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Abstract 1 

The impact of fouling on N-nitrosamine rejection by nanofiltration (NF) and reverse osmosis 2 

(RO) membranes was investigated in this study. Membrane fouling was simulated using 3 

tertiary treated effluent and several model fouling solutions (that contained sodium alginate, 4 

bovine serum albumin, humic acid or colloidal silica) to elucidate the changes in rejection 5 

behaviour of N-nitrosamines. In general, the rejection of N-nitrosamines increased when the 6 

membranes were fouled by tertiary effluent. The rejection of small molecular weight N-7 

nitrosamines was most affected by membrane fouling. In particular, the rejection of N-8 

nitrosodimethylamine (NDMA) by the ESPA2 membrane increased from 34 to 73% after 9 

membrane fouling caused by tertiary effluent. The results also indicate that the impact was 10 

less apparent for the lowest permeability membrane (i.e., ESPAB), and the rejection of N-11 

nitrosamines by the ESPAB membrane was over 82% regardless of membrane fouling. The 12 

effect of membrane fouling caused by model foulants on N-nitrosamine rejection was 13 

considerably less than that caused by tertiary effluent. Size exclusion chromatography 14 

analyses revealed that the tertiary effluent contains a high fraction of low molecular weight (< 15 

500 g/mol) organic substances. It appears that these low molecular weight foulants present in 16 

the tertiary effluent can restrict the solute pathway within the active skin layer of membranes, 17 

resulting in the observed increase of solute rejection. 18 

Keywords: Water recycling, N-nitrosamines, NDMA, reverse osmosis, organic fouling, 19 

colloidal fouling. 20 

21 
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1. Introduction 22 

Augmentation of potable water sources with reclaimed municipal effluent is an important 23 

strategy to secure a reliable water supply in regions and countries with severe water scarcity. 24 

However, a major concern over this alternative source of water supply is the occurrence of 25 

trace organic chemicals which may induce adverse and chronic health effects. Notable 26 

amongst these trace organic chemicals is N-nitrosodimethylamine (NDMA) which is an N-27 

nitrosamine that can be formed during the chloramination of the treated effluent [1]. In 28 

addition to NDMA, other N-nitrosamines known to occur in treated effluent include N-29 

nitrosomethylethylamine (NMEA), N-nitrosopyrrolidine (NPYR), N-nitrosodiethylamine 30 

(NDEA), N-nitrosopiperidine (NPIP), N-nitrosomorpholine (NMOR), N-31 

nitrosodipropylamine (NDPA), N-nitrosodi-n-butylamine (NDBA) [2-4]. Some of these N-32 

nitrosamines have been identified as probable carcinogenic agents and thus their 33 

concentrations in drinking water and recycled water intended for potable consumption have 34 

been regulated by water authorities around the world [5-6]. The Australian Guidelines for 35 

Water Recycling have recommended the maximum value of NDMA, NDEA, and NMOR in 36 

recycled water intended for potable supply of 10, 10, and 1 ng/L, respectively [7]. Both 37 

reverse osmosis (RO) and nanofiltration (NF) membranes have been frequently used in water 38 

reclamation partly to ensure adequate removal of emerging trace chemicals, little is known 39 

about their capacity to remove N-nitrosamines in full-scale installations. Reported percentage 40 

rejections of NDMA vary greatly in full-scale plants from almost negligible to 86% and the 41 

underlying reason for such significant variation in NDMA rejection remains unclear [8-11]. 42 

To date, only a few laboratory-scale studies have investigated N-nitrosamine rejection 43 

capability of NF/RO membranes using clean matrix solutions [3, 12-13]. These studies 44 

reported that the rejection of NDMA by RO membranes was in the range from 50 to 70%. 45 

The rejection of N-nitrosamines increased in the order of increasing molecular weight and the 46 

steric hindrance mechanism was identified as a predominant rejection mechanism of N-47 

nitrosamines by NF/RO membranes [3, 12-13]. Feed solution characteristics (i.e., pH, ionic 48 

strength and temperature of the feed solution) also affected the rejection of NDMA and in 49 

some cases other N-nitrosamines [3, 13]. In particular, Fujioka et al. [13] reported a 50 

significant drop in NDMA rejection (from 49 to 25%) for an increase in feed temperature 51 

from 20 to 30 ºC. Nevertheless, the variations in these feed solution characteristics explain 52 
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only some of the variations in NDMA rejections that were reported in the previous full-scale 53 

studies. 54 

Municipal wastewater usually contains a large amount of organic and inorganic matter, 55 

resulting in the formation of organic and colloidal fouling, bio-fouling and inorganic scales 56 

on RO membranes [14-15]. It has been established in the literature that membrane fouling 57 

can either increase or decrease the separation efficiency of NF/RO membranes [14, 16-18]. 58 

However, apart from a laboratory-scale study conducted by Steinle-Darling et al. [3] who 59 

investigated the rejection of several N-nitrosamines by an RO membrane (ESPA3) artificially 60 

fouled with sodium alginate, to date little attention has been given to the effects of membrane 61 

fouling on the rejection of N-nitrosamines. Steinle-Darling et al. [3] reported that membrane 62 

fouling by sodium alginate on the ESPA3 membrane caused a reduction in NDMA rejection 63 

(from 56 to 37%). 64 

The aim of this work was to provide insights into the effects of membrane fouling on the 65 

rejection of N-nitrosamines by NF/RO membranes. The effects of membrane fouling were 66 

investigated by comparing the rejections of N-nitrosamines by clean and fouled membranes. 67 

Tertiary treated effluent and four different model foulants (namely sodium alginate, bovine 68 

serum albumin, humic acid and colloidal silica) were used to induce membrane fouling. The 69 

tertiary treated effluent and model foulants were characterised in detail to systematically 70 

elucidate the effects of membrane fouling on the rejection of N-nitrosamines by NF/RO 71 

membranes. 72 

2. Materials and methods 73 

2.1. NF/RO membranes 74 

Three NF/RO membranes – namely the NF90, ESPA2, and ESPAB – were used in this 75 

investigation. These are thin-film composite polyamide membranes with a microporous 76 

supporting layer and were supplied as flat sheet samples. Key properties of these membranes 77 

are shown in Table 1. The NF90 (Dow Filmtec, Minneapolis, MN, USA) is an NF membrane 78 

typically used for softening of brackish water. The ESPA2 (Hydranautics, Oceanside, CA, 79 

USA) is a low pressure reverse osmosis membrane that is widely applied for water 80 

reclamation applications. The ESPAB (Hydranautics, Oceanside, CA, USA) is also low 81 

pressure reverse osmosis but it has been designed to achieve a high boron rejection. 82 
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[Table 1] 83 

2.2. Chemicals 84 

The eight N-nitrosamines used in this study (Figure 1) were of analytical grade and were 85 

purchased from Sigma-Aldrich (St Louis, MO, USA). Their physicochemical properties have 86 

been described in detail elsewhere [13]. N-nitrosamine stock solution was prepared in pure 87 

methanol with 250 µg/L of each N-nitrosamine. A deuterated surrogate standard was used for 88 

each N-nitrosamine under investigation. These surrogate standards include N-89 

nitrosodimethylamine-D6, N-nitrosomethylethylamine-D3, N-nitrosopyrrolidine-D8, N-90 

nitrosodiethylamine-D10, N-nitrosopiperidine-D10, N-nitrosomorpholine-D8, N-91 

nitrosodipropylamine-D14 and N-nitrosodi-n-butylamine-D9, and were purchased from CDN 92 

isotopes (Pointe-Claire, Quebec, Canada). A surrogate stock solution containing 100 µg/L of 93 

each deuterated N-nitrosamine was prepared in pure methanol. The stock solutions were 94 

stored at -18 ºC and used within one month of preparation.  95 

Analytical grade NaCl, CaCl2 and NaHCO3

19

 were purchased from Ajax Finechem (Taren 96 

Point, NSW, Australia). Sodium alginate (SA), bovine serum albumin (BSA), humic acid 97 

(HA) and colloidal silica (Ludox CL, 30% weight suspension in water) were selected as 98 

model foulants to simulate polysaccharides, proteins, refractory organic matter and colloidal 99 

particles, respectively. These model foulants were purchased from Sigma-Aldrich (St Louis, 100 

MO, USA). The Ludox CL is a positively charged silica particle whose surface is coated with 101 

a layer of aluminium [ ]. The hydrodynamic diameter of the Ludox CL is from 102 

approximately 40 nm at below pH 6 to 233 nm at pH 10 due to aggregation effects in 103 

different pH solutions [19]. 104 

[Figure1] 105 

2.3. Tertiary treated effluent 106 

Tertiary treated effluent sample was collected from an advanced water recycling plant in New 107 

South Wales, Australia. The treatment train of the plant prior to the sampling point includes 108 

screening, bioreactor and sand filtration, and the sample was collected after sand filtration.  109 
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2.4. Membrane filtration system 110 

A laboratory-scale cross flow NF/RO filtration system was used in this study (Supplementary 111 

Material Figure S1). A detailed description of this system is available elsewhere [13]. The 112 

system consisted of a cross-flow stainless steel cell with effective membrane area of 4 cm by 113 

10 cm and a channel height of 2 mm. The feed solution was kept in a stainless reservoir and 114 

was fed to the membrane cell by a high pressure pump (Hydra-Cell, Wanner Engineering Inc., 115 

Minneapolis, MN, USA). The permeate flow and cross-flow velocity were regulated by a 116 

bypass valve and a back-pressure regulator (Swagelok, Solon, OH, USA). The permeate flow 117 

was monitored using a digital flow meter (FlowCal, GJC Instruments Ltd, Cheshire, UK) 118 

which was connected to a computer. A stainless steel heat exchanging coil was submerged 119 

into the feed reservoir and was connected to a chillier/heater unit (Neslab RTE 7, Thermo 120 

Scientific Inc., Waltham, MA, USA) to control the temperature of the feed solution. 121 

2.5. Experimental protocols 122 

Rejection measurement and membrane fouling development were sequentially carried out 123 

with four steps: (1) compaction; (2) measuring N-nitrosamine rejection without membrane 124 

fouling; (3) fouling development; and (4) remeasuring N-nitrosamine rejection by fouled 125 

membrane (Figure 2). Because full-scale RO plants are generally operated with a constant 126 

(average) permeate flux which is approximately 20 L/m2 20h [ ] and feed pressure increases as 127 

fouling progresses to maintain the permeate flux, the constant permeate flux of 20 L/m2

Step 1: The membrane sample was first compacted using Milli-Q water at 1,800 kPa until the 133 

permeate flux was stabilised.  134 

h was 128 

used to evaluate N-nitrosamine rejection before and after fouling. Throughout the 129 

experiments, cross flow velocity and feed temperature in the reservoir were always kept 130 

constant at 0.42 m/s and 20 ± 0.1 ºC, respectively. The details of these four steps are as 131 

follows. 132 

Step 2: Following the compaction step, the Milli-Q water in the filtration system was 135 

replaced with either the tertiary effluent or synthetic solution containing a particular model 136 

foulant (e.g. SA, HA, BSA or Ludox CL) and background electrolytes (20 mM NaCl, 1 mM 137 

CaCl2 and 1 mM NaHCO3). The concentrations of SA, BSA and HA in the feed solution 138 

were adjusted to make up approximately 10 mg/L as total organic carbon (TOC). The Ludox 139 



6 

 

CL was suspended in the same background electrolyte solution (20 mM NaCl, 1 mM CaCl2 140 

and 1 mM NaHCO3) to obtain 100 mg/L of colloidal silica. After the replacement of feed 141 

solutions, stock N-nitrosamine solution was spiked into the feed solution at environmentally 142 

relevant concentration (i.e., 250 ng/L). The permeate flux was also adjusted at 20 L/m2

20

h 143 

which is a typical value for most water reclamation RO plants [ ]. The system was operated 144 

for 1 h prior to the collection of the feed and permeate samples for analysis. This sampling 145 

point represents the performance of the membrane under a clean condition.  146 

Step 3: After the first sampling event, membrane fouling was promoted by adjusting the 147 

permeate flux to 60 L/m2h. The system was then continuously operated with a constant feed 148 

pressure. The fouling development step ended after the permeate flux reached 45 L/m2

Step 4: The permeate flux was adjusted to 20 L/m

h (i.e., 149 

decreased by 25%).  150 

2

[Figure 2] 154 

h and the system was stabilised for 1 h 151 

prior to the second sampling of the feed and permeate. This sampling point represents the 152 

performance of the membrane under a fouled condition.  153 

2.6. Analytical techniques 155 

2.6.1. Size exclusion chromatography analyses 156 

Characterisation of dissolved organic carbon (DOC) composition in the tertiary effluent and 157 

model foulant solution samples was carried out with a size exclusion chromatography 158 

technique using a Liquid Chromatography - Organic Carbon Detection (LC-OCD) Model 8 159 

system (DOC-LABOR, Karlsruhe, Germany). The LC-OCD system is equipped with a UV-160 

detector (254 nm) as well as organic carbon and nitrogen detectors. Chromatographic 161 

separation is undertaken using a Toyopearl® TSK HW-50S column (Tosoh Bioscience, 162 

Tokyo, Japan). Prior to the analysis, calibration of humic substance molecular weights was 163 

conducted using IHSS Humic acid and IHSS Fulvic acid. Calibrations of detectors for total 164 

organic carbon and total organic nitrogen were also conducted using potassium hydrogen 165 

phthalate and potassium nitrate, respectively. For the analysis, a mobile phase (phosphate 166 

buffer, pH 6.37, 2.5 g/L KH2PO4 and 1.5g/L Na2HPO4·H2O) was set at a flow rate of  1.1 167 

mL/min. In the LC-OCD system, an injected sample of 1 mL was pre-filtered with an in-line 168 
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0.45 µm PES-filter located in front of the column and detectors. Software provided by the 169 

manufacturer (ChromCALC, DOC-LABOR, Karlsruhe, Germany) was used for the 170 

quantification of the organic matter compositions. Further details can also be found in 171 

previous studies [21-22]. 172 

2.6.2. Contact angle measurement 173 

Contact angle of membrane surface was measured using the standard sessile drop method. 174 

This was performed with a Rame-Hart Goniometer (Model 250, Rame-Hart, Netcong, NJ). 175 

Prior to the measurement, virgin and fouled membrane samples were dried for over 24 h in 176 

the dark. The dry membrane was fixed on the stage of the instrument and contact angle of the 177 

membrane was measured with a water droplet (Milli-Q water). The contact angle of each 178 

membrane was determined with an average of ten droplets. 179 

2.6.3. Zeta potential measurement 180 

Zeta potential of the virgin and fouled membrane surface was determined and calculated 181 

using the Fairbrother-Mastin streaming potential method. The measurement of the streaming 182 

potential was performed between pH 3 and 8.5 with a SurPASS Electrokinetic Analyser 183 

(Anton Paar GmbH, Graz, Austria).  In the measurement, 1 mM KCl was used as a 184 

background electrolyte solution. The background solution pH was adjusted by a titration of 185 

either KOH (1M) or HCl (1M) solutions. During the analysis, the background solution 186 

temperature was 25±1°C. 187 

2.6.4. Basic analytical techniques 188 

Turbidity was analysed using a 2100N laboratory turbidity meter (Hach, USA). Conductivity 189 

and pH were measured using an Orion 4-Star Plus pH/conductivity meter (Thermo scientific, 190 

USA). TOC concentration was determined using a TOC-VSH analyser (Shimadzu, Japan) 191 

based on the non-purgeable organic carbon (NPOC) method. Cations and anions were 192 

analysed using an Inductive Coupled Plasma – Mass Spectrometer (7500CS, Agilent 193 

Technologies, Wilmington, DE, USA) and an ion chromatography (IC) system (Shimadzu, 194 

Tokyo, Japan), respectively. 195 
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2.6.5. N-nitrosamine concentration analysis 196 

The analysis of each N-nitrosamine concentration in this study is based on the gas 197 

chromatography coupled with tandem mass spectrometry (GC-MS/MS) technique using 198 

electron ionisation in a combination with the solid phase extraction (SPE) method previously 199 

described by McDonald et al [23]. Prior to the SPE process, the SPE cartridges 200 

(SupelcleanTM 

3. Results and discussion 218 

Coconut Charcoal SPE cartridges (2 g/mL), Supelco, St Louis, MO, USA) 201 

were cleaned with 6 mL dichloromethane, 6 mL methanol and 12 mL of Milli-Q water. 202 

Accurate quantitation (accounting for incomplete SPE recovery) was undertaken by direct-203 

analogue isotope dilution for all nitrosamines by adding 100 μL surrogate stock solution into 204 

200 mL of each sample to make up 50 ng/L of each N-nitrosamine surrogate. N-nitrosamines 205 

in the samples were then extracted by SPE at a flow rate of 5 mL/min. The cartridges were 206 

rinsed with 3 mL Milli-Q water and dried with high purity nitrogen gas for at least 60 207 

minutes. The dried SPE cartridges were then eluted using 12 mL dichloromethane, and 100 208 

µL of toluene was added in the eluent. The eluent was then concentrated to 1 mL with a 209 

Turbovap LV (Caliper Life Sciences, Hopkinton, MA, USA) under a gentle nitrogen stream. 210 

The concentrations of N-nitrosamines were quantified using an Agilent 7890A gas 211 

chromatograph (GC) coupled with an Agilent 7000B triple quadrupole mass spectrometer 212 

(MS/MS). Calibration curves were established for each N-nitrosamine in the range of 1-400 213 

ng/L. The NMOR calibration curve was extended to account for the NMOR concentration of 214 

over 400 ng/L. The quantitative detection limits of this technique for NDMA, NDEA and 215 

NDPA were 5 ng/L. The quantitative detection limits for all other N-nitrosamines used in this 216 

study were 10 ng/L. 217 

3.1. Characteristics of the tertiary effluent and model foulants 219 

Ionic composition and organic content of the tertiary effluent used in this study (Table 3) was 220 

similar to that of most water reclamation plants. Nevertheless, the conductivity of this tertiary 221 

treated effluent (Table 2) was slightly lower than the typical range of 1200-1700 µS/cm, 222 

which is often found in the literature [24-25]. The tertiary effluent used in this study had not 223 

been subjected to chloramination, with the exception of NMOR, and all other N-nitrosamines 224 

were not detectable in the tertiary effluent sample. The concentration of NMOR in this 225 

tertiary effluent was 1350 ng/L. NMOR can be found in toiletry and cosmetic products [26] 226 
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and rubber and tire industry, elevated concentration of NMOR in treated effluent has 227 

previously been reported [27]. The water recycling plant where the tertiary treated effluent 228 

was collected is known to have a very high load of industrial wastewaters in its catchment. 229 

[Table 2] 230 

The organic contents of secondary effluents have been generally characterised to comprise a 231 

number of size fractions commonly referred to as biopolymers (polysaccharides, proteins and 232 

colloidal organics) (>>20,000 Da), humic substances (approximately 1000 Da), building 233 

blocks (300-500 Da) and low molecular weight (LMW) acids (<350 Da) and neutrals (<350 234 

Da) [21-22, 28-29]. The building blocks block fraction represents breakdown products, or 235 

intermediates during the degradation, of humic substances such as fulvic acid [22, 30]. The 236 

tertiary effluent used in this study has a diverse molecular weight distribution (Figure 3). The 237 

DOC concentration of fractions of biopolymers (10%), humic substances (46%), building 238 

blocks (17%) and LMW neutrals (23%) in the tertiary effluent (Table 3) was in good 239 

agreement with a previous study carried out by Henderson et al. [28]. Model foulants used in 240 

this investigation had significant differences in their physicochemical characteristics which 241 

were expected to assist in identifying the impact of fouling on membrane separation 242 

performance. The major fraction of SA and BSA solutions was biopolymers (>20000 g/mol), 243 

which is consistent with a previous study [31] showing a molecular weight of 12000-80000 244 

g/mol (SA) and 67000 g/mol (BSA). The molecular weight of HA analysed here was in the 245 

range of approximately 1000 g/mol and this is in good agreement of the average molecular 246 

weight of HA (1000 g/mol) reported in the literature [22]. All three organic model foulant 247 

also contained some fraction of building blocks (300-500 g/mol) and LMW neutrals (<350 248 

g/mol) (Table 3). 249 

[Figure 3] 250 

[Table 3] 251 

3.2. Membrane fouling behaviour 252 

Significant membrane fouling was observed with all three membranes investigated in this 253 

study when tertiary effluent was used at the elevated initial permeate flux of 60 L/m2h (which 254 

is approximately three times the value used in most full scale RO systems for water recycling 255 
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applications). The profile of membrane permeability measured before and after fouling is 256 

presented in Table S2 of the Supplementary Material. Membrane fouling behaviour of the 257 

NF90 differs significantly from that of the ESPA2 and ESPAB membranes (Figure 4). Flux 258 

decline was most severe for the NF90 membrane followed by the ESPA2 and ESPAB 259 

membranes. The permeate flux of the NF90 membrane dropped by 30% within the first 12 h 260 

system operation, and then decreased linearly as filtration progressed. In contrast, the two RO 261 

membranes (ESPAB and ESPA2) showed an almost linear flux decline from the beginning of 262 

the filtration. The flux decline of the ESPA2 and ESPAB membranes using tertiary effluent 263 

reached 30% with 40-50 h and 60 h filtration, respectively. Interestingly, the rate of flux 264 

decline amongst the three membranes increased in the order of increasing pure water 265 

membrane permeability (Table 1). Similar observations were reported in previous laboratory-266 

scale studies [16, 32]. 267 

[Figure 4] 268 

When the model foulants were used, significant variation in membrane fouling was observed. 269 

When the ESPA2 membrane was fouled with either SA or HA, permeate flux dropped 270 

rapidly within 10–20 h of system operation (Figure 5a-b). These observed curves of 271 

membrane fouling are consistent with a previous study [33]. The rapid flux decline in the 272 

early stage may have resulted from the formation of an alginate and humic acid fouling layer 273 

on the membrane surface, resulting in a substantial resistance to permeate flow [16, 34]. In 274 

fact, it is known that the HA foulant layer can account for a cake layer as thick as 4 µm [35], 275 

while a skin layer thickness of RO membrane is usually less than 0.3 µm [36]. In contrast, 276 

membrane fouling by BSA used here progressed slowly and linearly until 30 h system 277 

operation, and then the slope of the permeate flux decline became steeper (Figure 5c). This 278 

trend of the permeate flux decline is again in good agreement with a previous study [31]. 279 

Permeate flux with Ludox CL dropped significantly within 5 h of system operation, then 280 

gradually decreased as filtration progressed (Figure 5d). This observation is consistent with a 281 

previous laboratory-study from which it was suggested that the hydrophobic interactions and 282 

electrostatic attraction forces between charged colloid particles and membrane surface were 283 

key causes for colloidal membrane fouling in the early filtration stage [19].  284 

[Figure 5] 285 
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3.3. Characteristics of fouled membranes  286 

The membrane surface hydrophobicity (measured by contact angle) increased significantly 287 

when the NF/RO membranes were fouled by tertiary effluent (Figure 6). The contact angle of 288 

the ESPA2 membrane increased from 43 to 79º due to the membrane fouling. While the three 289 

virgin membranes (NF90, ESPA2 and ESPAB) have a wide range of contact angle values 290 

(43-69º), the fouled membrane surface revealed a very similar contact angle (in the range of 291 

66-79º). The type of foulants can also have a major impact on the hydrophobicity of 292 

membranes. The hydrophobicity of ESPA2 membranes increased as a result of membrane 293 

fouling by SA, HA and BSA, whereas a considerable reduction in hydrophobicity was 294 

observed with Ludox CL (Figure 6). The contact angle of each fouled membrane analysed 295 

here was in good agreement with results reported by Beyer et al. [33] who also investigated 296 

the hydrophobicity of fouled membranes by various model foulants using the NF270 297 

membrane. Results reported here suggest that the hydrophobicity of the fouled membrane 298 

surface depends mainly on the hydrophobicity of the foulants. 299 

The impact of fouling on the membrane surface charge was also examined by analysing zeta 300 

potentials of clean and fouled ESPA2 membranes. Consistent with a previous study [35], the 301 

zeta potential of the fouled membranes became less negative at high pH (i.e., pH8) and less 302 

positive at low pH (Figure 7). Amongst the model foulants, the zeta potential of BSA was 303 

similar to tertiary effluent at all pH values tested. Although organic matter eluting in tertiary 304 

effluent has a high concentration of material with similar molecular size to humic substances 305 

(Table 3), the measured zeta potential of fouled membranes by the tertiary effluent and HA 306 

were distinctly different (Figure 7). These results suggest that the material of the tertiary 307 

effluent eluting in the humic substance fraction is similar to humic acid and fulvic acid 308 

standards in terms of molecular size but has different charge characteristics. It is noted that 309 

the zeta potential analysis of the SA fouled membrane was not conducted because of the re-310 

formation of alginate gel which clogged of the flow through cell of the Electrokinetic 311 

Analyser. 312 

[Figure 6]  313 

[Figure 7] 314 
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3.4. Effects of membrane fouling on inorganic salt retention 315 

Membrane fouling by tertiary effluent led to an increase in conductivity (salt) rejection for all 316 

membranes with an exception of Ludox CL used in this investigation (Figure 8). In particular, 317 

conductivity rejection by the NF90 membrane increased significantly from 87 to 95%. 318 

Similarly, when the ESPA2 membrane was fouled by organic model foulants (SA, HA and 319 

BSA), conductivity rejection also increased. Because the fouling layer and skin layer surfaces 320 

of the RO membranes were negatively charged at pH 8 (Figure 7), the conductivity rejection 321 

increase may be attributed to an additional repelling force occurring between the fouling 322 

layer and salts. Tang et al. [32] investigated the impact of humic acid fouling using several 323 

NF/RO membranes and suggested that an increase in conductivity rejection with humic acid 324 

fouling may be attributed to an increase in repelling force between Cl-

[Figure 8] 345 

 anions and the cake 325 

layer where negatively charged humic acid is deposited (Donnan exclusion mechanism). In 326 

addition to the additional repelling force, conductivity rejection can increase when the 327 

pathways of the solute such as membrane pore (or so-called free-volume space in polymer 328 

chain [37]) and the local defects of the active skin layer are restricted with foulants. Tu et al. 329 

[38] reported a considerable increase in boron rejection when organic fouling occurred, and 330 

they suggested that the increase in boron rejection was due to the plugging of local defects or 331 

hot spots on the membrane active skin layer. In the present work, low molecular weight 332 

organic foulants present in the tertiary effluent may have narrowed down the pores within the 333 

active skin layer and/or blocked the local defects on the active skin layer surface. This 334 

additional restriction of the solute pathway may explain why the increase in conductivity 335 

rejection observed using tertiary effluent was higher than that using BSA despite their similar 336 

zeta potential of fouled membrane surface. On the other hand, the results reported here also 337 

revealed a reduction in conductivity rejection with Ludox CL fouling. Colloidal cake fouling 338 

layer depositing on membrane surface hinders back diffusion of rejected salt from the 339 

membrane surface to bulk solution, and the higher concentration gradient across the 340 

membrane is likely to result in a decrease in salt rejection (cake enhanced concentration 341 

polarisation) [31, 39]. Because the fouled membrane by colloids remarkably decreased salt 342 

rejection from 96.3% to 94.9%, the cake enhanced concentration polarisation may have 343 

played an important role in salt rejection using the fouled membrane. 344 
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3.5. Effects of membrane fouling on N-nitrosamine rejection 346 

The rejection of small organic compounds by NF/RO membranes can be governed by steric 347 

hindrance, electrostatic interactions and adsorption onto the membrane surface [40]. All N-348 

nitrosamines used are hydrophilic and uncharged at neutral pH, thus the electrostatic 349 

interactions and adsorption effects do not play a major role on their rejection performances. 350 

Previous studies also reported that N-nitrosamine rejection by NF/RO membranes in clean 351 

water matrices reached a steady state condition within a 45 min filtration period [3, 12]. 352 

Preliminary experimental results (Supplementary Material Figure S3) revealed no significant 353 

changes in the rejection of N-nitrosamines with the exception of NDEA after 1 and 48 h of 354 

filtration even in tertiary effluent feed. These results indicate that 1 h filtration is sufficient to 355 

evaluate the rejection of most N-nitrosamines in tertiary effluent. During the preliminary 356 

experiment, the concentration of some N-nitrosamines (i.e, NDMA, NMEA and NDBA) in 357 

the feed decreased as the filtration progressed. These N-nitrosamines have been reported to 358 

be readily biodegradable [4], and the reduction in these N-nitrosamines was possibly caused 359 

by biodegradation. A previous laboratory-scale study using the TFC-HR membrane [13] and 360 

preliminary experimental results using the ESPA2 membrane (Supplementary Material 361 

Figure S4) revealed that the effect of feed N-nitrosamine concentration on their rejections by 362 

these RO membranes is negligible in the range from 0.25 to 1.5 µg/L of each N-nitrosamine. 363 

Although the impact of N-nitrosamine concentration may vary depending on the specific 364 

membrane, the changes in N-nitrosamine feed concentration observed in this study are not 365 

expected to play an important role in the evaluation of N-nitrosamine rejections.  366 

In general, membrane fouling by tertiary effluent caused an increase in N-nitrosamine 367 

rejection (Figure 9). This was particularly apparent for low molecular weight N-nitrosamines 368 

such as NDMA. For example, the rejection of NDMA by the NF90 and ESPA2 membranes 369 

increased in the range from 11 to 34% and from 34 to 73%, respectively. In contrast, 370 

membrane fouling on the ESPAB membrane resulted in only a slight increase (from 82 to 371 

88%) in NDMA rejection. The results reported here also indicate that the ESPAB membrane 372 

is very effective for the removal of N-nitrosamines regardless of membrane fouling. As 373 

expected, during these filtration tests the concentrations of NDMA, NMEA and NDBA in the 374 

feed (i.e., tertiary effluent) decreased by up to 82%. The impact of SA fouling was minor, but 375 

nevertheless discernible for low molecular weight N-nitrosamines such as NDMA (Figure 376 
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10). On the other hand, membrane fouling of HA, BSA and Ludox CL had a negligible 377 

impact on the rejection of N-nitrosamines.  378 

The clear difference in the impact of membrane fouling observed between tertiary effluent 379 

(Figure 9) and model foulants (Figure 10) is intriguing. For the separation mechanism of N-380 

nitrosamines, the rejection of N-nitrosamines by NF/RO membranes has been reported to be 381 

mainly governed by steric hindrance where the interaction between N-nitrosamine molecule 382 

size and pore size of the active skin layer plays an important role in their rejection [13]. 383 

Because the molecular size of N-nitrosamines does not change under the experimental 384 

conditions, the increased rejection of some N-nitrosamines using the tertiary effluent is likely 385 

to be attributed to changes in membrane characteristics. It can be suggested that the pathway 386 

of solutes (such as membrane pore and local defects of the active skin layer) on RO 387 

membranes can be restricted with foulants present in the tertiary effluent (Section 3.4) or due 388 

to cake layer compression caused by the applied pressure increase, and these changes in the 389 

solute pathway leads to an increase of N-nitrosamine rejection.  390 

 [Figure 9] 391 

[Figure 10] 392 

4. Conclusions 393 

Membrane fouling by tertiary effluent and organic model foulants (i.e., sodium alginate, 394 

bovine serum albumin and humic acid) led to an increase in conductivity rejection due to 395 

enhanced electrostatic interactions between the fouling layer and inorganic salts. On the other 396 

hand, colloidal fouling using Ludox CL caused a reduction in conductivity retention. 397 

Membrane fouling by tertiary effluent also increased the rejection of N-nitrosamines. The 398 

rejection of low molecular weight N-nitrosamines such as NDMA was most affected by 399 

membrane fouling and the impact was most pronounced for membranes that have high 400 

membrane permeability. Although the ESPA2 and ESPAB membranes were comparable in 401 

terms of membrane permeability and fouling susceptibility the rejection of N-nitrosamines by 402 

the ESPAB membrane was very high (over 82%) regardless the impact of membrane fouling. 403 

In contrast to the results using tertiary effluent, membrane fouling by model foulants revealed 404 

only a negligible impact on N-nitrosamine rejection. Because the tertiary effluent used in this 405 

investigation contained a high fraction of low molecular weight organic substances, these 406 
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foulants may have restricted the pathway of solutes on the active skin layer of the RO 407 

membrane, resulting in an increase in N-nitrosamine rejection. The present findings provide 408 

valuable insights for predicting NDMA rejection variations observed during full-scale RO 409 

plant operation. In addition, the results reported here indicate that changes in NDMA 410 

rejection may be predicted by analysing conductivity rejection because both rejections 411 

increased as fouling progressed. During a full-scale RO plant operation fouled membranes 412 

are generally cleaned by chemical cleaning when membrane permeability drops by 15-20%. 413 

Future work is, therefore, necessary to examine the impact of chemical cleaning on the 414 

rejection of N-nitrosamines. 415 
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Table 1: Properties of the membranes used in this study. 548 

Membrane Pure water 

permeabilitya

[L/m

  
2

Conductivity 

rejection

hbar] [%] 

b 

NF90 11.7 ± 1.1 81.2 ± 2.5 

ESPA2  5.5 ± 0.3 98.1 ± 0.3 

ESPAB 3.9 ± 0.2 99.3 ± 0.4 
a Determined with Milli-Q water at 1,000 kPa and 20 °C feed temperature. Errors represent 549 

the standard deviation of three replicates. 550 
b Analysed with feed solution contained 20 mM NaCl, 1 mM NaHCO3, 1 mM CaCl2 at 551 

permeate flux 20 L/m2h, cross flow velocity 40.2 cm/s, feed pH 8.0 ± 0.1 and feed 552 

temperature 20.0 ± 0.1 °C.  553 
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Table 2: Water quality of the tertiary effluent. 554 

Parameter Value 

Turbidity 0.7 NTU 

Conductivity 790 µS/cm 

pH 7.8 

TOC 9.3 mg/L 

Na 106 mg/L + 

Mg 14 mg/L 2+ 

K 17 mg/L + 

Ca 23 mg/L 2+ 

Fe 13 mg/L 2+ 

Cl 177 mg/L - 

NO3 43 mg/L - 

SO4 46 mg/L 2- 
  555 
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Table 3: Organic matter fractions in each feed solution. 556 

 Tertiary 
effluent 

BSA Sodium 
alginate 

Humic acid 

Hydrophobic [%] 11.1 n.q. 2.0 0.4 

Hydrophilic     

     Biopolymer [%] 9.8 79.5 91.1 5.6 

     Humics [%]  

        (Mean MW [g/mol]) 

50.8  

(467) 

n.q. n.q. 68.4  

(850) 

     Building blocks [%] 15.1 8.1 2.2 9.2 

     LMW neutrals [%] 12.6 22.4 2.6 16.4 

     LMW acid [%] 0.6 0.2 2.1 n.q. 

*n.q., not quantifiable 557 
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Figure S1: Schematic diagram of the cross flow filtration system.
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Table S2: Membrane permeability by the clean and fouled membranes. 

Membrane Feed solution  Clean 

[Lm-2h-1bar-1 at 20°C] 

Fouled 

[Lm-2h-1bar-1 at 20°C] 

NF90 Tertiary effluent  11.1 5.7 

ESPAB Tertiary effluent  3.3 2.7 

ESPA2 Tertiary effluent 1st 4.9 3.6 

  2nd 5.0 3.5 

 Sodium alginate 1st 4.5 2.6 

  2nd 4.6 3.0 

 Humic acid 1st 5.0 2.9 

  2nd 5.0 3.6 

 BSA 1st 4.7 4.0 

  2nd 4.7 3.7 

 Ludox CL 1st 4.9 3.5 

  2nd 4.7 3.3 

 



 

3 
 

 
Figure S3: (a) Conductivity rejection and (b) N-nitrosamine rejection by the ESPA2 

membrane as a function of filtration period (permeate flux 20 L/m2h, crossflow velocity 40.2 
cm/s, feed temperature 20.0 ± 0.1 °C). 
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Figure S4: Rejection of N-nitrosamines by ESPA2 membrane as a function of nitrosamine 
concentration in the feed (20 mM NaCl, 1 mM NaHCO3, 1 mM CaCl2, permeate flux 20 
L/m2h, crossflow velocity 40.2 cm/s, feed pH 8.0±0.1, feed temperature 20.0±0.1 °C). 
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