¢ € Z*(A,T)
and a homomorphism f : N — NF¥. There is a cocycle f*c on f*A given by
fre(A\,m) = ¢(N), and there is a homomorphism 7wy : C*(f*A, f*c) — C*(A,c)
gwen by m(Sxm) = sx. If f is injective, so is wy. If f is surjective, then ms is
also, and C*(f*A, f*c) = C*(A, c) @ C(T'F).

(2) For each i € {1,2}, let A; be a row-finite k;-graph and fir c; € Z*(A;, T). Then
(c1 X c2)( A1, A2) := c1(A)ca(Na) determines an element ¢; X ¢y € Z*(Ay x Ay).
Moreover, the formula (sy,, Sx,) F Sx, ® Sy, determines an isomorphism

O*<A1 X AQ,Cl X CQ) = C*(Al,cl) X C*(AQ,CQ).

Proof. The arguments are more or less identical to those of [I0, Proposition 1.11] and [10,
Corollary 3.5(iii) and (iv)]. O
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