Nonlinear optical spectrum of bilayer graphene in the terahertz regime

Yee Sin Ang
ysa190@uowmail.edu.au

S. Sultan
University of Wollongong, Australia

Chao Zhang
University of Wollongong, Australia

Publication Details
Nonlinear optical spectrum of bilayer graphene in the terahertz regime

Yee Sin Ang, Shareef Sultan, and C. Zhang

Citation: Appl. Phys. Lett. 97, 243110 (2010); doi: 10.1063/1.3527934
View online: http://dx.doi.org/10.1063/1.3527934
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v97/i24
Published by the American Institute of Physics.

Related Articles
Spectrally resolved detection of mixed acoustic vibrations by photorefractive interferometry
J. Appl. Phys. 113, 054502 (2013)
An ultrathin but nearly perfect direct current electric cloak
Appl. Phys. Lett. 102, 014102 (2013)
A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission
Appl. Phys. Lett. 102, 011129 (2013)
Application of zero-index metamaterials for surface plasmon guiding
Appl. Phys. Lett. 102, 011910 (2013)
Fishnet metamaterial from an equivalent circuit perspective

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT

JANIS
Does your research require low temperatures? Contact Janis today. Our engineers will assist you in choosing the best system for your application.

10 mK to 800 K, LHe/LN2 Cryostats
Cryocoolers, Magnet Systems
Dilution Refrigerator Systems
Micro-manipulated Probe Stations

sales@janis.com www.janis.com
Click to view our product web page.
Nonlinear optical spectrum of bilayer graphene in the terahertz regime

Yee Sin Ang, Shareef Sultan, and C. Zhang
School of Engineering Physics, University of Wollongong, New South Wales 2552, Australia

(Received 18 October 2010; accepted 24 November 2010; published online 17 December 2010)

We demonstrate that the nonlinear optical response in bilayer graphene is among the strongest, especially in the important frequency regime of terahertz to far-infrared. Furthermore, we show that both the single frequency and frequency tripled nonlinear response become comparable to the linear response at very moderate electric field. The field strength for the onset of nonlinear effect in bilayer graphene is well within the experimental achievable range in laboratories. Our result suggests that bilayers are preferred structures for developing graphene-based nonlinear photonics and optoelectronics devices. © 2010 American Institute of Physics. [doi:10.1063/1.3527934]

Since the isolation of single layers of graphite in 2003,1 a lot of exciting work on single layer graphene (SLG) has been done;2–7 for example, the prediction and observation of electron-hole symmetry and a half-integer quantum Hall effect,8,9 finite conductivity at zero charge-carrier concentration,4 the strong suppression of weak localization,6,7 universal conductance8–11 and magnetic enhancement of optical conductance in graphene nanoribbons,12 and strong nonlinear response in the terahertz frequency regime.13,14

Bilayer graphene (BLG) exhibits additional new properties not seen in single layer graphene; chief among them are the bilayer warping15,16, a phenomenon solely due to the interlayer coupling. The quantum Hall plateaus in BLG are doubled and independent of the interlayer coupling strength.17 In general, electrons in bilayers behave qualitatively differently than in single layers. Phenomena such as interlayer drags18 and correlations19 are unique in bilayer. Various models for low energy BLG exist in literature depending on the coupling terms included, and whether electronic bands beyond the lowest energy subbands are retained.6,20 Many interesting results were obtained based on a model that includes only the most dominant of the interlayer coupling terms in BLG, as well as the usual nearest neighbor intralayer term.21 By including the second most dominant interlayer coupling, some unusual properties such as a peculiar Landau-level spectrum have been derived,16 as well as a new low energy peak in the optical conductance.22,23 By further increasing the layer numbers, one has graphene multilayers whose energy dispersion near the K-point can be tuned by a gate voltage.24 Graphene exhibits strong optical response.8–11,25 The universal conductance $\sigma_0 = e^2/4h$ leads to an absorption of around 2.3%. This absorption is very high for one atomic layer, or around two orders of magnitude higher per atomic layer in semiconductors. However, if the aim is to develop photonics applications based on single or a few layer graphene, the optical conductance in the terahertz-FIR regime is essentially confined to σ_0.

The purpose of this letter is to demonstrate that if one goes beyond the linear response regime, the optical response of intrinsic BLG ($\mu = 0$) can be very strong due to the third order effect. The nonlinear effects are particularly strong in the low frequency regime, which covers the technologically important frequency band of terahertz to far-infrared. More importantly, the field intensity required for the onset of nonlinear response is rather low, indicating that BGL is an excellent material for nonlinear optics and photonics application.

Here we shall adopt an approach that treats the coupling of the Dirac electron to the time-dependent electric field quantum mechanically to calculate the nonlinear terms, both in high order electrical field and in multiple frequencies. We determine the required field strength to induce non-negligible nonlinear effects, and investigate the temperature dependence of these terms as well.

Let us consider intrinsic BLG under an applied field $E(t) = E_\text{ext} \cos \omega t$ whose direction is along the x-axis. The tight binding Hamiltonian in the low energy regime under effective mass approximation is given by $\hat{H} = \hat{H}_0 + \hat{H}_c = \int dx \hat{H}$

$$H = \alpha \left(\begin{array}{cc} 0 & (p_x + eA)^2 \\ (p_x + eA)^2 & 0 \end{array} \right) - \beta \left(\begin{array}{cc} 0 & p_x + eA \\ p_x + eA & 0 \end{array} \right) ,$$

(1)

where $\alpha = 1/(2m^*)$, $m^* = 0.033m_e$, $\beta = v_F = 10^5 \text{ m/s}$, $p_x = p_x + eA$, and $A_x = (E_\text{ext} / \omega) \cos \omega t$. The velocity operator $\hat{v} = \partial \hat{H} / \partial \hat{p}$ can be split into a quadratic part \hat{v}_A and a linear part \hat{v}_B as follows:

$$\hat{v}_A = 2\alpha \left[\begin{array}{c} 0 \\ (p_x + eA) \end{array} \right] - \beta \left(\begin{array}{c} 0 \\ 1 \end{array} \right) = \hat{v}_A + \hat{v}_B .$$

(2)

If $\alpha \to 0$, \hat{v}_A disappears, and so only \hat{v}_B will contribute to J.

The wave function can be written in terms of two spinor components $a_n(\hat{p})$ and $b_n(\hat{p})$ as follows:

$$\psi(\hat{p}, n) = \sum_{n=0}^\infty \left[a_n(\hat{p}) \right] e^{i (n \omega - e/\hbar) t} .$$

(3)

Substituting Eq. (3) in the Schrödinger equation $i\hbar \frac{\partial \psi}{\partial t} = \hat{H} \psi$, we obtain

$$i\hbar \frac{\partial \psi}{\partial t}(\hat{p}, n) = - \sum_{n=0}^\infty (n \omega - e/\hbar) \left[a_n(\hat{p}) \right] e^{i (n \omega - e/\hbar) t} .$$

(4)
Solve Eq. (4) and absorb the $e^{i\omega t}$ and $e^{i2\omega t}$ terms into the spinor components to obtain a_{n-1}, a_n, and b_{n-1}, b_n, respectively. The recursion formula is hence given by

$$\begin{align*}
(e - n\omega_{\perp})a_n &= Y_{+} b_{n-1} + \frac{eE}{i\omega} X_{+} a_{n-1} - \frac{e^2E^2}{\omega^2} a_{n-2}, \\
(e - n\omega_{\perp})b_n &= Y_{+} a_n + \frac{eE}{i\omega} X_{+} a_{n-1} - \frac{e^2E^2}{\omega^2} a_{n-2},
\end{align*}$$

(5)

where $Y_{+} = 2\alpha_p - \beta$ and $Y_{-} = \alpha_p^2 - \beta p_{\perp}$. In the absence of the electric field, only $n=0$ terms are nonzero and the solution of Eq. (5) can be written as

$$a_0 = Y_{+}/e\sqrt{2}$$

and $b_0 = 1/\sqrt{2}$ where e is the energy dispersion and is given by

$$e = \sqrt{Y_{+}Y_{-}} = \pm \sqrt{\alpha_p^4 - 2\alpha\beta p_{\perp}^2} \cos 3\theta + \beta^2 p_{\perp}^2.$$

The above equation contains information of all multiple photon processes in intrinsic graphene. The recursion relation couples the n photon processes to the $n-1$ photon processes. From the solutions to Eq. (5) we can calculate the nth order total current, which is given by

$$J_n = \frac{1}{4\pi} \int d\mathbf{p} j_n(N(e)).$$

(6)

Here $N(e) = n(E(-e) - n(E(e) = \text{tanh}(e/2k_{B}T))$, and $\hat{\mathbf{p}}_n$ is given by Eq. (2), $\hat{j} = e\mathbf{\hat{p}}/\hbar$ and \hat{j}_n is the part of \hat{j} that is proportional to the nth power of the electric field. The $n=1$ terms can be obtained as

$$\begin{align*}
a_1 &= \frac{eE}{i\sqrt{2}\hbar e(\omega - 2e)} [e(e - \omega_{\perp})X_{+} + X_{+}Y_{-}], \\
b_1 &= \frac{eE}{i\sqrt{2}\hbar e(\omega - 2e)} [eX_{+}Y_{-} + (e - \omega_{\perp})X_{-}].
\end{align*}$$

The total current calculated with $n=1$ terms is equivalent to the linear response result obtained from the Kubo formula. Upon converting to real units, it results in a low energy linear conductance of $6\sigma_0$ where $\sigma_0 = e^2/4\hbar$ is the universal conductance. The second order solution makes no contribution due to time-reversal symmetry. We now proceed to calculate the third order current. We first obtain the explicit form of a_2, b_2, a_3, and b_3. There are distinct third order currents: One oscillates with ω, $j_3(\omega)$ and the other oscillates with 3ω, $j_3(3\omega)$. The combination of a_1, b_1, a_2, and b_2 contributes to $j_3(\omega)$; and the combination of a_2, b_2, a_3, and b_3 contributes to $j_3(3\omega)$.

In Fig. 1 we plot the nonlocal conductance versus frequency in unit of $6\sigma_0$ for two different temperatures. The electric field is 1000 V/cm. All nonlinear terms decrease rapidly with frequency. This is expected as linear response dominates at high frequencies in almost all systems. For BLG, the nonlocal response at single frequency is about five times stronger than frequency tripled terms.

Figure 2 shows the temperature dependent nonlocal conductance at a field of 600 V/cm and at a frequency of 1 THz. At low temperature, the nonlocal conductance exceeds the linear conductance. The $\sigma_3(\omega)$ is greater than the linear conductance in the whole temperature regime. The all important $\sigma_3(3\omega)$ stays as the same as the linear conductance even at room temperatures.

The quantity that characterizes nonlinearity of an electronic material is the field required for the nonlinear current to equal the linear current. We refer this field to be the critical field E_c. In the present case, there are two critical fields, $E_c(\omega)$ and $E_c(3\omega)$. Figure 3 shows the frequency dependence of the critical fields at zero and room temperature. Within the frequency range 0–5 THz, the linear conductance is nearly a constant of $6\sigma_0$. This is expected as far as the nonlinear effect in single layer graphene. This result suggests that interlayer coupling and doubling the carrier numbers in BLG do not reduce the nonlinear effect. If this trend is maintained up to a few layers, the potential for developing graphene-based nonlinear de-
The velocity of the LA phonon is around 2×10^2 m/s. Under an electric field around 1000 V/cm with a frequency of 1 THz, the energy of the photoexcited electron is around 1 THz. These electrons are located very close to the Dirac point, and the electron velocity is around 0.6×10^6 m/s. In the absence of other disorders and due to the energy conservation, the probability of single phonon emission is negligible. The multiple phonon excitation is possible but the probability is also very low due to the high order electron-phonon coupling. Therefore we do not expect that phonon excitation will play a significant role in altering the nonlinear electrical current in this energy regime.

In conclusion, we have shown that BLG exhibits a strong nonlinear effect in the terahertz to far-infrared regime under an electric field of around 10^3 V/cm. In particular, a moderate field can induce the frequency tripling term at room temperature. This suggests a potential for developing graphene-based optics and photonics applications.

This work is supported by the Australian Research Council (DP0879151).