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VERTICAL AND RADIAL CONSOLIDATION ANALYSIS OF 

MULTI-LAYERED SOIL USING THE SPECTRAL METHOD 

Rohan Walker1, Buddhima Indraratna2 and Nagaratnam Sivakugan3 

 

Abstract 

A new, easy to implement, solution to the consolidation of multi-layered soil based on the 

spectral method is presented.  Combined vertical and radial drainage under instantaneous 

or single ramp loading is considered, ignoring well resistance.  Flow in the vertical 

direction is based on the average hydraulic gradient at a particular depth which allows 

smear effects to be included.  The excess pore water pressure profile across all soil layers 

is described by a single expression calculated with common matrix operations.  Average 

excess pore pressures within or across any number of layers are easily calculated from the 

single expression.  The new model is verified against other solutions from the current 

literature indicating that the more general spectral method model can replace the separate 

solutions developed for specific problems. 
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Introduction 

Existing analytical solutions to multi-layered soil consolidation problems can be difficult 

to implement.  The solutions, usually using the separation of variables technique, are 

quite lengthy involving separate general equations for each soil layer whose unknown 

coefficients are determined from the zeros of a transcendental equation (i.e. eigenvalues) 

and the relationship between boundary, interface and initial conditions.  Schiffman and 

Stein (1970) presented equations for vertical drainage, and Horne (1964) presented 

equations for combined vertical and radial drainage.  More recent work has developed 

newer techniques for modeling stratified soil.  Chen et al. (2005) introduced the 

differential quadrature method to analyze one-dimensional consolidation of multiple soil 

layers.  Nogami and Li (2002, 2003) use the matrix transfer method in considering 

radial/horizontal and vertical flow in layered soil with thin sand layers, greatly 

simplifying the determination of eigenvalues in the vertical direction.  A number of 

solutions exist for two layer systems.  Zhu and Yin (2005) presented design charts for 

vertical drainage with two layers.  Xie et al. (1999) solved the same problem with 

partially drained boundaries, while Xie et al. (2002) incorporated small strain theory and 

nonlinear soil properties where the decrease in permeability is proportional to the 

decrease in compressibility (i.e. coefficient of consolidation is constant).  Double layered 

ground with radial and vertical drainage was studied by Tang and Onitsuka (2001) and 

Wang and Jiao (2004).  The two layer solutions can be used to study partially penetrating 

vertical drains. 
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The complexity of the above analytical methods limits their use, with geotechnical 

engineers and researchers relying on numerical methods (such as Onoue, 1988b) or one 

of the many idealized single layer solutions proposed by Terzaghi (1943), Barron(1948), 

Yoshikuni and Nakanodo (1974), Onoue (1988a), Hansbo (1981, 2001), Tang and 

Onitsuka (2000), Zhu and Yin (2001), Han and Ye (2002), and Leo (2004).  This paper 

presents a new approach to solving multi-layered soil consolidation problems that is 

easier to implement than the above multi-layered solutions.  Combined vertical and radial 

drainage under instantaneous or single ramp loading is considered.  The powerful spectral 

method (Boyd, 2000) is used to solve the governing equation, producing a single 

expression, calculated with common matrix operations, to give the pore pressure profile 

across all soil layers.  The new model is verified against other solutions from the current 

literature. 

 

Governing differential equation 

Consider a multilayered soil cylinder with a vertical drain as shown in Figure 1.  Soil 

properties are assumed constant within each layer and do not vary with time.  Drainage 

conditions in the vertical direction are either, pervious top and pervious bottom (PTPB), 

or pervious top and impervious bottom (PTIB).  The velocity of pore water flow is 

goverened by Darcy’s Law, however, in the vertical direction, following the approach of 

Tang and Onitsuka (2000) and Wang and Jiao (2004), flow is based on the average 

hydraulic gradient at a particular depth (i.e Zu   as opposed to Zu  ).  Well 

resistance is ignored.  Loading is either instantaneous or a single ramp (see Figure 2).  

Hansbo’s (1981) method for developing radial consolidation equations can be extended to 
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derive the governing equation for consolidation by combined radial and vertical flow 

which is given by (see Appendix A for derivation): 
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In the preceding u = average excess pore pressure at a particular depth,  = average total 

stress at a particular depth, t = time, z = depth, H = depth of soil, w = unit weight of 

water, vm =volume compressibility, vk =vertical permeability, hk =undisturbed horizontal 

permeability, er = drain influence radius and  = dimensionless drain geometry/smear 

zone parameter.  The values of   for no smear zone, a smear zone with constant reduced 

permeability (Hansbo 1981), and a smear zone with parabolically varying permeability 

(Walker and Indraratna, 2006) are given respectively by: 

   75.0ln  n  (2a) 

       75.0lnln  skksn hh  (2b) 

 
 

 
   
  




































1

1
ln

22

11
ln

2

1

4

3
ln

22

2










ss

sss

ss

s

s

n
 (2c) 

where, we rrn   and ws rrs  , wr =drain radius, sr =smear zone radius, and   is the 

ratio of  undisturbed horizontal permeability to smear zone permeability at the drain/soil 

interface. 

 

To prevent horizontal drainage within a particular soil layer   is set equal to zero.  This 

is useful for analyzing problems with partially penetrating vertical drains. Soil layers 
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below the penetration depth will have 0  while still allowing vertical drainage.  The 

present method can also predict the effect of using both long and short drains in unison.  

In the lower soil layers where only the longer drains are present,   will be less than in the 

upper layers where both long and short PVD provide drainage. 

 

Analytical solution 

The solution of Equation (1) using the spectral method is given in matrix notation as (see 

Appendix B for derivation): 

     θΓvΦvE 1
0,  utZu  (3) 

Each matrix in Equation (3) is now defined. 

       ZZZ N ...21Φ  (4a) 

where,     ZMZ jj sin  (4b) 
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The diagonal matrix E  (square matrix with non-diagonal terms equal to zero) has 

diagonal elements: 
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where,   cf ttt ,min  (5b) 

i  is the i th eigenvalue of the matrix ΨΓ 1  defined below.  The eigenvector associated 

with each eigenvalue makes up the columns of matrix v  (i.e. 1iv  is the eigenvector 

associated with 1 ).  The elements of the square matrices Γ  and Ψ  are: 
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       1sinsin][  ll ZZSN  (9) 

 ij MMM  , ij MMM   (10) 

θ  is a column vector defined by: 

  N
T  ...21θ  (11a) 
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where,        1coscos][  ll ZZCS  (12) 

To find the average pore pressure between depth 1Z  and 2Z  the  Zj  terms in Φ  are 

replaced with: 

      1221, ZZMCSZZ jj   (13) 

 

The most difficult part of the above analysis is calculating the eigenvalues and 

eigenvectors of the matrix ΨΓ 1 .  However, there is a comprehensive literature on 

eigenproblems (Hoffman, 1992) and many software programs exist to solve them.  

Eigenproblems can be easily solved with freeware subroutines for MS Excel (Volpi, 

2005) and Fortran (Anderson et al., 1999).  Proprietary programs such as Mathematica 
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(Wolfram Research, Inc., 2004) and Matlab (The MathWorks Inc., 2003) may be used as 

well. 

 

Figure 3 shows a flow chart of the calculation steps involved in the above process.  To 

improve the accuracy of the solution the number of terms in the solution, N , (i.e. the 

dimensions of the  matrices) is increased. A Microsoft Excel Spreadsheet program (coded 

in Visual Basic for Applications (VBA) has been developed to implement the equations 

presented in the paper.  The URL web address to this program is: 

http://www.uow.edu.au/eng/research/geotechnical/software/  

The spreadsheet contains the verification examples presented in the paper and the VBA 

code with Authors’ comments. 

  

Verification against existing solutions 

To verify the new model, the equations presented above are compared with various 

analytical solutions taken from the literature, as listed below. 

(a) Multi-layered free strain with thin sand layers separating clay layers (Nogami and Li, 

2003) 

(b) Double layered ground with vertical and radial drainage (Nogami and Li, 2003) 

(c) Ramp loading (Tang and Onitsuka, 2001) 

(d) Partially penetrating vertical drains (Runnesson et al., 1985) 

(e) Vertical consolidation of four layers (Schiffman and Stein, 1970) 
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(a) Multi-layered free strain with thin sand layers separating clay layers (Nogami and 

Li, 2003) 

Nogami and Li (2003) developed a free-strain approach for calculating the excess pore 

pressure distribution for multi-layered soil with both vertical and radial drainage.  An 

example problem is presented with a soil system consisting of two identical thin sand 

layers (height sh ) separating three identical clay layers (height ch ). The soil surface of 

the top soil layer is considered as a free drainage boundary, whereas an impervious 

boundary is assumed at the bottom of the third subsoil layer.  Soil properties are 

described by vecs krhhk 2
sand  = 5, n  = 20, 22

evch rchc  = 1, er  = 0.05, vc  = hc  = 1.  The 

average excess pore water pressures calculated with the present approach and that of 

Nogami and Li (2003) are compared in Figure 4 and 40 series terms were used. Both 

methods are in close agreement except for slight deviations in the thin sand layers at low 

degree of consolidation.  The close agreement shows that, as for homogenous ground 

(Hansbo, 1981; Barron, 1948), there is little difference between free-strain and equal 

strain formulations.  The current method does not use Bessel functions that are associated 

with free-strain solutions. 

 

(b) Double layered ground with vertical and radial drainage (Nogami and Li, 2003) 

Nogami and Li (2003) present the pore pressure distribution during consolidation of a soil 

system with vertical and radial drainage consisting of two clay layers of equal height h .  

The material properties of the two clay layers are shown in Table  for the three cases (no 

smear).  Comparisons of the pore pressure distributions calculated with each method are 

shown in Figure 5 and 35 series terms were used.  Any small oscillations in the proposed 
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model result from an insufficient number of terms in the series solution.  These 

oscillations only occur when radial drainage dominates (i.e. vh dTdT  )  

 

(c) Ramp loading (Tang and Onitsuka, 2001) 

Tang and Onitsuka (2001) presented an analytical solution for consolidation by vertical 

and radial drainage (no smear) for single layer consolidation under ramp loading.  The 

average excess pore water is calculated with the soil/drain properties: 1 hv cc , 

n  = 16.7, erH  = 2, er  = 0.5. The surcharge load, initially zero, increases to unity at 

tdTh  = 0.2.  Comparisons with the present method are shown in Figure 6 and 12 series 

terms were used. There is no discernable difference in the solutions. 

 

(d) Partially penetrating vertical drains (Runnesson et al., 1985) 

Runesson et al. (1985) performed finite element computations for consolidation with 

partially penetrating vertical drains including vertical and radial drainage.  One example 

presented is for a clay/drain system with the following properties: Hh1  = 0.5, n  = 10, 

er  = 1, veh crcH 22  = 100.  The degree of consolidation calculated at various depths is 

compared to those calculated with the present method (Figure 7) employing 35 series 

terms.  The differences in the two solutions are acceptable given the approximate nature 

of the finite element solution. 
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(e) Vertical consolidation of four layers (Schiffman and Stein, 1970) 

Schiffman and Stein (1970) present an analytical solution for one-dimensional 

consolidation of a layered system.  The method is illustrated with an example problem 

consisting of four layers draining at the top and bottom.  The soil properties are given in 

Table .  The average excess pore water pressure calculated is compared with the present 

method in Figure  and 40 series terms were used.  The differences in the model are very 

small. 
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Conclusions 

The spectral method model presented above provides a powerful tool for analyzing multi-

layered soil consolidation problems.  The most important of the spectral methods many 

advantages is its ease of implementation.  Given the wide availability of computer 

software to solve matrix eigenproblems, the most difficult step in the process 

(determining eigenvalues and eigenvectors of a square matrix) is straightforward.  The 

excess pore water pressure profile across all soil layers is conveniently described by a 

single expression, whereas existing solutions to multi-layered consolidation problems 

have a separate equation for each soil layer.  Calculation of average excess pore pressures 

within or across any number of layers is far easier with a single expression. By basing 

flow in the vertical direction on the average hydraulic gradient at a particular depth, 

smear effects, not included in existing multi-layered solutions, can be included.  No new 

smear zone parameters are introduced as the same   parameter used in other equal 

strain-analyses of vertical drain problems is reproduced.  The   parameter is part of the 

lumped   parameter (see Equation 1) which when varied between layers allows analysis 

of partially penetrating drains, smear zone variations with depth, and drain patterns with 

different length drains.  The spectral method model is thus a very useful, easy to 

implement, tool in the analysis of a wide variety of multi-layered soil consolidation 

problems. 
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Appendix A: Derivation of governing equation 

For the unit cell in Figure 1, the velocity of flow in the radial direction, r , is described 

by Darcy’s law: 
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In the vertical direction, following the approach of Tang and Onitsuka (2000) and Wang 

and Jiao (2004), Darcy’s law is modified to include the average excess pore water 

pressure at a particular depth, u .  The velocity of flow in the vertical direction, v , is then 

given by: 
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Deformation is assumed to take place solely in the vertical direction under equal-strain 

conditions (Barron, 1948; Hansbo, 1981), hence: 
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where, t  = vertical strain rate.  Following Hansbo’s (1981) approach (modified to 

include vertical drainage), flow into and out of a cylindrical slice with internal radius r , 

and external radius er  is considered.  The resulting expressions for pore water pressure 

gradient is (ignoring smear effects): 

 












































tZ

u

k

k

ZH

k
r

r

r

kr

u

v

v

w

ve

h

w 



2

2

2
 (A4) 

The average excess pore pressure in the soil cylinder at depth Z  is found from the 

following algebraic expression: 
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Equation (A4) is integrated in the r  direction (noting vk , vm , and   are independent of 

r ) with the boundary condition   0, tru w  (i.e. well resistance and vacuum loading are 

not considered).  The resulting expression combined with Equations (A3) and (A5) give 

the average pore water pressure at normalized depth Z : 
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The   parameter is that of Equation (2a).  Equation (A6) can be derived for various 

smear zone properties, in which case only the   parameter will differ as in Equations 

(2b) and (2c).  Using the definitions of  , vc , hdT  and vdT  form Equation (1), Equation 

(A6) is now rearranged to give the governing differential equation: 
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 (A7) 

The solution of Equation (A7) by the spectral method (Boyd, 2000) is developed in 

Appendix B. 
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Appendix B: Solution of governing equation by spectral method 

Equation (A7) is a non-homogeneous partial differential equation with source/sink terms.  

The source/sink term,  tZf , , is a function of depth and time, and arises from surcharge: 

  
tm

m
tZf

v

v







,  (B1) 

To solve Equation (A7) Duhamel’s principle (Asmar, 2004) is used:  tZf ,  is replaced 

by an impulse load applied at time   and depth  , and a ‘fundamental solution’, 

  ,,, tZu , is obtained (with the initial condition   00, Zu ).  The impulse load is then 

described by: 

        tZtZf ,  (B2) 

where,  x  is the Dirac Delta function. Once the fundamental solution is known, the 

complete solution is given by: 

       



 

0

1

0

,,,,, ddtZftZutZu  (B3) 

 

A partial differential equation such as Equation (A7) can be expressed in a shorthand 

form as: 

     tZftZuL ,,   (B4) 

where, L  is an operator involving partial derivatives.  The spectral method involves 

expressing  tZu ,  as a truncated series of N  terms which in matrix form is: 

   ΦAtZu ,  (B5) 
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In matrix Φ ,  Zj  which area set of linearly independent basis-functions, and in matrix 

A ,   tAj  are unknown coefficients.  The basis functions are generally chosen to satisfy 

the boundary conditions.  For pervious top and pervious bottom (PTPB)   0,0 tu  and 

  0, tHu , and for pervious top and impervious bottom (PTIB)   0,0 tu  and 

  0,  ztHu .  Suitable basis functions are those given in Equation (4b). 

 

The error, re , of Equation (B5) that satisfies Equation (B4) is 

    tZfLer , ΦA  (B6) 

The Galerkin procedure requires that the error be orthogonal to each basis function, 

hence: 

 0

1

0

 dZe ir , for Ni ,...,1  (B7a) 

Substituting Equation (B6) into Equation (B7a) yields: 

     0,

1

0

1

0

  dZtZfdZL ii  ΦA  (B7b) 

which is a set of coupled ordinary differential equations for j .  Substituting Equations 

(A7), (B2), (B4), and (B5) into Equation (B7) and integrating gives the matrix equations: 

      tTΦΨAAΓ  (B8) 

where, AA
t


  (B9) 
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The vm  values of each soil layer contribute to the Γ  matrix when the left hand side of 

Equation (A7) is integrated over the entire soil depth.  The vk  and   values of each soil 

layer contribute to the Ψ  matrix when the right hand side of Equation (A7) is integrated.  

Γ  and Ψ  are defined by:   
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For the case of constant soil properties within a layer presented in this paper each of the 

three parameters, vv kk , vv mm  and   are defined with the unit step function: 

      ZZUnitStepZZUnitStepZ lll  1  (B12) 

The derivative of the unit step function, required when differentiating vv kk  in Equation 

(B11), is the impulse or Dirac delta function.  Layer interfaces are included by simply 

integrating across these impulse functions at each layer boundary.   

 

Using variation of parameters (also called variation of constants), the solution to the non-

homogeneous Equation (B8) can be found using the initial condition   00 A : 
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where E  is defined by Equation (5).  The fundamental solution to Equation (A7) with 

impulse loading is now given by: 
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       TttZu  ΦΓvΦvE 1,   (B14) 

Equation (B3) now becomes: 

        
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1, dd
tm

m
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v

vTΦΓvΦvE  (B15) 

The surcharge loading term in Equation (B15) can be any function of time and depth, 

 tZ , .  For a load that is constant with depth,  tZ ,  is expressed as: 

  
 






loading ramp

loading ousinstantane
,

0

0

cf ttu

tUnitStepu
tZ  (B16) 

where  cf ttt ,min .  Substituting Equation (B16) into Equation (B15) results in the 

simple matrix expression of Equation (3). 
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Table 1 Parameters for double layered ground (adopted from Nogami and Li, 2003) 

Case wr  n  wrH 12 / hh 12 vv kk 12, vv cc 1hc  2hc  

1 0.05 10 200 1 2 1 1 5 

2 0.05 10 200 1 2 1 1 1 

3 0.05 10 200 1 2 1 5 1 
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Table 2 Soil profile, four layer system (adopted from Schiffman and Stein, 1970) 

Layer Depth (m) vk  (m/s) vm  (m2/kN) 

1 0 to 3.05 2.78 × 10-11 6.41 × 10-5 

2 3.05 to 9.14 8.26 × 10-11 4.07 × 10-5 

3 9.14 to 18.29 1.17 × 10-11 2.03 × 10-5 

4 18.29 to 24.38 2.94 × 10-11 4.07 × 10-5 
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Figure 1 Multilayered soil properties 
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Figure 2 Instantaneous and ramp loading 
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 START 

Choose soil and drainage properties 

Populate Γ  and Ψ , Eqs. (6) and (7) 

Find eigenvalues ( ) and eigenvectors ( v ) 

of ΨΓ 1  

Populate Φ , E  and θ , Eqs. (4), (5) and (11) 

Calculate     θΓvΦvE 1
0,  utZu , Eq. (3) 

Choose number of terms ( N ) 

END 
 

Figure 3 Flow chart for calculation steps 
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Figure 4 Model verification: multi-layer equal-strain vs free-strain 
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Figure 5 Model verification: double layered ground 
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Figure 6 Model verification: multiple stage loading 
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Figure 7 Model verification: partially penetrating vertical drains 
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Figure 8 Model verification: 4 layer vertical drainage 
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