2007

Hybrid treatment systems for dye wastewater

Faisal I. Hai
University of Wollongong, faisal@uow.edu.au

Kazuo Yamamoto
University of Tokyo

Kensuke Fukushi
University of Tokyo

Publication Details

Hybrid treatment systems for dye wastewater

Abstract
Virtually all the known physico-chemical and biological techniques have been explored for treatment of extremely recalcitrant dye wastewater; none, however, has emerged as a panacea. A single universally applicable end-of-pipe solution appears to be unrealistic, and combination of appropriate techniques is deemed imperative to devise technically and economically feasible options. An in-depth evaluation of wide range of potential hybrid technologies delineated in literature along with plausible analyses of available cost information has been furnished. In addition to underscoring the indispensability of hybrid technologies, this paper also endorses the inclusion of energy and water reuse plan within the treatment scheme, and accordingly proposes a conceptual hybrid dye wastewater treatment system.

Keywords
GeoQUEST

Disciplines
Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details

This journal article is available at Research Online: http://ro.uow.edu.au/scipapers/4887
Hybrid Treatment Systems for Dye Wastewater

Faisal Ibney Haia, Kazuo Yamamotob and Kensuke Fukushib

aDepartment of Urban Engineering, bEnvironmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
Tel. +81-3-5841-6255; Fax +81-3-5841-8533; E-mail:faisal_hai@yahoo.com

Abstract:
Virtually all the known physico-chemical and biological techniques have been explored for treatment of extremely recalcitrant dye wastewater; none, however, has emerged as a panacea. A single universally applicable end-of-pipe solution appears to be unrealistic, and combination of appropriate techniques is deemed imperative to devise technically and economically feasible options. An in-depth evaluation of wide range of potential hybrid technologies delineated in literature along with plausible analyses of available cost information has been furnished. In addition to underscoring the indispensability of hybrid technologies, this paper also endorses the inclusion of energy and water reuse plan within the treatment scheme, and accordingly proposes a conceptual hybrid dye wastewater treatment system.

KEY WORDS: dye wastewater, decolorization, hybrid treatment systems, energy and water reuse.

I. INTRODUCTION

Large amounts of dyes are annually produced and applied in many different industries, including the textile, cosmetic, paper, leather, pharmaceutical and food industries.136 There are more than 100,000 commercially available dyes with an estimated annual production of over 7×10^5 tons179, fifteen percent of which is lost during the dyeing process.70 The textile industry accounts for the two-third of the total dyestuff market136 and consumes large volumes of water and other refractory chemicals for wet processing of textiles210. The chemical reagents used are very diverse in chemical composition, ranging from inorganic and low molecular weight organic compounds to polymers.

The presence of even trace concentration of dyes in effluent is highly visible and undesirable.79 The release of colored wastewater in the ecosystem is a remarkable source of esthetic pollution, eutrophication and perturbations in aquatic life.70 Dye effluent usually contains chemicals, including dye itself, which are toxic, carcinogenic, mutagenic, or teratogenic to various microbiological and fish species.50 Concern arises, as many dyes are made from
known carcinogens such as benzidine and other aromatic compounds.¹⁷⁹ Also azo- and nitro-
compounds have been reported to be reduced in sediments of aquatic bodies, consequently
yielding potentially carcinogenic amines that spread in the ecosystem.²¹¹ The presence of
dyes or their degradation products in water can also cause human health disorders such as
nausea, hemorrhage, ulceration of skin and mucous membranes,¹⁹⁵, and can cause severe
damage to kidney, reproductive system, liver, brain and central nervous system.⁹⁴ These
concerns have led to new and/or stricter regulations concerning colored wastewater
discharges, compelling the dye manufacturers and users to adopt “cleaner technology”
approaches, for instance, development of new lines of ecologically safe dyeing auxiliaries
and improvement of exhaustion of dyes on to fiber.⁷⁹, ¹⁸⁰, ²¹⁰

Concomitant with the in-house multi-dimensional pollution minimization efforts, a number of
emerging material recovery/ reuse and end-of-pipe decolorization technologies are being
proposed and tested at different stages of commercialization. However, due to their synthetic
origin and complex structure deriving from the use of different chromophoric groups, dyes
are extremely recalcitrant.¹⁷⁹ Along with the recalcitrant nature of dye wastewater, the
frequent daily variability of characteristics of such wastewater adds to the difficulty of
treatment.⁷⁷ Accordingly, despite the fact that virtually all the known physico-chemical and
biological techniques have been explored for decolorization,⁷⁹ none has emerged as a
panacea. Cost-competitive biological options are rather ineffective while physico-chemical
processes are restricted in scale of operation and pollution profile of the effluent. Table 1 lists
the advantages and disadvantages of different individual techniques. It appears that a single,
universally applicable end-of-pipe solution is unrealistic, and combination of different
techniques is required to devise a technically and economically feasible option. In light of
this researchers have put forward a wide range of hybrid decolorization techniques. Figure 1
depicts a simplified representation of the proposed combinations.

Although still mostly in laboratory stage of development, of late, a wealth of studies have
been reported on implementation of advanced oxidation processes (AOPs) and their
combinations for dye wastewater treatment. Many studies have focused on different
combinations of physico-chemical treatments, which often have been employed by industries
in simple, standalone manner. Combinations of conventional physico-chemical techniques
with the AOPs have also appeared as attractive options. The biological systems, in addition to
varieties of combinations among themselves, have also been explored in fusion with virtually
all sorts of physico-chemical and advanced oxidation processes.

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/
This paper offers a comprehensive review of the potential hybrid technologies delineated in literature for treatment of dye wastewater in general and textile wastewater in particular. Analogous to the aforementioned trends, the combinations have been outlined under three broad categories i.e., combination among AOPs, combination of physico-chemical treatments among themselves and those with the AOPs and, the one with the paramount importance, the combination of biological systems with conventional physico-chemical processes and AOPs (Fig.1). Before elaborating on the combinations, the basic principles and limitations of relevant individual techniques have been discussed briefly. Based on the array of potential hybrid technologies and the available cost information, a conceptual on-site textile dye wastewater treatment system integrated with energy and water recovery/reuse has been proposed.

II. COMBINATION AMONG AOPs

While advanced oxidation processes (AOPs) have been studied extensively both for recalcitrant wastewater in general and dye wastewater in particular, their commercialization has yet not been realized because of prevailing barriers.\(^{72,73}\) These processes are cost prohibitive and complex at the present level of their development.\(^{163}\) Additional impediment exists in treatment of dye wastewater with relatively higher concentration of dyes, as AOPs are only effective for wastewater with very low concentrations of organic dyes. Thus, significant dilution is necessary as a facility requirement. The presence of dye additives/impurities such as synthetic precursors, by-products, salts and dispersing agents in commercial dye bath recipe causes further reduction in process efficiency.\(^{11,149,152}\) Although the usual small-scale laboratory investigations reveal encouraging results, such studies are insufficient to cast light on practical feasibility of AOPs. For example, in case of photochemical/photocatalytic decoloration, most of the investigations involve reactors ranging from as small as few tens of milliliters (e.g., 40 ml\(^{38}\)) to several hundreds of milliliters (e.g., 250ml\(^{146}\)) or at best few liters (e.g., 4L\(^{64}\)), which are inadequate to explicitly address the light penetration issue, the inherent drawback of this technology. Only a handful of pilot plant explorations with less than persuasive\(^{192,193}\) or moderate\(^{187}\) results have been documented. Reports on full-scale application of sole AOP treatment of dye bath effluents are apparently lacking.

Nevertheless, such processes generate a large number of highly reactive free radicals and by far surpass the conventional oxidants in decolorization. The conventional oxidants have more significant thermodynamic and kinetic limitations.\(^{46}\) For the AOPs, the basic reaction mechanism is the generation of free radicals and subsequent attack by these on the pollutant.
organic species. Hence it is strongly believed that their combination will result in more free radicals, thereby increasing the rates of reactions.72,73 Moreover, some of the drawbacks of the individual AOPs may be eliminated by the characteristics of other AOPs. The cost/energy efficiency, however, will be dependent on the operating conditions and the type of the effluent. Table 2 furnishes a quasi-exhaustive list of typical examples of studies on combinations among AOPs for dye wastewater treatment. Information on type of associated dyes has been included wherever available.

\textbf{A. Different photochemical processes}

The photo-activated chemical reactions are characterized by a free radical mechanism initiated by the interaction of photons of a proper energy level with the chemical species present in the solution. Generation of radicals through UV radiation by the homogenous photochemical degradation of oxidizing compounds like hydrogen peroxide4, ozone39 or Fenton’s reagent152 has been frequently reported to be superior to sole UV radiation or sole utilization of such oxidants. Highly UV absorbing dye wastewater may inhibit process efficiency by limiting penetration of UV radiation, necessitating use of high-intensity UV lamps192 and/or a specifically designed reactor.119 One example of appropriate reactor is a reactor which generates internal liquor flow currents bringing all liquor components into close proximity to the UV source. Conversely a thin-channel coiled reactor may also be used.187 Arslan et al.8 proposed pre-ozonation to remove high UV-absorbing components, and thereby accelerate subsequent H$_2$O$_2$-UV treatment by increasing UV-penetration. Simultaneous use of UV/H$_2$O$_2$/O$_3$ has also been reported to yield enhanced reaction kinetics.12 However, this entailed additional cost as compared to UV/ H$_2$O$_2$ or UV/O$_3$, and hence such use is recommended to be weighed against degree of removal required and associated cost. As activator of oxidants like O$_3$ or H$_2$O$_2$, handful of studies have put forward other alternatives to UV, namely, reduced transition metals9, gamma irradiation 80,194, humic substances82 etc.

An alternative way to obtain free radicals is the photocatalytic mechanism occurring at the surface of semiconductors i.e., heterogeneous photocatalysis. Various chalcogenides (oxides such as TiO$_2$, ZnO, ZrO$_2$, CeO$_2$ etc. or sulfides such as CdS, ZnS etc.) have been used as photo-catalysts so far in different studies. However, titanium dioxide (TiO$_2$) in the anatase form is the most commonly used photocatalyst, as it has reasonable photoactivity.143 Moreover it also furnishes the advantages of being insoluble, comparatively inexpensive, non-toxic, together with having resistance to photocorrosion and biological immunity.6 The photocatalytic process can be carried out by simply using slurry of the fine catalyst particles...
dispersed in the liquid phase in a reactor or by using supported/ immobilized catalysts. Limitations of slurry reactors are low irradiation efficiency due to the opacity of the slurry, fouling of the surface of the radiation source due to the decomposition of the catalyst particles and requirement of ultrafine catalyst to be separated from the treated liquid. On the other hand drawbacks of supported photocatalysis are scouring of films comprising immobilized powders of catalyst and reduced catalyst area to volume ratio. Recently fluidized bed reactors have been reported to take advantages of better use of light, ease of temperature control, and good contact between target compound and photocatalysts over slurry reactors or fixed bed reactors.

Besides sole photocatalysis, reports on utilization of photocatalysis in presence of O$_3$ or H$_2$O$_2$, exhibiting enhanced decoloration and mineralization, are also available. Considering the total mineralization of the compounds, the photocatalytic ozonation (UV/O$_3$/TiO$_2$) may show much lower specific energy consumption than the conventional photocatalysis (UV/TiO$_2$) and ozonation (UV/H$_2$O$_2$/O$_3$).106

Fenton reagent (a mixture of H$_2$O$_2$ and Fe$^{2+}$) and its modifications such as thermal Fenton process201 or photo-Fenton reaction using Fe(II)/Fe(III) oxalate ion, H$_2$O$_2$ and UV light have received great attention as means for decolorization of synthetic dyes.190,202 In the case of photo–Fenton technique, H$_2$O$_2$ is utilized more rapidly by three simultaneous reactions namely direct Fenton action, photo-reduction of Fe(III) ions to Fe(II) and H$_2$O$_2$ photolysis. Thus this process produce more hydroxyl radicals in comparison to the conventional Fenton method or the photolysis.20,73 Certain reports suggest that in case of similar removal performance, Fenton’s process may be preferred to related advanced oxidation alternatives (e.g., UV/H$_2$O$_2$) in view of lower energy consumption, lower H$_2$O$_2$ consumption, lower sludge disposal cost (as compared to higher reagent cost), higher flexibility and lower maintenance requirement.24 However Fenton reagent necessitates use of a large amount of acidic and alkaline chemicals (ideal pH about 2.5). Compared to Fenton’s reagent, β-FeOOH catalyzed H$_2$O$_2$ oxidation process takes advantage of its applicability over a wider pH range between 4 to 8, and moreover no sludge is produced.107 In order to take advantage of the oxidizing power of Fenton’s reagent yet eliminate the separation of iron salts from the solution, the use of ‘H$_2$O$_2$/ Iron powder’ system has been recommended. Such process may yield better dye removal than ‘H$_2$O$_2$/ Fe$^{2+}$, due to the chemisorption on iron powder in addition to the usual Fenton type reaction.203 Fenton-type reactions based on other transition metals (e.g., Copper), although less explored to date, have also been reported to be insensitive to pH and effective for degradation of synthetic dyes.211,212
Among the AOPs, the photo-Fenton reaction and the TiO₂ mediated heterogeneous photocatalytic treatment processes are capable of absorbing near-UV spectral region to initiate radical reactions. Their application would practically eliminate major operating costs when solar radiation is employed instead of artificial UV light. The ferrioxalate solution that has long been being used as chemical actinometer may be used in photo-Fenton process to derive further benefit by replacing UV with solar radiation. Recently, several attempts have been made to increase the photocatalytic efficiency of TiO₂; these include noble metal deposition, ion doping, addition of inorganic co-adsorbent, coupling of catalysts, use of nanoporous films and so on. Apart from that, new catalysts, such as polymeric metalloporphyrins, have been reported to be easily excited by violet or visible light, whereas available utilization of solar energy by commonly used TiO₂ is only about 3%.

B. Photochemical/ Electrochemical

In electrochemical treatments, oxidation is achieved by means of electrodes where a determined difference of potential is applied. On this principle, several different processes have been developed as cathodic and anodic processes- direct and indirect electrochemical oxidation, electrocoagulation, electrodialysis, electromembrane processes and electrochemical ion exchange. Occasionally, combination of electrochemical technology and photocatalysis has been adopted to yield some unique advantages. For instance, chemical synergism of photocatalysis and electrochemical processes may yield enhanced decoloration and COD removal and added advantage may be derived from existence of salt in solution, which originally is detrimental for sole photocatalysis. Conversely, electro-Fenton process requires no addition of chemical other than catalytic quantity of Fe²⁻, since H₂O₂ is produced in situ, thereby avoiding transport of this hazardous oxidant. In pulsed high voltage electric discharge process, addition of oxidants such as H₂O₂ yields highly reactive free radical species through photo-dissociation of H₂O₂ and thereby enhances the whole process.

C. Sonolysis and other AOPs

Acoustic cavitation due to ultrasound vibration within a liquid generates local sites of high temperature and pressure for short period of time, which gives rise to H₂O sonolysis with production of radical species and direct or indirect (via free radicals) destruction of solute. However, stand alone application of sonolysis hardly results in complete mineralization of pollutant streams containing complex mixtures of organic and inorganic compounds. In view of the substantial amount of energy employed in generating free radicals via acoustic
cavitation bubbles, efforts have been made to improve its efficiency. It has frequently been explored in association with other AOPs. For example, combined use of sono-photochemical process can prevent severe mass transfer limitation and reduced efficiency of photo-catalyst owing to adsorption of contaminants at the surface. On the other hand, such combination can alleviate the limitations of separate application of sonolysis. Similar advantage has been reported in case of concurrent sonolysis and MnO₂ oxidation. Sonification has also been reported to bring about dramatic enhancement in oxidation efficiency of UV/H₂O₂ by improving oxygen uptake and transfer. Combined application of sonolysis and O₃/ UV facilitates O₃ diffusion and photolysis of ultrasound-generated H₂O₂. Such combination hence yields large number of free radicals. Addition of FeSO₄ in solution may result in Fenton’s reaction with H₂O₂ evolved from simultaneous sonification and may achieve improved decoloration and TOC removal as compared to sonification only. Simultaneous sonolysis has also been reported to enhance electro-oxidation of dye.

III. COMBINATION: AOPs AND OTHER PHYSICO-CHEMICAL PROCESSES

Many studies have focused on different combinations among physicochemical systems for treatment of textile and dye wastewaters. Combinations of conventional physicochemical techniques with the AOPs have as well appeared as an attractive option. Table 3 encapsulates information derived from broad spectrum of typical studies dealing with such combinations.

A. Coagulation based combinations

Coagulation/ flocculation/ precipitation processes have been used intensively for decolorizing wastewater. For the pretreatment of raw wastewater before discharging to publicly owned treatment plants, these processes may be satisfactory with respect to COD reduction, and partial decolorization. Their stand alone application in treating textile/dye waste is, however, relatively ineffective, for example, only 50% removal was achieved using either alum or ferrous sulfate for an azo reactive yellow dye. In the coagulation process, it is difficult to remove highly water-soluble dyes, and even more important, the process produces a large quantity of sludge.

Nevertheless, researchers are persistent in their pursuit of minimizing the limitations of this technology. For instance, Polyaluminium ferric chloride (PAFC), a new type of composite coagulant, was reported to have the advantages of high stability and good coagulating effect for hydrophobic as well as hydrophilic dyes. Its decoloration capacity surpassed that of Poly aluminium chloride and Polyferric sulfate. On the other hand, to avoid massive sludge production...
disposal problem, different novel approaches, such as, coagulation of low volume segregated dye bath (rather than that of colossal amount of mixed wastewater)74, alum sludge recycling41, coagulant recovery from textile chemical sludge122, reuse of textile sludge in building materials16, and processes like vermicomposting of textile mill sludge67, coagulation followed by activated carbon adsorption163, have been proposed. Coagulation followed by adsorption was reported to produce effluent of reuse standard, apart from cutting down the coagulant consumption by 50\%, hence, lowering the volume of sludge formed, in comparison to coagulation only.163

Coagulation in combination with advanced oxidation processes, either in sequential or in concurrent manner, has been reported for dye wastewater. For example, simultaneous application of coagulation and Fenton oxidation has revealed improved performance over their standalone applications.101 One of the limitations of Fenton oxidation process is that, large amounts of small, hard to settle flocs are consistently observed during the process. Chemical coagulation following Fenton’s treatment has been found to reduce floc-settling time, enhance decoloration and reduce soluble iron in effluent.131 Conversely photo-Fenton process subsequent to coagulation was reported to complete decoloration and yield better COD removal, with the added advantage of reducing load on the advanced oxidation process, thereby reducing chemical usage.18 Investigation on sequential use of coagulation and ozonation revealed the superiority of the scheme involving ozonation preceded by coagulation over the reversed scheme.209 Multistage application of coagulation followed by ozonation was proved to be superior to their single pass sequential application (total ozonation time the same)86. The advantage of the multistage application was more convincing in case of wastewater with more recalcitrant composition.

B. Adsorption based combinations

Adsorption techniques, specially the excellent adsorption properties of carbon-based supports have been utilized for the decolorization of dyes in the industrial effluents.60 Activated carbon, either in powder or granular form, is the most widely used adsorbent for this purpose because of its extended surface area, microporous structure, high adsorption capacity and high degree of surface reactivity.137 It is very effective for adsorbing cationic, mordant, and acid dyes and to a slightly lesser extent, dispersed, direct, vat, pigment and reactive dyes.179 However, the use of carbon adsorption for decolorization of the raw wastewater is impractical because of competition between colored molecules and other organic/ inorganic compounds. Hence its use has been recommended as a polishing step or as an emergency unit at the end of treatment stage to meet the discharge color standards.79 The fact that activated carbon is
expensive and weight loss is inevitable during its costly onsite regeneration (10% loss in the thermal regeneration process), impedes its widespread use. Utilization of non-conventional, economical sources (industrial or agricultural by-products) rather than usual relatively expensive materials (coconut shell, wood or coal) as precursors for activated carbon has been proposed to achieve cost-effectiveness in its application.\(^{(142,181)}\)

There has been considerable interest in using low-cost adsorbents for decolorization of wastewater. These materials include chitosan, zeolite, clay; certain waste products from industrial operations such as fly ash, coal, oxides; agricultural wastes and lignocellusric wastes and so on.\(^{(14,151)}\) Each of non-regenerable economical adsorbents has its specific drawbacks and advantages, all, however, pose further disposal problem. To do away with the disposal problem, easily regenerable adsorbent is required.\(^{(99)}\)

As mentioned earlier, adsorption is a non-destructive method involving only phase change of pollutants, and hence imposes further problem in the form of sludge disposal. The high cost of adsorbent also necessitates its regeneration. Conversely some catalytic oxidation/reduction systems appear to be more efficient when treating small volumes of concentrated dyes. So it appears attractive to combine adsorption with some other process in a system where contaminants are pre-concentrated on adsorbent and then separated from water. The contaminants thus separated may subsequently be mineralized, for example, by wet air oxidation\(^{(191,223)}\) or degraded to some extent, for instance, azo bond reduction by bisulfite-mediated borohydride\(^{(117)}\) so as to regenerate the adsorbent and reuse. In this way an economical process coupling two treatment technologies eliminating their inherent drawbacks may be developed. If partial degradation is applied to regenerate the adsorbent, it will still leave behind a small volume of wastewater (as compared to the volume that existed before adsorption) to be treated. This again can be conveniently taken care of by applying some AOP. Ince et al.\(^{(89)}\) proposed a slightly modified version of the aforementioned so called “phase-transfer oxidation”. Their strategy comprised of simultaneous operation of adsorption and AOP followed by periodic on-site destructive regeneration of the spent adsorbent. Adsorption concurrent with ozonation\(^{(132)}\), UV-\(\text{H}_2\text{O}_2\)\(^{(91)}\) or microwave induced oxidation\(^{(132)}\) has been reported to yield mutual enhancements like catalysis of AOP by adsorbent and simultaneous regeneration of adsorbent. A rather elaborate method involving solvent extraction and catalytic oxidation has been documented in the literature.\(^{(87,150)}\) The method consists of dye extraction using an economical solvent followed by dye recovery through chemical stripping. In this way the solvent is also regenerated. Finally, treatment of the extraction raffinate can be achieved by catalytic oxidation.

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/
C. Membrane based combinations

Membrane separation endows the options of either concentrating the dyestuffs and auxiliaries and producing purified water208, or removing the dyestuff and allowing reuse of water along with auxiliary chemicals110,172,174, or even realizing recovery of considerable portion of dye, auxiliaries and water all together.171 Such recovery/reuse practice reduces many folds the recurring cost for the treatment of waste streams. The fact that the dyeing behavior of the residual dye should ideally be identical to that of the fresh dye, may restrict dye recovery and reuse to specific dye classes.35,65 Accordingly water and/or electrolyte recovery from dye bath effluent has become the focus of the contemporary literature. However, concentrated sludge production and occurrence of frequent membrane fouling requiring costly membrane replacement impede widespread use of this technology36. Two distinct trends are hence noticeable among the reported studies which couple membrane separation with other technologies. Some studies mainly focus on alleviation of the membrane-concentrate disposal problem, while others seek to offer complete hybrid systems wherein elimination of the limitations of the membrane technology (e.g., fouling) and/or those of the counterpart technologies (e.g., ultrafine catalyst separation in photocatalysis) may be expected.

Hybrid processes based on membrane and photocatalysis have been reported to eradicate the problem of ultrafine catalyst to be separated from the treated liquid in case of slurry reactors, with the added advantage of membrane acting as selective barrier for the species to be degraded. On the other hand, in case of immobilized catalysis, membrane may play the role of support for photocatalyst145. For coupling with photocatalysis, membrane distillation, however, has been reported to be more beneficial in comparison with pressure driven membrane process, as significant fouling may be associated with the latter. Tay et al.204 proposed a photo-oxidative (UV/TiO\textsubscript{2}/H\textsubscript{2}O\textsubscript{2}) pretreatment prior to membrane filtration to partially break down the high molecular weight compounds which cause membrane fouling. The relatively smaller fragments produced there from were still retainable by membrane, and unlike the parent compounds, they did not affect the charge of the membrane surface.

Membrane contactors, involving mass transfer in the pores by diffusion (avoiding gas dispersion as macroscopic bubbles as in traditional ozonation systems), offer the advantages of higher contact surface (equal to membrane surface, which may reach up to 30 km2/m3H\textsubscript{2}O for hollow fiber membranes), easy scale-up, no foam formation, and lower process cost (no requirement of ozone destruction, lower ozone loss).42,45
Numerous studies have reported on application of membrane filtration (UF/NF) following coagulation/ flocculation to produce reusable water. Such application has the added advantage of minimizing membrane fouling. In this context, hybrid coagulation-membrane reactor may offer another viable option. This treatment scheme may also be placed subsequent to advanced oxidation processes in order to remove soluble degradation products.

Application of separate technologies for segregated streams has been recommended by different researchers. For instance, Wenzel et. al. recommended hot water reuse in rinsing after reclamation by membrane and reuse of dye bath water and salts after adsorption of dyestuff and COD on activated carbon. Conversely, hybrid adsorption-membrane reactor, offering synergism in that the compounds too large to be adsorbed onto adsorbent are successfully retained by the membrane while low molecular weight organics are well adsorbed on adsorbent, is also worth mentioning.

Considerable number of studies have been devoted to eradication of the major drawback associated with membrane separation i.e., concentrated residue remaining for disposal. As mentioned earlier, dyes in the concentrate from the membrane separation unit, because of the usual quality requirements of the color shades in the dyed products, cannot be reused and must be treated before discharge. In this respect, catalyzed wet air oxidation (WAO) has emerged as an efficient system. Sonification was found essential to make membrane-retenate from actual wastewater to be amenable to subsequent WAO. On the other hand, augmentation of advanced oxidation process (e.g., ozonation) subsequent to membrane filtration has been envisaged as a scheme yielding several advantages such as reducing waste volume for oxidation while simultaneously recovering salt, and in addition, limiting concentrated waste for disposal. A novel membrane-based integrated water management system for exhausted dye bath and rinsing bath was proposed by Bruggen et al. The proposed scheme involved, in order of application, microfiltration membrane (pretreatment), loose nanofiltration membrane (NF-1, for organics removal) and another tighter NF membrane (NF-2, salt retention). According to that scheme, further separation of organic fraction may be achieved by membrane distillation units, while retained salt may be recovered through membrane-crystallization. Finally the organic sludge of high calorific value from the membrane distillation unit may be incinerated.

IV. BIOLOGICAL TREATMENT BASED COMBINATIONS

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/
A. Combination among biological processes

Conventionally a chemical coagulation step, preceded by229 or antecedent to57 biological treatment, is applied for dye wastewater. Combined treatment with municipal wastewaters is usually favored75 wherever applicable. A variety of biological treatment processes including activated sludge, fluidized biofilm229, different fixed film systems3 or combinations thereof230 have been employed. Although in case of aerobic bacteria co-metabolic reductive cleavage of azo dyes as well as utilization of azo compounds as sole source of carbon and energy (leading to mineralization) have been reported, dyes are generally very resistant to degradation under aerobic condition.19,199 Toxicity of dye wastewater and factors inhibiting permeation of the dye through the microbial cell membrane reduce the effectiveness of biological degradation. Dyestuff removal, hence, currently occurs in the primary settling tank of a wastewater treatment plant for the water-insoluble dye classes (disperse, vat, sulphur, azoic dyes), while the main removal mechanism for the water-soluble basic and direct dyes in conventional aerobic systems is adsorption to the biological sludge. Reactive and acid dyes, however, adsorb very poorly to sludge and are thus major troublemakers in relation to residual color in discharged effluents.160

Since reduction of azo bond can be achieved under the reducing conditions prevailing in anaerobic bioreactors31 and the resulting colorless aromatic amines may be mineralized under aerobic conditions32, so a combined anaerobic-aerobic azo dye treatment system appears to be attractive. Trials with varieties of combinations including simultaneous anaerobic/ aerobic process (microbial immobilization on a matrix providing oxygen gradient113 or an anaerobic-aerobic hybrid reactor95), anoxic plus anaerobic/ aerobic process162; anaerobic/ oxic system5; aerobic (cell growth)/ anaerobic (decolorization) system37 have all been explored involving fed-batch, sequencing batch or continuous feeding strategies with encouraging results. Both cytoplasmic184 and membrane114-bound unspecific azo-reductase activities under anaerobic condition have been reported. Glucose, raw municipal wastewater and yeast extract, among others, have been reported as examples of an essential co-substrate needed to obtain good anaerobic color removal.52 Different abiotic processes involving derivatives generated during bacterial metabolism (e.g., sulfide, amino acid cysteine, ascorbate) may contribute in decolorization under anaerobic conditions227. The biotic process, however, dominates in high-rate anaerobic bioreactors.233 Addition of redox mediating compounds like anthraquinone sulphonate, anthraquinone di-sulphonate has been reported to greatly enhance both the biotic and abiotic processes233. However, during post-treatment of anaerobically treated azo dye containing wastewater, there will be competition between biodegradation and autoxidation of aromatic amines. This may be problematic not only because the formed products are colored...
but also because some of these compounds, e.g., azoxy compounds, may cause toxicity. It should be emphasized that in high-nitrogen waste waters it makes little sense to remove part of COD by anaerobic treatment in the first step when COD has to be added again to the effluent afterwards in order to achieve nitrogen removal.

Biological treatment is a cost-competitive and eco-friendly alternative. Researchers are hence persistent in their pursuit of minimizing the inherent limitations of biological dye wastewater treatments. Several innovative attempts to achieve improved reactor design and/or to utilize special dye-degrading microbes or to integrate textile production with wastewater treatment have been documented in literature. Some of such innovative endeavors include: two stage activated sludge process (high load first stage, achieving biosorption and incipient decomposition of high molecular organic compounds, followed by a low load polishing stage); high-rate anaerobic systems uncoupling hydraulic retention time from solids retention time; two phase anaerobic treatment wherein acidic phase bioreactor is also shared for textile production (integration of production with wastewater treatment); activated sludge pretreatment, to reduce organic nitrogen, before fungi decoloration; fungi pretreatment before anaerobic treatment; combined fungi (biofilm) and activated sludge culture for decoloration; activated algae reactor (with mixed population of algae and bacteria); activated sludge followed by over land flow etc.

B. Hybrid technologies based on biological processes

Table 4 summarizes a broad spectrum of intriguing reports on hybrid technologies having biological processes as the core.

1. Biological/ Physico-chemical

As mentioned earlier, literature is replete with examples of use of coagulation complementary to biological decoloration. The choice between coagulation-biological or biological-coagulation scheme depends on type and dosage of coagulant, sludge quantity, and degree of inhibitory and nonbiodegradable substances present in wastewater. Coagulation prior to biological treatment may be advantageous for alkaline wastewaters. After biological treatment ferrous sulfate cannot be used because pH is close to neutral. On the other hand, the dose of coagulants and consequently the quantity of the chemical sludge after biological treatment are smaller compared to those in coagulation followed by biological treatment.

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/
Besides coagulation, a variety of other treatment processes may be combined with biological treatment. Very often certain physico-chemical process is placed before129 and/or after130 an advanced oxidation process. The biological process is applied either as the very first100, penultimate3 or as the last129 treatment unit. In view of the abundance of bioresistant and toxic contaminants in dye wastewater, physico-chemical and advanced oxidative pretreatment prior to biological treatment appear to be a rational option. The choice between physico-chemical and oxidative pretreatment however depends on the specific wastewater; and usually an astute stream-separation would facilitate application of appropriate treatment system for different streams.3 On the contrary, especially isolated/ acclimatized microbes are usually required for effective biological pretreatment.100,115 In order to obtain reusable water, an elaborate treatment train composed of conventional physico-chemical and advanced oxidation processes may be placed after biological pretreatment. While numerous such combinations have been reported in literature, the common underlying principle is to choose a combination so as to furnish a complete system eliminating limitations of the individual techniques. For instance, the fact that high concentrations of suspended or colloidal solids in the wastewater may impede the advanced oxidation processes, necessitates sufficient prior removal of these materials by physico-chemical treatment.43,100 Conversely, enhancement of COD removal (e.g., after ozonation)127 or improvement of settleability of sludge (e.g., after electrofloatation)43,130 may require physico-chemical treatment subsequent to AOPs.

2. Integrated Partial oxidation/ Biodegradation

In contrast to the conventional pre or post treatment concepts, where process design of different components is independent of each other, a rather innovative approach is the so called “integrated- processes” where the effectiveness of combining biological and other treatments is specifically designed to be synergetic rather than additive.134 A typical example of such processes is combination of advanced oxidation with an activated sludge treatment where the chemical oxidation is specifically aimed to partially degrade the recalcitrant contaminants to more easily biodegradable intermediates, thereby, enhancing subsequent biological unit and simultaneously avoiding the high costs of total mineralization by AOP. During the recent years myriad studies dealing with partial pre-oxidation of dye wastewater, involving virtually all sorts of AOPs, have been reported. Some of these studies include partial oxidation by ozonation39, H₂O₂46, photocatalysis178, photo (solar)-fenton207, wet air oxidation169, combined photocatalysis and ozonation/ H₂O₂146,200, photoelectrochemical process6, sub and super critical water oxidation103 and electron-beam treatment.81 Bulk of such studies report on improvement of biodegradability (as revealed by BOD/COD ratio or partial oxidation parameter92) and reduction of toxicity (using bioassay, e.g., bioluminescence

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/
test) following some AOP treatment without involving actual experiment in biological reactor. However, complete results from actual investigation in biological system following partial oxidation, as listed in table 4, are also available. Careful consideration of characteristics of each AOP would facilitate selection of a proper pre-oxidation process for rendering wastewater more amenable to biological treatment. For instance, Fenton-like treatment using Nafion-Fe$^{3+}$ membrane, rather than direct addition of iron salt17, or immobilized TiO$_2$ photocatalysis rather than photo-Fenton process164 would facilitate further biological treatment under biocompatible pH making neutralization redundant. Mantzavinos et al.138 have proposed a step-by-step approach to evaluate chemical pretreatment for integrated systems.

The combined oxidation and subsequent biodegradation make it necessary to set the optimal point of oxidative treatment. Further oxidation may not lead to any significant changes in the molecular weight distribution, but results in an increasing mineralization of low molecular weight biodegradable substances.92 Hence it is rational to adopt shortest possible pre-oxidation period and remove the biodegradable portion using cost-effective biological process. Nonetheless, the extent of combined COD removal achievable with this strategy may be limited in some cases, making utilization of a longer oxidation period necessary and the following biological process redundant.170 An internal recycle between the oxidation and biological stage have been recommended for reducing chemical dose in such circumstances.124 Dogruel et al.56, pointed out to the selective preference of ozone for simpler readily biodegradable soluble COD fractions, which leads to unnecessary consumption of the chemical. They suggested pre-ozonation of segregated recalcitrant streams from dye house prior to biological treatment of the mixed whole effluent. If considerable amount of biodegradable compounds originally exist in the wastewater, pre-oxidation step obviously will not lead to a significant improvement of biodegradability, rather will cause unnecessary consumption of chemicals. In such a case a biological pre-treatment (removing biodegradable compounds) followed by an AOP (converting non-biodegradable portion to biodegradable compounds with less chemical consumption) and a biological polishing step, may prove to be more useful.85,213

3. Biodegradation/ Adsorption

Owing to limited effectiveness of conventional biological treatment for recalcitrant textile wastewater composed of recalcitrant textile chemicals and dyes, various adsorbents and chemicals161, predominantly activated carbon, have been directly added into the activated sludge systems in certain studies. The fact that the additional removal of soluble organic

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/
matter (COD and TOC) in such a system over that in a conventional system cannot be explained by probable contribution of adsorbent as predicted by adsorption isotherms141, has persuaded researchers to hypothesize a synergistic relationship between activated carbon and microorganism (‘enhanced microbial degradation and bioregeneration of adsorbent’).167 Enhanced biodegradation has been attributed to ability of adsorbent to act as a modulator, by immediately adsorbing high concentrations of the toxic compounds, and thus regulating the concentration of the free toxic material; together with providing an enriched environment for microbial metabolism on the liquid-solid surface, on which microbial cells, enzymes, organic materials and oxygen are adsorbed.1 Conversely, bioregeneration of activated carbon has been explained by extracellular biodegradation of adsorbed organics by microbial enzymes excreted into carbon micropores.197,225 The main step in dye removal for activated carbon amended biological process is microbial degradation, which is higher than adsorption on both activated carbon as well as on biomass.49 Accordingly although the dye removal in that process has frequently been reported to be better than in the conventional activated sludge process161,197, mode of COD removal may be the same.49 Under a higher biomass concentration (> 3g/l), the carbon particles are, however, trapped in the floc matrix and lose their properties of adsorption, thereby, hindering microbial growth and dye removal.141 Although simultaneous adsorption and biodegradation treatment occasionally has been demonstrated as a mere combination of adsorption and biodegradation without any mutual enhancement159 and has controversies in bioregeneration hypothesis225, application of this process to the treatment of textile wastewaters is an important economic improvement. It allows the removal of COD and color from textile wastewater in a single step with no additional physicochemical treatment141. To minimize reactor volume, a hydraulic retention time as low as possible is practically expected. This, in turn, however, renders powdered activated carbon (PAC) partially loaded. Its optimum use may be realized by recirculation of PAC.156 In addition to its adsorption capacity, activated carbon has also been reported to enhance anaerobic azo dye reduction234 by acting as a biologically regenerable redox mediator due to quinone surface group on it. Zhang et al.235 documented an innovative approach involving fluidized bed reactor containing complex pellets of white rot fungus and activated carbon. The reactor, by retaining necessary fungal metabolites, surpassed standalone application of fungi or activated C. The process was claimed to be superior to simple addition of activated C in fungi reactor.

Fixed granular activated carbon (GAC) bed inoculated with special chromophoric bond-cleaving and aromatic ring-cleaving bacteria, after initial acclimatization period, have been reported to outperform conventional GAC bed.218 However, the bacterial activity in GAC bed may decrease after certain period due to lack of nutrient and/or dissolved oxygen.

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/
Maintenance of high DO level by a pressurized system may ensure achievement of stable removal (color and COD) with concurrent prolonged carbon-bed life.177 A novel approach entailing partial bioregeneration (physical adsorption on fluidized biological GAC followed by biodegradation and desorption), coupled with complementary periodic physical regeneration of 50% of total GAC, has been reported by Vuoriranta et al.217 The system was observed to achieve an improved COD and color removal apart from reduction in regeneration cost and weight loss of GAC. Moreover, the system has the added advantage of allowing biological activity in GAC medium for subsequent use. Some means of improvement of biodegradability, be it biological177 or advanced oxidation process221, will certainly fortify biological activity in the subsequent biological GAC. However, in case of oxidative degradation, subsequent substrate adsorption on carbon may plummet23. Carbon-biocatalyst amalgamation in adsorption cartridges for decoloration has been commercialized (‘BIOCOL’) in UK.48

4. Biodegradation/ Membrane filtration

a. Chronological application

For reusable water production, researchers have recurrently referred to nanofiltration (or low pressure reverse osmosis) of biologically treated colored wastewater since this option involves less fouling as compared to that for direct nanofiltration of dye baths.33 Some references have put forward inclusion of sand filtration/ multimedia filtration and/or microfiltration in between biological treatment and nanofiltration139,182. Site-specific technoeconomical analysis is usually recommended to ascertain the best combination183. Notwithstanding the disposal problem of reject stream emanating from membrane separation, it may be preferred to ozonation as a post treatment to derive reusable water from secondary wastewater, in view of the fact that the latter would realize negligible conductivity removal.27 Conversely, provision of advanced oxidation of biologically treated wastewater before sending it for nanofiltration has been reported to yield further increased membrane life.28,96 Addition of facility for partial oxidative degradation (e.g., ozonation) of membrane-concentrate to the aforementioned treatment train of nanofiltration of secondary wastewater may furnish a quasi-‘close loop’ system, in that, the partially oxidized products (detoxified) may be recycled to biological treatment.120,134 Such practice may, however, give rise to concern about salinity increase in biological plant. Wu et al.224 reported a cost-competitive dye wastewater reclamation system involving deep aeration activated sludge prior to bioactivated carbon and nanofiltration, which, in addition to yielding prolonged membrane life and recovery/reuse potential, allowed direct discharge of concentrated membrane-retentate.

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/
Illustrations of chronological application of membrane and biological treatment in case of segregated textile wastewater streams are also available. Rinsing water may be reused after reclamation by membrane while the concentrated waste may be degraded in anaerobic digester. This example may be further extended to filtration of segregated dye bath effluent utilizing membrane of appropriate molecular cut off size which allows passage of salt but retains dye. Consequently dye bath water containing salt may be reused for dye bath reconstruction, while the membrane-concentrate may be degraded in anaerobic digester.

b. Membrane bioreactors

Membrane bioreactor (MBR), a remarkable improvement over the conventional activated sludge treatment, has been set forth as a promising option in colored wastewater treatment. MBR for decoloration has often been envisioned in conjunction with simultaneous adsorption. A treatment scheme comprising activated carbon amended anaerobic reactor preceding aerobic MBR realizes stable decoloration along with high TOC removal, with concurrent improvement in activated sludge dewaterability and reduction in filtration resistance. For reuse purpose MBRs have occasionally been envisaged as the main treatment process prior to a polishing nanofiltration step, or even as the core of a rather elaborate treatment train including anaerobic/aerobic pretreatment prior to MBR and ozonation following it. An innovative approach noticeable in contemporary literatures involves membrane (submerged/ sidestream) separated fungi reactor which couples the excellent degradation capability (due to non-specific extracellular oxidative enzymes) of white-rot fungi with the inherent advantages of membrane bioreactor. The MBR system has been envisaged to be capable of coping with the impedances in implementation of white-rot fungi in large scale industrial waste treatment, such as, rather slow fungal degradation, loss of the extracellular enzymes and mediators with discharged water, and excessive growth of fungi. Development of such a system offering stable 99% decoloration and 97% TOC removal from synthetic textile wastewater along with avoidance of membrane fouling has been recently documented.

V. COST ANALYSIS

The overall costs are represented by the sum of the capital costs, the operating costs and maintenance costs. Most costs are very site-specific, and for a full-scale system these costs strongly depend on the flow rate of the effluent, the configuration of the reactor, the nature (concentration) of the effluent as well as the pursued extent of treatment. The location is also important, not only for its obvious influence on land-price but also due to its climatic
influence, for example, duration and intensity of sunlight influencing efficiency of solar-fenton process. Table 5 lists some cost values quoted in different studies.

Studies generally show that AOPs and membrane processes are more costly than biological processes. However, because of the numerous site-specific factors and assumptions inevitably made in such estimates, a direct comparison is difficult. Especially, indiscriminate comparison of costs (in per m³ or per kg contaminant) of segregated vs. mixed streams would be simply misleading as the latter removes significantly less contaminant due to dilution. The fact that treatment schemes based on segregated waste streams coupled with process water recycling have the potential to save quite a bit of money even with high costs per m³, should be considered while evaluating process viability. Nevertheless the importance of reporting such values cannot be overlooked as they always give some rough idea on different scenarios and may as well form the base for further improved cost estimation. Plausible analyses of the cost data follow in the next paragraph.

Treatment trains composed of conventional physico-chemical and biological systems involve sustainable cost, however, their removal performance may not satisfy contemporary stricter regulations. Membrane filtration of biologically pretreated dye wastewater has been occasionally reported to require less cost than that for direct membrane filtration of dye bath, presumably as the former involves less membrane fouling. However, both the processes furnish potential of water reuse, thereby, achieving further cost savings. Membrane based other combinations, especially, membrane bioreactor, are potential contenders among present-day dye wastewater treatment processes. At the present stage of development of AOPs, sole application of AOP or even combinations among AOPs themselves are unlikely to yield satisfactory effluent with reasonable cost. AOP pretreatment prior to biological treatment is certainly cost-effective than complete mineralization by AOP. Conversely, according to the examples in Table 5, AOP as a post treatment incurs less cost as compared to that as pre-treatment. Notwithstanding this fact, it should be emphasized that application of AOP pretreatment on segregated recalcitrant stream may avoid unnecessary consumption of chemicals by biodegradable compounds, thereby, imparting cost-effectiveness to the integrated system. Combination of AOP with adsorption, membrane separation or other physico-chemical systems may be cost-competitive. It is intriguing to notice that integrated systems combining wide variety of technologies, for instance, membrane, AOP, WAO and biological process, when accomplish water and/or auxiliary chemicals reuse, appear to be feasible, in that, capital cost can be recovered within a few years.
VI. PROPOSED HYBRID PROCESS

Based on the array of potential hybrid technologies and the available cost information, a conceptual on-site textile dye wastewater treatment system, as presented in figure 3, may be proposed. Two distinct cases have been considered here- i) an integrated textile processing plant involving essentially all steps of textile processing, starting from conversion of fiber to cloth and extending up to dyeing and finishing, and, ii) a segregated plant concerning only dyeing and finishing. Additionally, an ideal state of practice of recovery and reuse of textile chemicals (sizing agent, detergent, lanolin from raw wool scouring, caustic for cotton mercerizing, dye bath electrolyte), energy (heat) and water by using appropriate membranes has been assumed (Fig.2). This assumption was prompted by the fact that such practice realizes cost-savings through reduction in production of waste and consumption of fresh chemicals/water, and consequently the usual payback period of the high capital investment associated with it is 2-3 years or less. Furthermore, available technoeconomical analyses indicate that inclusion of comprehensive energy and water reuse plan within the treatment scheme would be more viable as compared to full end-of-pipe treatment with limited or no recovery/reuse strategy. Nevertheless, initial investment costs and site-specific conditions will obviously play a role in whether or to what extent a plant decides to proceed with recycling concept. It is worth mentioning here that recovery/reuse of both chemicals and water is different from that of only water, in that, the former entails handling of the point sources separately, while the latter may be achieved by following usual end-of-pipe strategy (mixing different streams).

A submerged microfiltration membrane bioreactor (MBR) implementing a mixed microbial culture predominantly composed of white-rot fungi constitutes the core of the proposed hybrid dye wastewater treatment scheme. The fungi-MBR couples the excellent recalcitrant compound degradability of white-rot fungi with the inherent advantages of an MBR. To sustain an uninterrupted supply of non-specific extra cellular enzyme by fungi, the reactor requires to be operated under a quasi-controlled environment (acidic pH) with simultaneous supply of an easily biodegradable carbon source (e.g., starch used in textile sizing). In case of an integrated textile plant, after the chemical and water recoveries as indicated in figure 2, the concentrates and discarded streams may be fed to the MBR. Depending on the case-specific requirement, the MBR may be augmented by a subsequent advanced oxidation facility (e.g., solar photocatalysis). An internal recycle strategy in between the MBR and the photo reactor may prove to be further beneficial. Depending on the site-specific quality achievement, the final effluent may be reused with or without mixing with fresh water. In case of a plant dealing only with dyeing and finishing, however, a slightly changed approach of water and electrolyte recovery is recommended. In this case since other streams except the

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/
dyeing and finishing streams are absent, so the concentrated reject-stream generated after water and salt recovery from segregated dye bath effluent and rinse water can not be diluted. Under this condition, the dye bath effluent and rinse water may be directly fed to the MBR-AOP sequence, and then desalinated by membrane (RO/NF), with the concentrate (salt) and permeate (water) being reused.

Due to declining membrane costs34, recovery and reuse of chemicals and water using membrane is expected to gain rapid acceptability in near future. The concentrates generated there from and discarded streams (including dye), however, entail further effective economical treatment. This may be realized by an on site membrane separated fungi reactor. Requirement of small plant size is one of the inherent advantages of MBR process. The fungi-MBR78, in addition, can achieve excellent effluent quality. Besides, post treatment of the MBR-permeate by an AOP will ensure complete decoloration. Moreover, use of the AOP for post treatment will minimize its light penetration limitation, which would be significant if it were used for pre-treatment. Last but not least, the approach to utilize solar-light for photocatalysis adds to the effort to conserve energy sources. Based on this reasoning, the proposed conceptual integrated treatment scheme appears to be attractive.

This paper intends to underscore the indispensability of hybrid technology for dye wastewater treatment and endorses the inclusion of energy and water reuse plan within the treatment scheme. However, the proposed layout is certainly not claimed to be a panacea for textile dye wastewater. It is rather a demonstration of one of the probable suitable combinations. In line with the broad spectrum of hybrid technologies portrayed in this paper, some additions/modifications to the proposed scheme may also be considered. For instance, simultaneous addition of adsorbent in the MBR189, utilization of concurrent AOP-adsorption system91,132 etc., are worth exploring.

Other approaches may enjoy case-specific superiority over the proposed scheme. For example, with more advancement in the reactor design for AOPs, the partial pre-oxidation by AOP (may be combination among AOPs themselves) prior to MBR treatment may appear to be more appropriate in near future. Conversely, incineration/ wet air oxidation of dye bath concentrate (possessing high calorific value34) remaining after material and water recovery by membrane may also furnish an attractive solution.

\textbf{VII.CONCLUSION}

\textbf{Current address:} School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/
Residual dyes along with other auxiliary chemical reagents used for processing, impurities from the raw materials and other hazardous materials applied in the finishing process impose massive load on wastewater treatment system. This eventually leads to a poor color and COD removal performance. The release of colored wastewater in the ecosystem is a remarkable source of esthetic pollution, eutrophication and perturbations in aquatic life. These concerns have led to new and/or stricter regulations concerning colored wastewater discharges, rendering the decolorization process further difficult and costly. To combat this problem, researchers have put forward a wide variety of hybrid decolorization techniques. Based on the array of potential hybrid technologies and the available cost information, it can be concluded that hybrid technologies having biological processes as the core appear to be the most prospective ones. It should also be emphasized here that inclusion of energy and water reuse plan within the treatment scheme is an imperative. In this context membrane technology has an immense role to play. Membrane bioreactor implementing special dye-degrading microorganism and involving simultaneous addition of adsorbent in MBR may surface as a potential contender among present-day dye wastewater treatment processes. The MBR technology may as well be combined with advanced oxidation facilities. Case-specific selection of the appropriate hybrid technology is the key to realization of a feasible system.

Hybrid Treatment Systems for Dye Wastewater

Faisal Ibney Hai\(^a\), Kazuo Yamamoto\(^b\) and Kensuke Fukushi\(^b\)

\(^a\)Department of Urban Engineering, \(^b\)Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Tel. +81-3-5841-6255; Fax +81-3-5841-8533; E-mail: faisal_hai@yahoo.com

REFERENCES

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)

http://www.uow.edu.au/~faisal/

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)

http://www.uow.edu.au/~faisal/

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/

Hybrid Treatment Systems for Dye Wastewater

Faisal Ibney Hai, Kazuo Yamamoto and Kensuke Fukushi

Department of Urban Engineering, Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Tel. +81-3-5841-6255; Fax +81-3-5841-8533; E-mail: faisal_hai@yahoo.com

Figure 1: Simplified representation of broad spectrum of combinations proposed in the literature
<table>
<thead>
<tr>
<th>Process</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Selected Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological</td>
<td>Cost-competitive option. Direct, disperse and basic dyes have high level of adsorption on to activated sludge.</td>
<td>Dyes are generally toxic and very resistant to biodegradation. Acid and reactive dyes are highly water-soluble and have poor adsorption on to sludge.</td>
<td>160</td>
</tr>
<tr>
<td>Coagulation</td>
<td>Economically feasible; satisfactory removal of disperse, sulphur and vat dyes.</td>
<td>Removal is pH dependent; produces large quantity of sludge. May not remove highly soluble dyes; unsatisfactory result with azo, reactive, acid and basic dyes.</td>
<td>61,79,179</td>
</tr>
<tr>
<td>Activated Carbon adsorption</td>
<td>Good removal of wide variety of dyes, namely, azo, reactive and acid dyes; especially suitable for basic dye.</td>
<td>Removal is pH dependent; unsatisfactory result for disperse, sulfur and vat dyes. Regeneration is expensive and involves adsorbent loss; necessitates costly disposal.</td>
<td>61,79,179</td>
</tr>
<tr>
<td>Ion exchange</td>
<td>Adsorbent can be regenerated without loss, dye recovery conceptually possible.</td>
<td>Ion exchange resins are dye-specific; regeneration is expensive; large-scale dye recovery cost-prohibitive.</td>
<td>179,196</td>
</tr>
<tr>
<td>Membrane filtration</td>
<td>Appropriate membrane may remove all types of dyes and thus realize reusable water from dye-bath effluent.</td>
<td>Concentrated sludge production and costly membrane replacement impede widespread use.</td>
<td>36</td>
</tr>
<tr>
<td>Chemical oxidation</td>
<td>Initiates and accelerates azo-bond cleavage.</td>
<td>Thermodynamic and kinetic limitations along with secondary pollution are associated with different oxidants. Not applicable for disperse dyes. Negligible mineralization possible, release of aromatic amines and additional contamination with chlorine (in case of NaOCl) is suspected.</td>
<td>179,196</td>
</tr>
<tr>
<td>Advanced oxidation processes, AOPs</td>
<td>Generate a large number of highly reactive free radicals and by far surpass the conventional oxidants in decolorization.</td>
<td>AOPs in general may produce further undesirable toxic by products and complete mineralization may not be possible. Presences of radical scavengers reduce efficiency of the processes some of which are pH dependent. Cost-prohibitive at their present stage of development.</td>
<td></td>
</tr>
<tr>
<td>UV/O₃</td>
<td>Applied in gaseous state, no alteration of volume. Good removal of almost all types of dyes; especially suitable for reactive dyes. Involves no sludge formation, necessitates short reaction times.</td>
<td>Removal is pH dependent (neutral to slightly alkaline); poor removal of disperse dyes. Problematic handling, impose additional loading of water with ozone. Negligible or no COD removal. High cost of generation coupled with very short half-life and gas-liquid mass transfer limitation; suffers from UV light penetration limitation. Increased level of turbidity in effluents.</td>
<td>61,73,79,90,140,179</td>
</tr>
<tr>
<td>UV/H₂O₂</td>
<td>Involves no sludge formation, necessitates short reaction times and reduction of COD to some extent may be possible.</td>
<td>Not applicable for all dye types, requires separation of suspended solid and suffers from UV light penetration limitation. Lower pH required to nullify effect of radical scavengers.</td>
<td>73,140</td>
</tr>
<tr>
<td>Fenton’s reagent</td>
<td>Effective decolorization of both soluble and insoluble dyes; applicable even with high suspended solid concentration. Simple equipment and easy implementation. Reduction of COD (except with reactive dyes) possible.</td>
<td>Effective within narrow pH range of <3.5; and involves sludge generation. Comparatively longer reaction time required</td>
<td>79,140,179,203</td>
</tr>
<tr>
<td>Photocatalysis</td>
<td>No sludge production, considerable reduction of COD, potential of solar light utilization.</td>
<td>Light penetration limitation, fouling of catalysts, and problem of fine catalyst separation from the treated liquid (slurry reactors)</td>
<td>105</td>
</tr>
<tr>
<td>Electrochemical</td>
<td>Effective decolorization of soluble/insoluble dyes; reduction of COD possible. Not affected by presence of salt in wastewater.</td>
<td>Sludge production and secondary pollution (from chlorinated organics, heavy metals) are associated with electrocoagulation and indirect oxidation, respectively. Direct anodic oxidation requires further development for industrial acceptance. High cost of electricity is an impediment. Efficiency depends on dye nature.</td>
<td>40,179</td>
</tr>
<tr>
<td>Method</td>
<td>Description</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Sonolysis</td>
<td>Addition of chemical additives not required and hence does not produce excess sludge.</td>
<td>Requires a lot of dissolved gas (O₂); complete decoloration and mineralization by sonification alone are not economical at present level of reactor development.</td>
<td></td>
</tr>
<tr>
<td>Ionizing Radiation</td>
<td>No sludge production; effective oxidation at lab scale.</td>
<td>Requires a lot of dissolved O₂; complete decoloration and mineralization by stand alone application not possible. Energy efficient scale-up yet to be achieved.</td>
<td></td>
</tr>
<tr>
<td>Wet air Oxidation, WAO</td>
<td>Well-established technology especially suitable for effluent too dilute for incineration and too toxic and/or concentrated for biological treatment.</td>
<td>Complete mineralization not achieved, as lower molecular weight compounds are not amenable to WAO. High capital and operating costs are associated with elevated pressure and temperature employed.</td>
<td></td>
</tr>
</tbody>
</table>

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/
Table 2. List of typical examples of combinations among AOPs for dye wastewater treatment

<table>
<thead>
<tr>
<th>Technology</th>
<th>Dye/ Wastewater</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV/ O₃</td>
<td>2-naphthalenesulfonate [Azo Dye-intermediate]</td>
<td>Mineralization of 2-NS via ozonation (40 mg/l) is remarkably enhanced by UV radiation (60.35 W/m², 254 nm), tripling the rate. Not much difference in 2-NS decomposition.</td>
</tr>
<tr>
<td>UV/O₃, UV/H₂O₂</td>
<td>Acid N=N - red 1/ black 1/ red14/ red 18/ orange 10/ yellow 17/ yellow 23; Direct N=N yellow 4</td>
<td>Decoloration (20 mg/l dye): 100% in 10 min. by O₂ (6 l/min. O₂) with/without UV; 80% in 25 min. by H₂O₂-UV. Negligible enhancement of ozonation by UV (low power) due to absorption of most UV by dye. Dilution of sample and/or optimum reactor design recommended.</td>
</tr>
<tr>
<td>UV/H₂O₂</td>
<td>Hispanin Black CA [Direct N=N Black 22]</td>
<td>UV (125 W)- H₂O₂ (565.8 mg/l, 16.6 mM): Complete decoloration (35 min.) & 82% TOC removal (60 min.) for 40 mg/l dye at natural pH (7.5), although subsequent toxicity test recommended.</td>
</tr>
<tr>
<td>UV/H₂O₂</td>
<td>Acid dye [orange 8N= N blue 74, Methyl orange N=N]</td>
<td>Removal by Only UV (15W, 253.7 nm, incident photon flux = 6.1x10⁶ Einstein s⁻¹, 4.54≤pH≤5.5) and only H₂O₂ in absence of UV was negligible. Combined: Decolorization rate rises by increasing the initial dosage of H₂O₂ up to a critical value ([H₂O₂]/[dye]=50-70) beyond which it is inhibited.</td>
</tr>
<tr>
<td>UV/H₂O₂</td>
<td>Reactive- red 120 N=N /black5 N=N / yellow 84 N=N</td>
<td>UV (15 W): H₂O₂ (optimum dose 24.5 mmol/l) 15 min.: [Decolorization>65%, COD removal= 40-70%], 60 min.: [Decoloration=99%]; Degradation by products unobjectionable.</td>
</tr>
<tr>
<td>UV/H₂O₂</td>
<td>Chlorotriazine Reactive N=N Orange 4</td>
<td>Dye removal (0.5 mmol/l), 150 min., pH 3: UV (64W, 365nm)-H₂O₂ (10 mmol) 88.68% decolourisation , 59.85% degradation. Sunlight-H₂O₂: 80.15% decolourisation, 50.94% degradation. Dye auxilaries like Na₂CO₃, NaOH seriously retard decoloration rate while NaCl does not.</td>
</tr>
<tr>
<td>O₃ followed by UV/ H₂O₂</td>
<td>Wastewater from cotton & polyester fiber dyeing textile mill</td>
<td>Under natural pH (10.66) 5 min pre-ozonation (293 mg/l), removing high UV-absorbing components (60% reduction in UV254), accelerated subsequent 55 min. H₂O₂(50 mmol/l)-UV(25W) treatment, enhancing its COD & TOC removal efficiency by a factor of 13 & 4, respectively; the combined treatment yielding 25% COD, 50% TOC & complete color removal (Initial COD=1476 mg/l; TOC= 336mg/l).</td>
</tr>
<tr>
<td>UV /H₂O₂/O₃</td>
<td>Wastewater containing disperse dyestuff & pigments</td>
<td>99% COD (Initially 930 mg/l) and 96% color removal in 90 min. [pH=3; H₂O₂=200 mg/l; O₃= 2 g/l; 15 W lamp, 254 nm]. Over 90% removal by UV/O₃ with less cost due to no requirement of pH adjustment and H₂O₂.</td>
</tr>
<tr>
<td>Fe²⁺/O₃</td>
<td>Simulated disperse dye bath (CI disperse- violet 931, blue 291; two more azo dyes and compounds)</td>
<td>95% color removal (Dye= 0.5 g/l), 48% COD (initially= 3784 mg/l) removal and 10 times improvement in BOD₅/COD ratio at natural acidic pH of dye bath (3.6 mM Fe²⁺; [Fe²⁺]: [O₃]= 1:14; FeSO₄·7H₂O= 1000 mg/l). Negligible TOC removal is due to low O₃ dose of 14 g/l.</td>
</tr>
<tr>
<td>UV/Fenton</td>
<td>Disperse N=N red 354</td>
<td>85% color removal (Dye=100 mg/l) & 90% COD removal within 10 mins. with 24.5 mmol H₂O₂/l and 1.225 mmol FeSO₄/l at pH=3, resulting effluent having only 7.29% inhibition in bioluminescence test. Presence of dispersing agent reduces removal efficiency.</td>
</tr>
<tr>
<td>UV/Fenton</td>
<td>Reactive N=N brilliant red X-3B</td>
<td>Stable decoloration (Dye= 7.7x10⁴ M) within 20 min. with [H₂O₂]= 18x10⁻⁴ M, [Fe²⁺] or [Fe³⁺]=1.1x10⁻⁴ M, 75W UV (λ=320nm) lamp. Use of Fe²⁺ is preferable to Fe³⁺ because of faster reaction rate with H₂O₂ and evolution of HO₂ instead of HO.</td>
</tr>
<tr>
<td>Solar/Fenton</td>
<td>Orange II (Acid N=N orange 7)</td>
<td>Decoloration of highly concentrated (2.9 mM = 0.8g/l) dye in less than 2 hr and 95% mineralization within 8hr by a solar simulator (90 µm cm⁻²) and also by natural sunlight (80 µm cm⁻²) with 0.92 mM Fe³⁺ and 10 mM H₂O₂/hr [pH=2].</td>
</tr>
<tr>
<td>Solar/Fenton</td>
<td>Monoreactive N=N Procion red H-E7B, Hetero-bireactive N=N Red cibaron FN-R, Standard trichromatic mixture</td>
<td>Sunlight, supplying higher number of photons (3-4x10⁴ W cm⁻²) than the low power artificial source (350 nm, 6W, 1.3x10⁻⁴ W cm⁻²), resulted in faster complete decoloration (15-30 min.) and complete (or near) TOC removal (20-60 min.) for dye concentration of 100 mg/l with 10 mM Fe²⁺ and 100-250 mg/l H₂O₂ [pH=3].</td>
</tr>
<tr>
<td>Cu(II)/Glutaric acid/H₂O₂</td>
<td>Direct Chicago sky blue N=N, Methyl or-</td>
<td>Over 90% decolorization of 100 ppm dye within 24 hr. (70-80% within first 6 hr.) with 10 mM CuSO₄, 200 mM</td>
</tr>
<tr>
<td>Process/Environment</td>
<td>Media</td>
<td>Reaction Conditions</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td>UV/O₃/TiO₂</td>
<td>Textile effluent containing Reactive·N=O dye</td>
<td>Photocatalysis (0.1 g/l anatase TiO₂, 125 W, fluency rate 31.1 J m⁻² s⁻¹, pH=11): Color= 90%, TOC= 50%; Ozoneation (pH=11, 14 mg/l): Color= 60%, TOC= negligible; Combined: Color=100%, TOC> 60%, Toxicity=50%</td>
</tr>
<tr>
<td>UV/H₂O₂/TiO₂</td>
<td>Eosin Y·N</td>
<td>Enhanced decoloration (100% for 50 mg/l dye) & mineralization (95%) in 1 hr (19W lamp, 1g/l TiO₂, 100 mg/l H₂O₂, pH=5.4) along with 85% reduction in toxicity.</td>
</tr>
<tr>
<td>Solar/ H₂O₂/ Polymeric metalloporphyrins</td>
<td>Acid (Basic)·N=O orange</td>
<td>% [Decoloration, Degradation]: Hg lamp (450 W, 8hr) Catalysis (3mg/35ml) with H₂O₂ (0.4 g/l) = [87, 92]; without H₂O₂=[77, 96]. Solar light (3hr) Catalysis without H₂O₂=[77, 90]. Dye= 13.3 mg/l, high pH favourable.</td>
</tr>
<tr>
<td>Pulsed streamer corona discharge (electrical)/ H₂O₂</td>
<td>Rhodamine B·N=O (Basic), Acid·N=O methyl orange, Direct·N=O Chicago sky blue</td>
<td>Pulsed high voltage (20 kV, 25Hz) electrical discharge in water, yielding photo-dissociation of added H₂O₂ (8.8x10⁻¹⁷ M), showed enhanced decoloration rate (100% for 10 mg/l dye in 60 min.) as compared to individual process-performances.</td>
</tr>
<tr>
<td>Photoelectrochemical</td>
<td>Methylene blue</td>
<td>Chemical synergism of photochemical & electrochemical processes yielded enhanced decoloration (95%), COD removal (87%) & TOC removal (81%) in 30 min [Dye=1 mmol/l; 500W lamp, 6.64 mWcm⁻²; 1gTiO₂/200 ml; 30 V DC; Natural pH(6.6)].</td>
</tr>
<tr>
<td>Microwave (MW)/ Photocatalysis</td>
<td>Rhodamine B·N=O (Basic)</td>
<td>In contrast to negligible removal by MW (300W), or less removal by photocatalysis (75W, 0.3mW cm⁻²), 30 mg TiO₂/30 ml alone, combined process achieved 97% decoloration (Dye= 0.05 mm) and 73% TOC removal within 3 hrs at pH=5.5.</td>
</tr>
<tr>
<td>Photoelectrocatalysis</td>
<td>Reactive·N=O brilliant orange K-R</td>
<td>Decoloration and TOC removal of dye (0.5 mM) in 0.5 mmol l⁻¹ NaCl solution within 60 min. (Natural pH) : i) Adsorption on packed material: 95%, --; ii) Photocatalysis [TiO₂ (antase= 70%)-coated quartz sand, 500 W high-pressure mercury lamp]: 70%, 20%; iii) Electro-oxidation [30.0 V DC cell voltage, reaction flow rate=190 ml min⁻¹, 0.05 MPa airflow]: 77%, 7%; iv) Photoelectrocatalysis: 96%, 38%. Obvious enhancement effect (unlike photocatalysis) of salt in solution.</td>
</tr>
<tr>
<td>UV/Electro-Fenton</td>
<td>Reactive·N=O Red 120</td>
<td>TOC removal [180 min.]: 30%; Decoloration [30 min.]: 75-85% for 60-100 mg/L concentration; Low efficiency due to radical scavenging by the graphite cathode. Detoxification [90 min]: Safely disposable.</td>
</tr>
<tr>
<td>Gamma irradiation/ H₂O₂</td>
<td>Reactive·N=O blue 15 (Chrozol turquoise blue G), Reactive·N=O black 5 (Chrozol black 5)</td>
<td>H₂O₂, yielding .OH by reacting with hydrated electron formed in radiolysis of water, achieved enhanced decoloration (100%, 50 ppm dye) and COD removal (76-80%) with 1 and 15 kGy doses for RB5 and RB15, respectively, decoloration (%) being the highest at the lowest dose rate (0.14 kGy/h).</td>
</tr>
<tr>
<td>Sonolysis/ MnO₂</td>
<td>Acid·N=O red B</td>
<td>Sonication (50 kHz, 150 W) enhanced oxidation property of MnO₂(1 g/l) by improving mass transfer, removal of passivating outer oxide layer & production of H₂O₂, eventually realizing 94.93% decolorization (argon atmosphere) and 48.12 % TOC removal (oxygen atmosphere) [initial pH=3, 240 min.].</td>
</tr>
<tr>
<td>Sonolysis / Fenton’s reaction</td>
<td>Acid·N=O Methyl orange</td>
<td>Addition of FeSO₄ ([Fe²⁺]= 0.1-0.5 mM) resulted in Fenton’s reaction with H₂O₂ evolving from simultaneous sonification (500 kHz, 50W) and achieved 3-fold increase in decoloration (15 min., 10µM dye) and TOC removal (50%, 20 min.) as compared to sonification only.</td>
</tr>
<tr>
<td>Sonolysis/O₃</td>
<td>C.I Reactive·N=O black 5 (RBB)</td>
<td>Combined sonolysis (520 kHz and ozonation (irradiation intensity, O₃ input and volume were 1.63 W cm⁻²; 50 l h⁻¹; and 600 ml) showed synergistic effect, doubling the decolorization (100%, 15 min.) and mineralization (76%, 1hr) rate.</td>
</tr>
<tr>
<td>Sonolysis/O₃</td>
<td>Acid·N=O Methyl orange</td>
<td>Combined sonolysis (500 kHz, 50 W) and ozonation (50V) showed synergistic effect (dead end byproducts of one process being degraded by the other) yielding instant decoloration (10µM dye) and 80% mineralization (3 hr) as compared to 20-30% by stand-alone application.</td>
</tr>
<tr>
<td>Sonolysis/UV/O₃</td>
<td>C.I Acid·N=O orange 7</td>
<td>Enhanced O₃ (40 g/m³) diffusion by mechanical effects of ultrasound (520 kHz, 600 W) & the photolysis (108W) of ultrasound-generated H₂O₂ to produce .OH led to complete decoloration (Dye= 57µM), 40% TOC removal & an im-</td>
</tr>
</tbody>
</table>

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)

http://www.uow.edu.au/~faisal/
<table>
<thead>
<tr>
<th>Method</th>
<th>Dyes Description</th>
<th>Description</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonolysis/H$_2$O$_2$</td>
<td>Vinylsulphone reactive dyes [C.I Reactive- Yellow 15 $^{N=N}$, Red 22 $^{N=N}$, Blue 28, Blue 220, Black 5 $^{N=N}$; Remazol dark black N 150%]</td>
<td>Combined sonolysis (20 kHz) and H$_2$O$_2$ (3.49 mol/l) showed synergistic effect, doubling the decolorization (90-99%) depending on dye, 4 hr.) rate.</td>
<td>2007</td>
</tr>
<tr>
<td>Sonolysis/UV/H$_2$O$_2$</td>
<td>Cuprophenyle yellow RL $^{C=C}$ (Acid!)</td>
<td>Sonication (320 kHz) dramatically enhanced oxidation efficiency of UV(6@11W)+H$_2$O$_2$ (0.1 ml/l) system (pH=11) by improving oxygen uptake & transfer, the combined process achieving 94% dye (0.1 g/l) removal in 60 min. following pseudo 1st order kinetics.</td>
<td>2003</td>
</tr>
<tr>
<td>Sonolysis/UV/TiO$_2$</td>
<td>Naphthol blue back $^{N=N}$</td>
<td>Simultaneous or sequential sonolysis (640 kHz, 240 W) and photocatalysis (1g/L TiO$_2$) showed additive effect on decoloration (100% in 200 min.; 50μM dye) while, in terms of mineralization, simultaneous application (50%, 4hr; 80%, 12 hr), due to mass transfer improvement of reactants & products to and from TiO$_2$ surface, performed better than sequential application (<20%, 4hr; 50%, 12hr).</td>
<td>1999</td>
</tr>
<tr>
<td>Sonolysis/UV/TiO$_2$</td>
<td>Acid $^{N=N}$ - red 1, Orange 8</td>
<td>Simultaneous sonolysis (20 kHz, 15 W) and photocatalysis (0.1g/L TiO$_2$) showed synergistic effect on decoloration/ degradation (2.5 x10$^{-5}$ M dye) due to promoting de-aggregation of TiO$_2$, desorption of reactants & products from TiO$_2$ surface & mainly by scission of produced H$_2$O$_2$, thereby, increasing oxidizing species in aqueous phase.</td>
<td>2000</td>
</tr>
<tr>
<td>Sonolysis UV/ H$_2$O$_2$</td>
<td>C.I reactive $^{C=C}$ red 120</td>
<td>Sonification (320 kHz) significantly enhanced the decoloration (Dye= 0.1 g/L) efficiency of UV/ H$_2$O$_2$. Higher flow rate (insufficient irradiation) necessitated higher dosing rate of H$_2$O$_2$.</td>
<td>2003</td>
</tr>
<tr>
<td>Sonoelectrolysis</td>
<td>Acid $^{C=N}$ Sandolan Yellow</td>
<td>Electro-oxidation of dye (50 mg/L) in saline solution (0.01 mol/L NaCl) involving in situ generation of hypochlorite ion was enhanced using ultrasound (20 kHz, 22 W) when carried out in a semi-sealed cell, which minimized the effects of ultrasonic degassing.</td>
<td>2001</td>
</tr>
</tbody>
</table>

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/
Table 3. List of typical examples of combinations between conventional physico-chemical processes and AOPs

<table>
<thead>
<tr>
<th>Technology</th>
<th>Dye/ Wastewater</th>
<th>Details</th>
<th>Ref. (Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenton/ Chemical coagulation</td>
<td>C.I direct N=N blue 202, C.I reactive N=N black 5; PVA</td>
<td>81-86% COD (Initial) 1000 mg/l removal & decoloration (Dye= 200 mg/l) in 2 hrs. with [H₂O₂]/[FeSO₄]= 1000/400 at pH=3, while subsequent coagulation at pH=7-10 with 100 mg/l PAC & 2mg/l polymer reduced floc settling time, enhanced decoloration and reduced soluble Fe in effluent.</td>
<td>131 (1997)</td>
</tr>
<tr>
<td>Fenton+ Chemical coagulation</td>
<td>Disperse- Blue N=N 106, Yellow N=N 54; Reactive- Blue N=N 49, Yellow N=N 84</td>
<td>Coagulation (pH= 5-7): Removal per mol Fe²⁺ [COD, DYE]; Disperse (0.74-0.93mM FeCl₃) = [460.2-477g, 525.7-672.7]; Reactive (1.85-2.78mM FeCl₃)= [37.4-86.5g, 109.5-192.7g]. Fenton (pH= 3; 30 min; [Fe³⁺]: [H₂O₂]=1:0.2-1:0.37): Removal per mol Fe³⁺ [COD, DYE]; Disperse= [14-80g, 3.7-20.8g]; Reactive= [114.2-199.6g, 118.9-489.2g]. Combined: Both dyes, 90%COD & 99% dye removal.</td>
<td>101 (2004)</td>
</tr>
<tr>
<td>O₃/ Coagulation</td>
<td>Azo dye manufacturing wastewater (subjected to chlorination)</td>
<td>REMOVAL: After Ozonation [70 min., 56 mg O₃/m; min.; 1.6 l/min.; pH=10.3] COD= 25%, Color= 43%. After subsequent Ca(OH)₂ coagulation [787 mg/l, pH= 12] COD= 50%, TOC= 42%, Color= 62%.; effective removal of chloroorganics after two stages.</td>
<td>186 (1998)</td>
</tr>
<tr>
<td>Coagulation/ O₃</td>
<td>Textile wastewater</td>
<td>Coagulation [Al₂(SO₄)₃, 60 ppm; polyelectrolyte 0.6 ppm] resulted in 65-75% & 20% reduction of COD & absorbance (initial COD=890 mg/l), while subsequent ozonation (3 mg/min, 10-15 min.) gave a further 90% & 20-25% reduction of residual color & COD. Ozonation preceded by coagulation gave worse result.</td>
<td>209 (1994)</td>
</tr>
<tr>
<td>Multistage (Coagulation/ O₃)</td>
<td>Dye manufacturing wastewater</td>
<td>Single stage coagulation (2.5%, v/v, FeCl₃; 35 mg/l polymer, pH=8.5) followed by ozonation (pH=11; 90 min.) achieved [19% COD, 88% color] and [67% COD, 99.3% color] removal, respectively (initial COD=7700mg/l; Color=67000 ADLM). Three times repetition of the sequence while keeping total ozonation time same (3g@30 min.) achieved >90% COD & 99.9% color removal, the superiority of multistage treatment being less convincing for wastewater with simpler composition.</td>
<td>86 (1998)</td>
</tr>
<tr>
<td>Coagulation/ UV-Fenton</td>
<td>Integrated plant containing variety of processes ranging from desizing to dyeing and ultimate finishing</td>
<td>UV (20W)/H₂O₂ (1 g/l)/ H₂O₂(10mM)Fe²⁺ (1mM) treatment (pH=4) following coagulation treatment achieved complete decoloration (30 min.) & a maximal 48% (over that achieved by coagulation) COD removal (1 hr.), the COD of raw, coagulated and oxidized sample being 1063, 536 & 269 mg/L, respectively.</td>
<td>18 (2003)</td>
</tr>
<tr>
<td>Coagulation / Carbon adsorption</td>
<td>C.I reactive N=N red 45, C.I reactive N=N green 8</td>
<td>Removal (Dye= 1g/l); After AlCl₃,H₂O-O coagulation [0.8 g/l; pH = 3.5]: RR 45 [Color 98.8%, TOC 98.1%, COD 93.4%]; RG 8 [Color 99%, TOC 96.9%, COD 83.8%]. After carbon adsorption [0.24 & 0.84 g/l; 2 hr]: RR 45 [Color 99.9%, TOC 99.7%, COD 95.7%]; RG 8[Color 99.9%, TOC 99.2%, COD 91.3%]. Half the coagulant consumption and lower volume of sludge formation in comparison to dye removal by coagulation only.</td>
<td>163 (2004)</td>
</tr>
<tr>
<td>Photocatalysis/Adsorption (Powdered activated carbon, PAC)</td>
<td>Humic acid (Natural coloring matter)</td>
<td>3-4 hrs irradiation induced decrease in UV280, UV254, TOC and COD and simultaneous improvement of biodegradability with no significant decrease in adsorptivity of subsequent PAC.</td>
<td>22 (1996)</td>
</tr>
<tr>
<td>Solvent extraction (& dye recovery) / Fenton’s reagent</td>
<td>1-diazoo-2-naphthol-4-sulfonic acid (acid dye intermediate)</td>
<td>82% extraction using solvent (trialkylamine N₂₃₅) and subsequent dye recovery by stripping led to 95% decoloration of the original effluent. Subsequent raffinate treatment (after lime neutralization) by Fenton’s reagent achieved achromatic effluent with COD=100 mg/L.</td>
<td>87 (2004)</td>
</tr>
<tr>
<td>O₃/Ion exchange</td>
<td>Cu-complex Direct N=N Blue 80</td>
<td>Concurrent decoloration & metal release by 0.2 mg O₃/mg dye and subsequent metal removal by strong acid cation-exchange resin at pH=2 achieved Cu-concentration below detectable limits in the effluent.</td>
<td>97 (1996)</td>
</tr>
<tr>
<td>Adsorption (Fluidized GAC) +O₃</td>
<td>Acid blue 9, Mordant N=N black 11, Reactive N=N orange 16</td>
<td>Influcent: pH=5.1-9.2, COD=250-1800 mg/l, SS=45-320 mg/l, turbidity (NTU) 50–210. Combined ozonation and GAC adsorption (4l O₃/min per 100 gm GAC) offers mutual enhancement namely regeneration of GAC & catalysis of O₃.</td>
<td>132 (2000)</td>
</tr>
<tr>
<td>Adsorption (GAC) +UV/H₂O₂</td>
<td>Reactive Everzol Black-GSP</td>
<td>Simultaneous adsorption (8g/L) & UV- H₂O₂-oxidation (0.009 M) achieved synergistic decoloration & TOC removal (complete & 50%, 30min.) for the originally poorly absorbable dye (36 ppm) concurrent with cost saving due to reuse of adsorbent.</td>
<td>91 (2002)</td>
</tr>
<tr>
<td>Adsorption (β-FeOOH)/ oxidative</td>
<td>C.I Reactive N=N Red 198</td>
<td>Adsorption onto granulated β-FeOOH (170mg/g) and its repeated reuse (6 cycles) following regeneration by catalytic</td>
<td>107 (2002)</td>
</tr>
</tbody>
</table>

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)

http://www.uow.edu.au/~faisal/
(H2O2) regeneration oxidation using H2O2 (7mg dye/mg; 6hr@24.5 ml/min). Anion exchange bound 383mg/g of Orange II & 272 mg/g of reactive dye while subsequent KBH4/NaHSO3 (2mM/10mM) reduction of dye (1mM solution) followed by salt or base extraction resulted in almost complete regeneration of the costly ion-exchanger, establishing a feasible process coupling two technologies with limited potential alone.

Ion-exchanger (Quaternized ammonium cellulose) / Chemical reduction (Bisulfite-mediated borohydride) Orange II (Acid Brilliant Blue R (Reactive N-N) Orange 7), Reactive 6-75 red 180 Efficient treatment of lower concentrations of unhydrolized reactive dyes by first adsorbing on PAC, and subsequent, regenerating (>98% after consecutive 4 cycles with only 8% total weight loss) spent PAC by WAO (150-250°C, O2 partial pressure 0.69-1.38 Mpa), and recycling the regenerated carbon.

Adsorption (PAC)/ Wet air oxidation (WAO) Chemistic Orange II (Acid Red G (Reactive Cyclic)) Effcient treatment of lower concentrations of unhydrolized reactive dyes by first adsorbing on PAC, and subsequent, regenerating (>98% after consecutive 4 cycles with only 8% total weight loss) spent PAC by WAO (150-250°C, O2 partial pressure 0.69-1.38 Mpa), and recycling the regenerated carbon.

Adsorption (CuFe2O4)/ Catalytic combustion Acid Reactive Red B Dye, pre-concentrated on adsorbent/catalyst CuFe2O4 (>95% removal from 100mg/l; pH<5.5, dose= 0.1g/50ml), after magnetic solid/liquid separation, was subject to complete combustion at relatively low temp (300°C) without evolution of harmful products; and in the process, CuFe2O4 was regenerated allowing efficient reuse over extended cycles.

Adsorption (ferrous modified GAC)+ Microwave (MW) induced Oxidation Argazol Blue BF-BR 150% (Bi-functional Reactive dye) 98.3% decoloration and 96.8% COD removal was achieved when dye solution (50ml, 300mg/L) containing ferrous modified GAC (2 g) was subject to MW irradiation (5 min., 500W, 2450 MHz), the removal mechanism involving GAC adsorption & subsequent combustion (induced by MW) on its surface. Negligible stripping of Fe2+ from GAC surface under reuse for many times.

Adsorption (GAC)/ Microwave (MW) regeneration C.I. Acid Orange 7 Dye (300 mg/L)- exhausted GAC could be successfully regenerated by microwave irradiation (2450 MHz, 850 W, 5 min.) for repeated cycles involving low GAC loss (6.5%, 4 cycles) and adsorption rate even higher than that of virgin GAC due to pore-size distribution & surface chemistry modification.

Sonication/ Fe2+ reduction C.I. Acid Orange 7 Pulsed sonication (20 kHz, 250W), by improving mass transfer & also increasing active sites on Fe-surface, dramatically enhanced dye (50 mg/L) decolorization efficiency of mild reducing agent Fe2+ (1 g/L, pH=3), the combined process achieving 91% dye removal in 30 min. following 1st order kinetics.

Membrane-based ozonator Blue 19 reactive dye; Untreated exhausted dye-bath Thin coating of TiO2 & γ-Al2O3 on ceramic membrane (ZrO2, α-Al2O3) eliminated defects & hence allowed operation at high gas pressure with substantial ozone transfer improvement, eventually yielding 100% & 62% decoloration of pure dye (0.072 mmol/L) & untreated dye bath, respectively, in 2 hrs.

Photocatalytic membrane reactor Congo red, Patent blue Reactive dye The continuous photocatalytic membrane (NF; 30-70 L/m²h) reactor with suspended TiO2 (1g/l) & immersed UV lamp (125W) outperformed its counterpart with TiO2 entrapped on membrane and irradiated with external lamp (500W), achieving almost complete photodegradation of dyes (500 mg/L) with higher rate.

Membrane/ Wet air oxidation, WAO Disperse blue CI 79 NF membrane achieved >99% color and 97% COD rejection of dye compound while the homogeneous copper sulfate catalyzed WAO (160-225°C, O2 partial pressure 0.69-1.38 Mpa) reduced 90% COD from concentrate (120 min.).

Membrane/ Wet air oxidation, WAO Dyeing wastewater containing Reactive blue, Indigo, Sulphur black & other process chemicals Replacing WO with stronger oxidant H2O2 (50% of stoichiometric amount) & adding Cu-AC catalyst (2g/l), 80% TOC & 90% color was removed from membrane-concentrate by WO under mild condition (110°C, Total P= 50 kPa) in 30 min.

Membrane/ Sonication/ WAO Reactive Turquoise blue CI25 NF membrane (1.5 Mpa; flux=0.084m/h) removed 90.3% COD & 98.7% color from pure dye solution (COD=1500 mg/L), while WO (190°C, O2 pressure=0.69 Mpa; pH=7) reduced 90% COD from diluted (COD=500-700 mg/L) concentrate (120 min.). Sonication (150/350 W, avg/peak; 40 kHz; 30 min) was essential to make membrane-retentate from actual wastewater to be amenable to subsequent WO.

Membrane/ O3 Reactive (Remazol blue BB, Intracorn golden yellow VS-GA, Remazol red B) & salt NF membrane (9.41L/min.; Re=838) generated reusable permeate (85% of original volume) with >99% of color & Cu, and only 15% of salt removal while subsequent ozonation (7.73 mg/L/min, pH=11) removed color from the concentrate following 1st order kinetics, the rate decreasing with increasing initial dye color.

UV-Fenton/ Coagulation/Membrane Reactive 97 (Procion Red HE7B) Complete color removal (Dye= 50 mg/L) and 79% TOC removal within 20 min. by photo-fenton (PH=3; [H2O2]/[Fe++] = 20:1; 4@ 15W UV lamp). However 9 times increase in dissolved solids warrants subsequent coagulation/membrane system for reuse in dye/rinse process.

Physico-chemical / Membrane (UF/ NF) Synthetic textile manufacturing wastewater Raw water: Conductivity (mS/cm) 2.06; S.S. (mg/L) 82.6; COD (mg/L) 1640; Turbidity (NTU) 15.65; In order to reuse the water in rinse processes, it is necessary a negligible COD and a conductivity lower than 1 mS/cm. Physico-
Chemical (pH = 8.5, C_{DE-FER20} = 200 mg/L, C_{alk/floculant} = 1 mg/L): 50% COD removal; **NF membrane** (flow rate = 400 L/h, TMP=1 MPa): 100% COD removal, 85% conductivity retention. [Reusable]

<table>
<thead>
<tr>
<th>Process Type</th>
<th>Wastewater</th>
<th>Description</th>
<th>COD Removal</th>
<th>Conductivity Retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physico-chemical / Membrane (NF)</td>
<td>Textile wastewater</td>
<td>Raw water: Conductivity (mS/cm) 4.53; COD (mg/L) 1630. Physico-chemical (pH = 12, Fe^{2+} = 700 mg/L): 72.5% COD removal; NF membrane (flow rate =200 L/h, TMP=20 bar, flux= 8-10 L/m²/h): COD<100mg/l; Conductivity <1 mS/cm</td>
<td>72.5%</td>
<td><1 mS/cm</td>
</tr>
<tr>
<td>Clariflocculation/Ozonation / Membrane (UF)</td>
<td>Wastewater from carbonizing process, from dyeing and fulling</td>
<td>49% turbidity & 71% color removal by clariflocculation & ozonation, respectively, and high turbidity (27%) & TSS (30%) removal by the subsequent UF membrane contributed to achievement of final 66% COD and 93% color removal, making reuse, after 50% dilution with well water, possible.</td>
<td>66%</td>
<td>93%</td>
</tr>
<tr>
<td>Activated C/Membrane (NF/ RO)</td>
<td>Reactive dye for cotton</td>
<td>Hot water reuse in rinsing after reclamation by membrane (degradation of filtration remanence in anaerobic digesters); and reuse of dye bath water and salts after adsorption of dyestuff and COD on activated carbon.</td>
<td>66%</td>
<td>93%</td>
</tr>
<tr>
<td>Membrane (UF)/ Adsorption (Activated Carbon cloth, ACC)</td>
<td>Acid Orange II, Acid Brilliant Yellow (color) & Bentonite (turbidity)</td>
<td>Both process are complementary in that compounds too large to be adsorbed onto ACC are successfully retained by the membrane (>98% turbidity & 15-40% dye removal), while low molecular weight organics are well adsorbed by the ACC (38-180mg/g, dye-specific). Replacing UF with NF, or UF membrane wrapped up in a pleated ACC recommended to avoid early breakthrough of ACC.</td>
<td>98%</td>
<td>>98%</td>
</tr>
</tbody>
</table>

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)

http://www.uow.edu.au/~faisal/
Table 4. List of typical examples of combinations between biological treatment and other technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Dye / Wastewater</th>
<th>Details</th>
<th>Ref. (Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical (NaOCl)/ Bio (Anaerobic)</td>
<td>Kraft E1 effluent (containing lignin and other colored compounds like quinones, chalcones, stilbenes)</td>
<td>NaOCl (0.1 kg Cl/kg color; pH=10) achieved 90% color removal with 50% increase in low molecular mass AOX which was amenable to subsequent anaerobic treatment, although a simultaneous small amount of color reversion occurred during anaerobic stage. A short term solution for combined decoloration & dechlorination.</td>
<td>47 (1994)</td>
</tr>
<tr>
<td>Polyurethane immobilized fluidized biofilm/ coagulation (Alum)</td>
<td>Dyeing wastewater from polyester deweighted process</td>
<td>92% CODMn (initially 824 mg/l) removal by biological (0.16-0.32 kgCODMn/kgVSS.day) followed by coagulation (600 mg/l alum, pH=6) process. Coagulation (1000 mg/l alum, pH=6) followed by biological (0.09-0.19 kgCODMn/kgVSS.day) process achieved similar removal, but with 20% more excess sludge due to more dissolved (in addition to suspended) substance removal during coagulation.</td>
<td>229 (1996)</td>
</tr>
<tr>
<td>Coagulation (Na-bentonite)/ Activated sludge</td>
<td>Wastewater from plants dying & finishing natural/synthetic fibers</td>
<td>Chemical pretreatment (2g/L) prior to biological process reduced 40% of initial biodegradable as well as inert soluble COD, thereby reduced potential of ‘residual inert COD (products from biodegradable COD)’, while chemical post treatment following biological, achieved, despite better decoloration, only 20% residual soluble COD removal.</td>
<td>57 (2002)</td>
</tr>
<tr>
<td>Fluidized biofilm/ coagulation/ electrochemical oxidation</td>
<td>Synthetic textile dyeing wastewater</td>
<td>Biofilm of specially isolated microbes on support media achieved 68.8% CODcr (initial= 800-1000 mg/l) and 54.5% color removal while those achieved by overall combined system (FeCl 3.6H2O dose of 3.25x10^{-3} mol/l; Electrooxidation: 2.1 mA/cm² of current density and 0.7 l/ min flow rate) were 95.4% and 98.5%, respectively.</td>
<td>100 (2001)</td>
</tr>
<tr>
<td>Fenton or Powdered activated C (PAC)/Fixed bed biofilm/ Fenton</td>
<td>Disperse dyestuff wastewater</td>
<td>Enhanced removal by previously acclimatized biomass on fixed bed due to increased biodegradability (HOD2,COD from 0.06 to 0.432) by fenton (H2O2: FeSO4·7H2O = 700:3500, mg/l) or PAC pretreatment. COD removal (initially 17200 mg/l) separately: at pretreatment, biological & post treatment were 50%, 85% & 85%, respectively.</td>
<td>3 (1999)</td>
</tr>
<tr>
<td>Coagulation/ Electrochemical oxidation/ Activated sludge</td>
<td>15 dyes used in a plant making primarily cotton and polyester fibers and small quantity of wool</td>
<td>Influent: COD=800-1600 mg/l, Transparency <4cm, Conductivity= 2000 µmho/cm, pH= 6-9. COD concentration (100 mg/l) and transparency (30 φm) axlebrates the government safe discharge standard by employing Poly aluminium chloride (40 mg/l, with polymer concentration 0.5mg/l), electrochemical oxidation (pH=7, current density= 53.4 mA/cm², 1 l/ min flow rate) and the subsequent activated sludge process.</td>
<td>129 (1996)</td>
</tr>
<tr>
<td>Bio/ Electroflocculation/ Flotation/ Filtration</td>
<td>Wastewater from plants dying & finishing natural/synthetic fibers</td>
<td>Although electroflocculation is effective without biological pretreatment, the same enhanced its performance, while subsequent flotation and bentonite filtration completed sludge removal & lowered Fe concentration, the combined system achieving complete color, 69% COD & appreciable salt removal. Al electrode should be preferred to Fe-electrode to avoid residual Fe interfering reuse of wastewater for dying light colors.</td>
<td>43 (2001)</td>
</tr>
<tr>
<td>O3/ Coagulation/ Activated sludge</td>
<td>Textile wastewater</td>
<td>Complete decolorization of the textile effluent (COD=1800 mg/l, JTU transparency=2 cm) accomplished with 10 min. ozonation (rate 13.25 g/h). Without/With coagulation (3 ml PAC) only 5% and up to 70% COD reduction, respectively.</td>
<td>127 (1993)</td>
</tr>
<tr>
<td>Coagulation/ Activated sludge/ Overland flow</td>
<td>Cotton textile wastewater</td>
<td>Input COD, TDS and Turbidity (2009 mg/l, 2987 mg/l, 102 NTU) reduced as follows: After Physicochemical [Alum416 mg/l , lime213 mg/l, polyelectrolyte 11 mg/l]: (1054 mg/l, 1540 mg/l, 52 NTU); After Activated sludge [HRT=20 hr, COD loading=0.9 kg COD/m³, MLSS-3073 mg/L, sludge recycle=20%]: (488 mg/l, 772 mg/l, 49 NTU); After land treatment: (89 mg/l, 239 mg/l, 20 NTU).</td>
<td>185 (1996)</td>
</tr>
<tr>
<td>Bio/ Electrochemical/H2O2/ Coagulation/ Ion exchange</td>
<td>Dyeing & finishing wastewater</td>
<td>Electrochemical (DC 2.5A; 200 mg/lH2O2; pH=3; 10 min) & coagulation (100 mg/l PAC, 1mg/l polymer) on biologically pretreated wastewater (COD= 111mg/l, Conductivity=4850 µmho/cm) achieved 72.8% COD & 97.3% color removal, while subsequent ion exchange (cational=40, anionic=20g/l) reduced conductivity & COD to 10 µmho/cm & 10mg/l. [Reusable]</td>
<td>130 (1996)</td>
</tr>
</tbody>
</table>

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)

http://www.uow.edu.au/~faisal/
<table>
<thead>
<tr>
<th>Treatment Type</th>
<th>Wastewater Type</th>
<th>Description</th>
<th>Treatment Details</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio (Phanerochaete chrysosporium fungi) / O₃</td>
<td>Textile wastewater</td>
<td>Decrease in high molecular mass fraction of textile effluent in the biological process (pH=4.5) & low molecular mass fraction during subsequent O₃ treatment (pH=11, 15 l/h, 80 min.) accompanied by 40% decoloration in each step, the final effluent showing no toxicity.</td>
<td>DYE: Depending on dye (200 mg/l), 85-98% decoloration within 10-30 min. by chemical reduction. Actual wastewater (COD= 770 mg/l): [COD & color removal]: i) Na₂S₂O₅ (200-250 mg/l)- catalyzed NaBH₄ (50-60 mg/l) reduction = [73-86%, 8-12%]; ii) Subsequent biological oxidation=[74-87%, 74-76%].</td>
<td>(2001)</td>
</tr>
<tr>
<td>Bisulfite-catalyzed Na-borohydride reduction / Bio</td>
<td>Direct N=N red 23, Disperse N=N yellow 5, Acid N=N yellow 17, Basic N=N blue 41, Reactive N=N orange 13</td>
<td>[COD removal, yellow/red color removal]: Only biological (pH 3 days, SRT 20 days): [60%, 10-15% not significant]; Only photo reactor (24 hr illumination): [70-75% color removal].</td>
<td></td>
<td>(2003)</td>
</tr>
<tr>
<td>Bio/ Photoreactor</td>
<td>Reactive (Cibacron red F), Dispersal Yellow C-4R, Direct (Solephenyl Orange T4RL)</td>
<td>[COD removal, yellow/red color removal]: Only biological (pH 3 days, SRT 20 days): [60%, 10-15% not significant]; Only photo reactor (24 hr illumination): [70-75% color removal].</td>
<td></td>
<td>(1997)</td>
</tr>
<tr>
<td>Photochemical/ Bio (Fungi)</td>
<td>Kraft E1 effluent (containing lignin and colored compounds like quinones, chalcones, stilbenes)</td>
<td>Only Photocatalysis [50 mg sand-immobilized ZnO (10%, w/w) / 10 ml effluent; Light (254nm) intensity 30W/m², 200hrs]: [>90%, completely decolorized], Bio-photoreactor [50 mg sand-immobilized ZnO (10%, w/w) / 10ml effluent; Light (254nm) intensity 30W/m², 200hrs]: [>90%, completely decolorization]</td>
<td></td>
<td>(1998)</td>
</tr>
<tr>
<td>Thin-film photo-reactor containing photosynthetic bacteria</td>
<td>Acid N=N blue 92</td>
<td>TiO₂-coated reactor irradiated with UV and fluorescent light (3 of each type @ 6W) facilitated decolorization efficiency (80%; 15 mg dye/gMLSS/d) of photosynthetic bacteria (without any inhibition induced by UV- radiation) by avoiding algal growth and its adhesion on reactor.</td>
<td></td>
<td>(2003)</td>
</tr>
<tr>
<td>Fe(III)/ photo (solar) assisted biological system</td>
<td>5-amino-6-methyl-2-benzimidazolone (AMBI); dye intermediate</td>
<td>The 300 min. (shortest possible to yield the best combined result) aerated, Fe (III)/light pretreatment (Fe(III)=1mmol/l; 400W; 80mWcm⁻²) achieved 100% AMBI (1mmol/l) degradation and 40% DOC removal, while subsequent immobilized biological column (6 l/h) completed the mineralization. Pilot scale investigation under solar radiation recommended Fe (III)/H₂O₂/light for 10 times faster reaction.</td>
<td></td>
<td>(2003)</td>
</tr>
<tr>
<td>Electron-beam treatment/Bio</td>
<td>Mixed raw wastewater predomantly from dying process & 8% from polyester fiber production</td>
<td>Pilot plant investigation (flowrate=1000 m³/d) involving low dose (1 Kgy) E-beam pretreatment revealed enhanced bio-treatment performance requiring reduced (half) residence time (HRT) for same degree of removal. With the wastewater being originally biodegradable, the role of E-beam was, in contrast to usual anticipation of conversion of non-biodegradable portion, to convert the biodegradable portion to further easier forms.</td>
<td></td>
<td>(2004)</td>
</tr>
<tr>
<td>AOP (Peroxon, O₃+H₂O₂; Photo-fenton with Ozone, O₃+H₂O₂+UV+Fe²⁺) / Bio</td>
<td>4,4’-dinitrostilbene-2,2’-disulphonic acid (DNS)⁻²⁻; fluorescent whitening agent precursor</td>
<td>[Initial: COD= 2840 mg/l; BOD₅/COD=0.04]. Peroxon (Molar ratio, DOC:O₃:H₂O₂=1:1:1/3) or Photo-fenton with Ozone (DOC:O₃:H₂O₂: Fe²⁺=1:0.3:1:1/20; UV 150w) realized similar 60% COD, 50% DOC & 60% AOX removal in the photobacteria of the 5 times diluted pre-oxidized sample achieved overall 80% COD removal.</td>
<td></td>
<td>(2003)</td>
</tr>
<tr>
<td>Bio/ AOP (Peroxon, O₃+H₂O₂)/ Bio</td>
<td>Stilbene⁻⁻⁻⁻Based whitening agent</td>
<td>Fluorescence (100 mg/l); BOD₅/COD=0.44]. AOP pretreatment prior biological treatment did not have any improvement effect over sole biodegradation; hence a reversed sequence was adopted. Biological pretreatment removed 60% COD & 55% DOC, while the final biodegradation following the intermediate AOP (Molar ratio, DOC:O₃:H₂O₂=1:1:1/3) treatment achieved an overall 84% COD & 71% DOC removal.</td>
<td></td>
<td>(2003)</td>
</tr>
<tr>
<td>Clarification/Bio/AOP (H₂O₂/UV)</td>
<td>Wool scouring effluent</td>
<td>Clarification followed by aerobic biological treatment removed >90% COD & all BOD; however, remaining COD (1000mg/l) & intense color warranted subsequent H₂O₂/UV [Molar ratio, COD: H₂O₂=1:1; 40w] treatment which, despite presence of strong UV absorbing compounds, achieved 100% decoloration (30 min), 75% COD & 85% TOC removal (60 min.) irrespective of pH.</td>
<td></td>
<td>(2004)</td>
</tr>
<tr>
<td>Bio/ Flocculation/ O₃+ H₂O₂</td>
<td>Textile wastewater</td>
<td>Activated sludge treatment followed by flocculation realized 85%, 99.5% & 85% DOC, BOD & CODcr removal (Initial values, mg/l; 277, 280), while subsequent O₃+ H₂O₂ treatment (60 min.; [H₂O₂]:[DOC]=1:1) achieved complete removal of BOD & over 50% removal of residual DOC, CODcr. Conversely, single ozonation resulted in lower COD removal and increased BOD (biodegradability).</td>
<td></td>
<td>(2004)</td>
</tr>
<tr>
<td>[O₃]/Bio/ [O₃]</td>
<td>Wastewater from plants dyeing & finishing natural/ synthetic fibers</td>
<td>Pre-ozonation, due to selective preference of O₃ for simpler organic compound, significantly decreased readily biodegradable COD without appreciably affecting soluble inert COD. Post-ozonation achieved higher color and inert COD removal involving 50% less ozone dose compared to pre-ozonation at same contact time & ozone flux rate.</td>
<td></td>
<td>(2002)</td>
</tr>
<tr>
<td>Bio/ Sand filter (SF)/ O₃</td>
<td>Wastewater from plants dyeing & finishing natural/ synthetic fibers</td>
<td>Removal of suspended solid (d & hence COD) by biological & SF pretreatment enhanced subsequent two sequences</td>
<td></td>
<td>(2002)</td>
</tr>
</tbody>
</table>

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/
of ozonation (30 min., 40 g/m²), achieving, in contrast to 60% COD removal by ozonation alone (without pre-treatment), a combined 65% & 78% COD removal after 1st & 2nd ozonation cycle, respectively. Complete decoloration allowed wastewater reuse in dyeing even light colors.

Bio (Anaerobic/Aerobic)/O₃/ Bio (Aerobic) Segregated concentrated dyebath containing C. I reactive Black 5 & high salt concentrations. Although biological pretreatment achieved >70% decoloration, and ozonation increased biodegradability in following aerobic reactor, high ozone dose of 6gO₃/gDOC was required to achieve combined >95% decoloration & 80% DOC removal while not more than 30% DOC was removed by biological reactor; internal recycle between ozonation & aerobic stage recommended for reducing ozone dose.

Bio (anaerobic-aerobic)/ O₃ Colored wastewater containing melanoids. Ozonation (1.6 g/h- 11.5 g/h) of biologically (anaerobic-aerobic) pretreated wastewater (COD= 4580, TOC= 1000, mg/l) achieved 71-93% decoloration & 15-25% COD removal in 30 min.

Bio (Anoxic/ aerobic)/ O₃ Reactive "N" black 5 (vinyl sulfoinic acid), Reactive "N=N" red 198 (vinyl sulfoinic acid & triazine), Remazol Dunkelblau HR (Metalized azo) "N=N, Remazol Goldgelb RNL "N=N, Reactive "N=N" yellow 25 (Dichlorouquinoxaline), Reactive "N=N"Red159 (Dichlorofuro-pyrimidine) Sequencing anoxic/aerobic process along with partial oxidation by ozonation (concurrent with aerobic phase) in a recirculated system yielded complete decoloration and showed synergistic enhanced biological DOC removal (90%) as well as lower consumption of O₃ (5 mg/ mg DOC).

Biological+physico-chemical/ O₃ Jeans finishing plant wastewater mixed with domestic WW (<30%) Pretreatment involving GAC (200g/8L) & polyelectrolyte addition in anaerobic reactor restored nitrification activity & improved sludge settleability of the subsequent aerobic reactor with a cumulative 96% COD & 88% color removal, while following ozonation achieved 70% reusable water.

Bio /O₃ Naphthalene-1,5-Disulphonic Acid (NADSA), a dye precursor Combined fixed-bed bioreactor (equipped with a 1.5μm membrane for solid/liquid separation) and ozonation treatment in semi-continuous fashion achieved ca. 80% DOC removal (Initial=170-340 mg/l) with >50% reduction in ozone consumption (0.8 mol O₃/mol DOC) as compared to single use of ozonation only.

Bio/O₃/Granular activated C(GAC) Domestic + Textile industry (50-70%) wastewater Feed water [on GAC]: COD= 128-135 mg/l, TOC=16-18 mg/l; C-adsorption is less effective after the ozonation, residual COD (> 70) & color (over optical detection) unsuitable for reuse; “Bio+Flocculation+O₃+GAC” proposed. Biodegradable DOC increased by pre-ozonation was subsequently biodegraded rather than being simply adsorbed on BAC and, thereby, increased BAC service time.

Coagulation or Catalytic H₂O₂/ Bio Basic dye Chemical precipitation (FeCl₃= 400 mg/l; pH=9.5), despite resulting in 41% COD removal from raw wastewater, could not improve biodegradability. After partial oxidation (H₂O₂/COD=1; Fe⁺³= 500 mg/l; pH= 3.5; 1day) 63% COD removal & wastewater-biodegradability was achieved.

Biological fixed GAC bed Acid⁴-⁷ (Tectilon Red 2B, Tectilon orange 3G) Biodegradation induced by high DO level maintained by high pressure (0.4 Mpa), achieved high turbidity, color, COD, & NH₃-N removal with concurrent prolonged carbon-bed life, the performance essentially being better than normal BAC or pure GAC process.

Biological fluidized GAC bed Bleached kraft mill secondary effluent containing refractory organics like lignin, which may be considered to be representative of dye structure. Mixed textile dyeing-printing (Reactive blue dye) and alkali peeling wastewater The initial contact bio-film system improved biodegradability while subsequent BAC system, due to enhanced biodegradation induced by high DO level maintained by high pressure (0.4 Mpa), achieved high turbidity, color, COD, & NH₃-N removal with concurrent prolonged carbon-bed life, the performance essentially being better than normal BAC or pure GAC process.

Bio (Anoxic/ aerobic) /Oxygen enriched BAC Mixed textile dyeing-printing (Reactive blue dye) and alkali peeling wastewater The initial contact bio-film system improved biodegradability while subsequent BAC system, due to enhanced biodegradation induced by high DO level maintained by high pressure (0.4 Mpa), achieved high turbidity, color, COD, & NH₃-N removal with concurrent prolonged carbon-bed life, the performance essentially being better than normal BAC or pure GAC process.

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)

http://www.uow.edu.au/~faisal/

<table>
<thead>
<tr>
<th>Material/Process</th>
<th>Application</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powdered activated carbon or organic flocculant addition in biological system</td>
<td>Cotton textile wastewater</td>
<td>Only Bio (SRT= 30 days, HRT=16 days): 94% COD removal, 36% decoloration. Combined (PAC=200 mg/l or Organic flocculant= 120 mg/l): Decoloration improved up to 78%, the organic flocculant producing less excess sludge than PAC. (2002)</td>
</tr>
<tr>
<td>Powdered activated carbon addition in biological system (PACT)</td>
<td>Acid (\text{Acid } \text{red } \text{C2G}, \text{Cibacorn red CR, Cibacorn Red FB, Cibacorn blue FB, Levafix yellow KR, Levafix red KGR, Remazol red, Remazol black})/salts/auxiliary chem.</td>
<td>The behavior of COD removal was the same but the dye removal was better in the PACT than in the conventional activated sludge process. (1997)</td>
</tr>
<tr>
<td>Powdered activated carbon addition in biological system</td>
<td>Acid (\text{Acid } \text{red } \text{C2G}, \text{Cibacorn red CR, Cibacorn Red FB, Cibacorn blue FB, Levafix yellow KR, Levafix red KGR, Remazol red, Remazol black})/salts/auxiliary chem.</td>
<td>Under a higher biomass concentration (> 3g/l), the carbon particles are trapped in the floc matrix and lose their properties of adsorption hindering microbial growth and dye removal. (1997)</td>
</tr>
<tr>
<td>Powdered activated carbon addition in biological system</td>
<td>Dispersed, direct, acid & basic dyes; anionic/nonionic detergents.</td>
<td>Removal efficiency rises from 55.8 to 75.6% (COD) and from 78 to 98.5% (TOC). The nitrification-denitrification capacity of the system also increases, probably due to high concentration of nitrifying-denitrifying bacteria on the PAC surface. (1984)</td>
</tr>
<tr>
<td>Fluidized bed reactor containing complex pellets of white rot fungus & activated carbon</td>
<td>Acid (\text{Acid } \text{red } \text{C2G}, \text{Cibacorn red CR, Cibacorn Red FB, Cibacorn blue FB, Levafix yellow KR, Levafix red KGR, Remazol red, Remazol black})/salts/auxiliary chem.</td>
<td>Complex mycelium pellets with a black core of activated carbon (preparation: 5ml inoculum+ 0.6 g AC+200ml medium), by retaining necessary fungal metabolites, outperformed standalone application of fungi or activated C, or even simple addition of activated C in fungi reactor; the decoloration (95%) being better in repeated batch reactor (50 g wet complex pellet/L; 20 hr retention; 500 mg/L dye) than in continuous reactor. (2000)</td>
</tr>
<tr>
<td>Activated Carbon (AC)- amended anaerobic bioreactor</td>
<td>Hydrolyzed reactive (\text{Acid } \text{red } \text{C2G}, \text{Cibacorn red CR, Cibacorn Red FB, Cibacorn blue FB, Levafix yellow KR, Levafix red KGR, Remazol red, Remazol black})/salts/auxiliary chem.</td>
<td>AC, in addition to its adsorption capacity, as a biologically regenerable redox mediator due to quinone surface group on it, enhanced azo dye reduction, achieving 97-90% decoloration for 130 days [42 mg/L dye; 35g/L VSS; HRT=5.5 hr; 10 g/L AC]. (2003)</td>
</tr>
<tr>
<td>Bio/ NF</td>
<td>Diluted wool dyeing bath containing metal complex & acid dye (original dye concentration 8g/L)</td>
<td>Diluted dye bath (COD=2 g/L) after activated sludge treatment (COD= 200 mg/L) was subjected to nanofiltration that resulted in reuse standard permeate (further 99% color & 88% COD removal) with less fouling as compared to that for direct nanofiltration of dye baths. Ozonation of membrane-retentate before recycling to activated sludge process was recommended. (1999)</td>
</tr>
<tr>
<td>Bio/Membrane(+Aluminum polychloride)</td>
<td>Domestic + Textile industry (80% by organic load) wastewater</td>
<td>Microfiltration (300,000 D, crossflow) followed by nanofiltration (150D, 10 bar, spiral wound) along with Aluminium polychloride (70 mg/l) produced recyclable water (COD<10 mg/l, conductivity < 40us/cm, negligible residual color) from the secondary effluent; alternately "Clarifloculation (Dose: 4ppm, vol.) + Multimedia filtration + Low Pressure RO (58 D,4 bar, 10L/m² h, spiral wound)" seemed preferable in techno-economical analysis. (1999)</td>
</tr>
<tr>
<td>‘Bio+ Powdered activated C, (BPAC)/ Microfiltration</td>
<td>Secondary sewage effluent containing refractory organics like lignin which may be considered to be representative of dye structure.</td>
<td>PAC dose of 0.5g/l. 52% TOC removed in BPAC contactor (higher than PAC only), additional 16.8% was rejected by membrane. (1997)</td>
</tr>
<tr>
<td>Bio/ NF or (\text{O}_3)</td>
<td>Wastewater from printing, dyeing & finishing textile plant</td>
<td>Biologically treated: Conductivity (mScm) 2.8-3.33; COD (mg/L) 200-400. Following biological treatment (\text{i) Nanofiltration}) (flow rate =200-400 L/h; TMP=20 bar): COD<50 mg/l; Conductivity =0.39-0.51 mScm. (\text{ii) O}_3): COD=286 (30 min.), 70 (210 min.) (\text{iii) O}_3+\text{UV}): COD <50 (30 min.), <50 (210 min.). Ozonated (with/without UV) wastewater can’t be reused for rinsing due to negligible conductivity removal although the process is free from reject stream generation. (2003)</td>
</tr>
<tr>
<td>Bio/ NF/ (\text{O}_3)</td>
<td>Textile wastewater mixed with domestic (20%) wastewater</td>
<td>Ozonation (12 ppm, 2hrs.) of membrane-concentrates (COD= 595, TOC=190, Conductivity=5ms/cm, BOD5=6, EC34=34%, pH=7.9) resulting from nanofiltration (10 bar, 300 l/h) of biologically treated secondary textile effluent achieved 30%, 50% and 90% reduction in TOC, COD, and toxicity, respectively, making the effluent recyclable to biological treatment. (1999)</td>
</tr>
<tr>
<td>Bio/ NF/ Photocatalytic membrane reactor</td>
<td>Textile wastewater</td>
<td>Visible Light mediated Fenton (Nafton-Fe” membrane, 1.78%; (\text{H}_2\text{O}_2); 10mM) treatment (3 hrs.) of membrane-concentrates (COD= 496, TOC=110, pH= 8) resulting from nanofiltration of biologically treated secondary textile (1999)</td>
</tr>
</tbody>
</table>

http://www.uow.edu.au/~faisal/
Bio/Clarification/GAC or Bio/Membrane (MF→NF)/O₃	Textile wastewater mixed with domestic (25-30%) wastewater	Due to cost of membrane and, COD & salinity increase in biological plant by membrane retentate, technoeconomical analysis favored post treatment of biologically treated effluent by ‘clarification followed by GAC adsorption’ over ‘membrane filtration (MF followed by NF) followed by ozonation’, although the latter produced better & constant quality (softened, colorless) recyclable effluent.	182 (1999)
Bio/ Sand filtration (SF); Membrane (MF followed by NF)	Dyeing wastewater	100% SS, 78% turbidity & 30% COD removal by SF (2 bar) & MF (3.5 bar; 400 l/h); 13% color removal by MF, and remaining COD & color removal by NF (6.5-7 bar) contributed to overall 94% color & 82% COD removal along with conductivity removal making the treated water reusable for dyeing.	139 (2002)
Membrane filtration (NF)/ UV-H₂O₂/Wet Air Oxidation (WAO)/ Bio (Immmobilized)	Textile wastewater	Reuse of wastewater after membrane filtration and advanced oxidation process, concurrent with reuse after membrane concentrate treatment by WAO and Biological treatment, thereby enabling an affordable zero-discharge system.	120 (2001)
PAC+MBR (Rotating UF Membrane)	Wastewater in a sewage treatment plant with humic substances as major component of color.	PAC (50 mg/l, retention time of 4.5 hrs.) addition in anaerobic reactor followed by an aerobic reactor coupled with a rotating type UF membrane resulted in a color of less than 5 deg., BOD=0, TOC ≤10 with simultaneous improvement in activated sludge dewaterability and reduction of filtration resistivity.	157 (1998)
Anaerobic/ Aerobic 1/ Aerobic 2 (MBR) / Ozonation	Reactive azo dye containing wastewater [Stream a (40%)- dyeing/ color preparation/ printing; Stream b (60%)- fiber pretreatment, washing]	Stream-a, after anaerobic/aerobic pretreatment, was discharged into municipal wastewater. For Stream-b, the mean combined DOC & color removal after anaerobic, aerobic 1, MBR and ozonation (1g O₃ m⁻³ m⁻¹) were [53%, 65%, 87%, 87%];DOC & [67%,65%,72%,87%]color, respectively and hence could be reused.	112 (2004)
Sidestream UF membrane fungi reactor	Colored wastewater containing melanoids	With a HRT of 2d in a 1-d cycle sequencing batch mode, under a pH of 4.5, temperature of 30°C and otherwise non-sterile condition, about 70% decolorization was achieved using the entire system (fungi+UF) while fungi reactor alone contributed 45%.	62 (2000)
Submersed MF membrane fungi reactor	Synthetic wastewater containing Poly N=N S 119	With a HRT of 15 hrs., under a pH of 4.5, temperature of 28°C and otherwise non-sterile condition, stable 98% decoloration and 97% TOC removal was achieved. Tremendous membrane fouling problem was solved by using innovative fouling amelioration techniques.	78 (2005)
Prefiltration (8000 Da, 1 Mpa) followed by airlift fungal reactor equipped with submerged coarse filter (50μm)	Kraft mill bleaching effluent (acidic, C+D; alkaline, E)	C+D-stage effluent mixed with membrane filtrate of E-stage effluent in 4:1 ratio (Net 13% AOX, 32% COD, 27% TOC, 44% color removal, after mixing) was submitted to subsequent fungi treatment (HRT=22 h; 0.77 kgTSSm⁻³) which achieved a combined 39% AOX, 62% COD, 56% TOC, 56% color removal. Unexpected inferior performance of fungi reactor was ascribed to use of biomass not adapted long enough.	29 (1991)

Current address: School of CME, University of Wollongong, Australia (faisal@uow.edu.au)
http://www.uow.edu.au/~faisal/
<table>
<thead>
<tr>
<th>Purpose & Technology</th>
<th>Cost</th>
<th>Dye / Wastewater</th>
<th>Remarks</th>
<th>Ref. (Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct nanofiltration for reuse</td>
<td>US$ 0.53-1.19 m⁻³</td>
<td>Segregated dyeing and rinsing wastewater</td>
<td>Running cost (15 bar, flow rate= 4.5 m/s, flux= 0.2-1.1 m³/h) only; saving of water supply cost due to recycling not considered.</td>
<td>215 (2001)</td>
</tr>
<tr>
<td>Direct nanofiltration for reuse</td>
<td>US$ 0.81 m⁻³</td>
<td>Wastewater from dye bath containing acid, disperse and metal complex dye</td>
<td>Cost includes both capital & operating cost (Flow rate= 1000 m³/d). Saving of water supply cost (2-3 US$m⁻³) due to recycling not considered.</td>
<td>108 (2001)</td>
</tr>
<tr>
<td>Direct nanofiltration for reuse of water and dye bath salt</td>
<td>US$ 1.36 m⁻³</td>
<td>Reactive dye bath wastewater containing high amount of NaCl</td>
<td>Flowrate = 200 m³/d; quoted cost has been calculated using the operating and investment cost mentioned in the reference (assuming 10 yr investment). A payback of investment cost may be expected in less than 2 yrs with the saving of water supply cost, wastewater disposal cost, NaCl and heat energy.</td>
<td>110 (2004)</td>
</tr>
<tr>
<td>Electrocoagulation as sole treatment</td>
<td>US$ 0.1-0.3 (kg COD removed)⁻¹</td>
<td>Mixture of exhaust dyeing solutions</td>
<td>Operating cost (including energy and material cost) for iron and aluminium electrode, respectively. Labour, maintenance and solid/liquid separation cost not considered. [Wastewater COD= 3422 mg/l; around 70% removal.]</td>
<td>21 (2004)</td>
</tr>
<tr>
<td>Combined treatment with H₂O₂/O₃/UV</td>
<td>US$ 6.54 m⁻³</td>
<td>Wastewater containing disperse dyestuff & pigments</td>
<td>Cost of consumables only. Less yet satisfactory (>90%) COD removal by Fenton’s reagent at a lower (0.23 US$) unit cost.</td>
<td>12 (2004)</td>
</tr>
<tr>
<td>Combined treatment with O₃/ Electron beam to meet discharge standard</td>
<td>US$ 3.17 m⁻³</td>
<td>Molasses processing wastewater (intensely colored and recalcitrant)</td>
<td>Cost includes both capital & operating cost (Flow rate= 50 m³/hr).</td>
<td>69 (1998)</td>
</tr>
<tr>
<td>Combined treatment with multi-stage Coagulation/ O₃</td>
<td>US$ 1.57 US$ ton⁻¹h⁻¹</td>
<td>Dye wastewater manufacturing</td>
<td>Approximate cost considering electricity cost of ozone generation only (chemical cost made small contribution).</td>
<td>86 (1998)</td>
</tr>
<tr>
<td>Combined treatment with adsorption +UV- H₂O₂</td>
<td>US$ 1 m⁻³</td>
<td>Reactive Everzol Black-GSP</td>
<td>Operating cost (consumables and maintenance) for decoloration & 50% TOC removal from 36 ppm dye solution.</td>
<td>91 (2002)</td>
</tr>
<tr>
<td>Combined treatment with Clariflocculation/Ozonation/ Membrane (UF) for reusable water</td>
<td>US$ 0.52 m⁻³</td>
<td>Wastewater from carbonizing, dyeing and fulling process</td>
<td>Flowrate = 1500 m³/d; Cost includes operating and investment cost. A payback of investment cost may be expected in 3 yrs with the saving of water supply cost.</td>
<td>139 (2002)</td>
</tr>
<tr>
<td>Photo (solar)-fenton pretreatment (for subsequent biological treatment)</td>
<td>US$ 22 m⁻³</td>
<td>Dye-intermediate (5-amino-6-methyl-2-benzimidazolone AMBI) containing wastewater; 4 g C/L</td>
<td>Cost (for 1.2 Lh⁻¹m⁻³) includes annualized capital, consumables & maintenance but excludes high land cost (US$ 200-400 m⁻³) in Switzerland. Economical than wet air oxidation or incineration (US$ 200m⁻³). Further cost reduction possible for diluted wastewater at a location providing higher sunny hours.</td>
<td>187 (2003)</td>
</tr>
<tr>
<td>Coupled Photo -fenton and biological treatment</td>
<td>US$ 71 m⁻³</td>
<td>p-nitrotoluene- ortho- sulfonic acid (contained in dye manufacturing wastewater), 1 g/L or 330 mg C/L</td>
<td>Cost of 70 min. (0.68 L/h) photo-fenton pretreatment using 400 W lamp (0.12 US$/ KWH) prior to biological treatment, combined DOC removal being 91%. Commercial lamps, being far more efficient, would incur less cost.</td>
<td>175 (1999)</td>
</tr>
<tr>
<td>Combined treatment with O₃/ Bio (Aerobic, Rotating disc reactor)</td>
<td>US$ 94.7 m⁻³</td>
<td>Segregated concentrated dye bath containing C I reactive Black 5 & high salt concentrations.</td>
<td>Cost includes both capital & operating cost (flow rate=50L/h). Higher value as compared to those from other studies e.g. membrane separation (11.68 US$ m⁻³), precipitation/flocculation followed by activated carbon adsorption (5.19 US$ m⁻³) indicates the ambiguousness arising from straightforward comparison of costs of segregated vs. mixed streams.</td>
<td>124 (2003)</td>
</tr>
<tr>
<td>UV/ H₂O₂ treatment of secondary textile effluent to meet discharge</td>
<td>US$ 0.85 m⁻³</td>
<td>Textile wastewater</td>
<td>Operating cost including lamp replacement, chemical and electrical cost. (Discharge standard: COD<100 mg/l; color<400 ADI unit)</td>
<td>123 (2000)</td>
</tr>
<tr>
<td>Standard</td>
<td>Cost (US$/m^3)</td>
<td>Description</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>---</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Post treatment of secondary textile effluent by (i) Ozonation, (ii) Membrane filtration</td>
<td>US$ 0.19, (i) 0.19, (ii) 0.69</td>
<td>Textile wastewater containing direct and reactive dyes. Flow rate, (a) 2000 m^3/d; (b) 1000 m^3/d.</td>
<td>108 (2001)</td>
<td></td>
</tr>
<tr>
<td>Combined treatment with Coagulation/ Electrochemical oxidation/ Activated sludge</td>
<td>US$ 0.34 ton^-1</td>
<td>Textile wastewater containing 15 dyes used in a plant making primarily cotton and polyester fibers and small quantity of wool. Mainly cost of consumables included. Economical than the conventional treatment process (US$ 0.45 ton^-1) used at that time in Taiwan.</td>
<td>129 (1996)</td>
<td></td>
</tr>
<tr>
<td>Combined treatment with Coagulation/ Fenton’s reagent/ Activated sludge</td>
<td>US$ 0.4 m^-3</td>
<td>Textile wastewater Running cost, excluding that for sludge disposal. Economical than the conventional treatment process used at that time.</td>
<td>128 (1995)</td>
<td></td>
</tr>
<tr>
<td>Combined treatment with Coagulation/ Activated sludge / Filtration/ Disinfection</td>
<td>US$ 0.19- 0.22 m^-3</td>
<td>Textile wastewater Operating cost (consumables and maintenance)</td>
<td>155 (1992)</td>
<td></td>
</tr>
<tr>
<td>Combined treatment with Bio/ Sand filter (SF)/ O_3 for reusable water</td>
<td>US$ 0.13 m^-3</td>
<td>Wastewater from plants dyeing & finishing natural/ synthetic fibers Cost mentioned is for operation & maintenance. Including investment cost, it may amount up to 0.52 US$ m^-3 depending on amount of water treated, although investment may be repaid in a short time due to saving of cost of water supply (0.52-1.3 US$ m^-3).</td>
<td>43 (2001)</td>
<td></td>
</tr>
<tr>
<td>Combined treatment with Bio/Clariflocculation/GAC for reusable water</td>
<td>US$ 0.454 m^-3</td>
<td>Textile wastewater mixed with domestic (25-30%) wastewater Flowrate = 25000 m^3/d. Cost includes both capital & operating cost.</td>
<td>182 (1999)</td>
<td></td>
</tr>
<tr>
<td>Combined treatment with Bio/Membrane (MFNF)/O3 for 50% recycling</td>
<td>US$ 1.69- 1.95 m^-3</td>
<td>Textile wastewater mixed with domestic (25-30%) wastewater Flowrate = 25000 m^3/d. Cost includes both capital & operating cost. The system may potentially become cost-effective with decline in membrane cost, the main cost-contributing factor.</td>
<td>182 (1999)</td>
<td></td>
</tr>
<tr>
<td>Combined treatment with Bio/ Sand filtration (SF)/ Membrane (MF followed by NF) for reusable water</td>
<td>US$ 0.44 m^-3</td>
<td>Dyeing wastewater Flowrate = 15000 m^3/d; Cost includes operating and investment cost. A payback of investment cost may be expected in 3 yrs with the saving of water supply cost.</td>
<td>139 (2002)</td>
<td></td>
</tr>
<tr>
<td>Combined treatment with Bio/ Sand filtration (SF)/ Membrane (UF followed by RO) for reusable water</td>
<td>US$ 1.26 m^-3</td>
<td>Wastewater from plants dyeing & finishing natural/ synthetic fibers Flowrate = 10000 m^3/d; Cost includes both operating and investment costs.</td>
<td>44 (2001)</td>
<td></td>
</tr>
<tr>
<td>Combined treatment with deep aeration activated sludge/ BAC/Membrane (NF) for 50% recycling</td>
<td>US$ 0.294 m^-3</td>
<td>Wastewater from plants dyeing & finishing synthetic fibers Flowrate = 50 m^3/d; Cost mentioned is for operation & maintenance.</td>
<td>234 (2005)</td>
<td></td>
</tr>
<tr>
<td>Combined treatment with Bio/ Sand filtration (SF)/ Ozonation for 50% recycling</td>
<td>US$ 0.57 m^-3</td>
<td>Wastewater from plants fulling & dyeing natural/ synthetic fibers Flowrate = 2000 m^3/d; Operating cost only. Required fresh water supply (50% of total) incurs a further cost of 0.92 US$ m^-3.</td>
<td>42 (2001)</td>
<td></td>
</tr>
<tr>
<td>Reuse after Membrane filtration (i), followed by UV/H_2O_2 (ii), concurrent with reuse after membrane concentrate treatment by Wet air oxidation (iii) and Biological (iv)</td>
<td>US$ 0.53 (i) 0.53, (ii) 2.6, (ii)2.6, (iv)4.4, (iv)0.13</td>
<td>Textile wastewater Flow rate= 400 m^3/d. Indicated costs are operating and maintenance costs for each stage of the integrated system. Annualized total installation cost is US$ 243,000 while saving generated from water reuse is US$ 98,000.</td>
<td>120 (2001)</td>
<td></td>
</tr>
<tr>
<td>Membrane bioreactor</td>
<td>US$ 0.273 m^-3</td>
<td>Municipal wastewater^a Flowrate = 2.4 m^3/h; cost mentioned includes all sorts of capital & operating costs. With expected decline in membrane cost to US$ 50 m^-3 in 2004, the unit cost would reduce to US$ 0.181 m^-3.</td>
<td>228 (2004)</td>
<td></td>
</tr>
</tbody>
</table>

^a,b,c Original reported values in Deutsche Marks, Euro and Taiwanese dollar have been converted to US$ by multiplying with a factor of 0.663348, 1.29730, 0.0322134, respectively. ^d Data given for comparison of MBR technology with others only.
Fig. 2 Different stages of textile wet processing and associated scopes of material recovery

<table>
<thead>
<tr>
<th>Process</th>
<th>Purpose and Chemical additives/drainages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slashing/Sizing</td>
<td>Cotton or synthetic threads are treated with a large amount of reusable thickening agent (Poly Vinyl Alcohol, PVA) to impart tensile strength and smoothness.</td>
</tr>
<tr>
<td>Desizing</td>
<td>To allow further wet processing, PVA is removed with a weak oxidizing agent, boiling water/detergent.</td>
</tr>
<tr>
<td>Scouring</td>
<td>Impurities in natural fibers (grease, wax etc.) or in synthetic fibers (catalysts, low molecular weight compounds etc.) are removed using caustic -soda/ash, detergent etc.</td>
</tr>
<tr>
<td>Bleaching</td>
<td>Naturally occurring pigments are removed using peroxide and caustic.</td>
</tr>
<tr>
<td>Mercerizing</td>
<td>Cotton is treated with concentrated caustic to correct curling of fiber, reducing shrinkage and increasing dye affinity, following removal of the added chemical by warm water/detergent wash.</td>
</tr>
<tr>
<td>Weight reduction</td>
<td>Polyester fiber is treated with caustic, following its removal by hot and cold-water wash, whereupon 10-20% of weight of fiber is expelled as organic acid.</td>
</tr>
<tr>
<td>Dyeing and rinsing</td>
<td>Different types of dyes along with wide range of dyeing-auxiliaries, e.g., electrolyte, dispersing agent, smoothing agent, surfactants etc. are applied. Hot water/detergent rinse is applied to remove unfixed dye and auxiliaries.</td>
</tr>
<tr>
<td>Oiling</td>
<td>To increase the cohesion of the fibers and aid in spinning, olive oil/ mineral oil with non-ionic emulsifier is sprayed on wool, and washed out later on.</td>
</tr>
<tr>
<td>Fulling</td>
<td>Loosely woven wool from the loom is shrunk into a tight, closely woven cloth using detergent, caustic, sequestering agent, which are washed out later on.</td>
</tr>
<tr>
<td>Carbonizing</td>
<td>Using hot concentrated acid the vegetable matter in the wool is converted to loose, charred particles, which are mechanically shaken out; finally carbonized wool is neutralized.</td>
</tr>
<tr>
<td>Printing and rinsing</td>
<td>Cotton and synthetic fiber. Similar to dyeing/ rinsing.</td>
</tr>
<tr>
<td>Finishing</td>
<td>Chemicals are added to render antibacterial deodorants, water resistance, stain proofing, glossiness etc. Involves less water and related drainage.</td>
</tr>
</tbody>
</table>

Fig. 3 Layout of a conceptual on-site textile dye wastewater treatment scheme (Continuation from Fig. 2)

Integrated MBR-AOP-Membrane treatment scheme

* For an integrated textile processing plant the wastewater is composed of the concentrate and discarded streams after possible material recoveries (refer to Fig. 2), and passes through a treatment route of 2-3-7. For a plant only including dyeing and finishing, the mixed effluent without any attempt of recovery will be fed, and at the end salt and water will be recovered through RO filtration, thereby, involving a treatment route of 2-3-4-5.