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The electronic energy relaxation of polycrystalline BiFeO3 films is studied using ultrafast

pump-probe spectroscopy. After photo-excitation with femtosecond laser pulses, the relaxation of

hot electrons is identified to decay with two different characteristic times. The fast process is

attributed to scattering of electrons with lattice-vibration modes, and the slow one is corresponding

to the spin-lattice thermalization. The electron-phonon coupling is characterized by the second

moment of the Eliashberg function, khx2i. Due to the structural strain and symmetry breaking, the

electron-phonon interaction strength of tetragonal BiFeO3 films is larger than that of rhombohedral

counterparts.VC 2012 American Institute of Physics. [doi:10.1063/1.3685496]

Single phase multiferroic material, BiFeO3 (BFO), is

found in a G-type antiferromagnetic state with TN� 640K,

ferroelectric Curie temperature TC� 1100K, and exhibits a

weak ferromagnetism at room temperature.1–3 Due to large

ferroelectric polarization of �100 lC/cm2, magneto-electric

coupling, and the possibility of epitaxial strain engineering

of magneto-electric properties, BFO has attracted enormous

attention.4–7 Recently, a tetragonal BFO has been of great in-

terest, not only as it potentially possesses a giant polarization

and enhanced electromechanical response,8 but also it pro-

vides a unique example of a concurrent magnetic and ferro-

electric transition at near room temperature.9 From the

applied point of view in photonics, it has been proposed that

terahertz radiation from BFO films can be used in ferroelec-

tric domain imaging and optical readout of the state of ferro-

electric memories.10,11 In addition, due to high optical

transparency and large third order optical nonlinearities,

BFO films are promising for applications in ultrafast pho-

tonic devices.12,13

No matter the structural dependent emission of THz

radiation or the nonlinear photonic devices, a detailed under-

standing of the interaction of electron and lattice over a pico-

second time scale is an indispensable issue,14 which is

decisive for determining the functional properties of materi-

als. Transient reflectivity changes related to the temporal

evolution of the dielectric constant De is a direct signature of
the electron-phonon (e-ph) energy relaxation process with

sub-picosecond resolution. Detailed experimental data of e-

ph relaxation process have not been systematically studied in

multiferroic materials, though the relevant investigations

have been collected for metals,15,16 metal nanostructures,17

graphite,18 and high-temperature superconductors.19–22 In

this letter, the time-resolved pump-probe technique is

employed to investigate the electronic energy relaxation in

multiferroic BFO films. The sub-picosecond bi-exponential

decay is identified as the recovery of photo-excited hot elec-

trons via e-ph and spin-phonon (s-ph) relaxation processes. It

is demonstrated experimentally that the e-ph energy relaxa-

tion times (se-ph) of the tetragonal BFO films are faster com-

pared to that of the rhombohedral ones, which suggests that

e-ph interaction is enhanced by structure strain and symme-

try breaking in tetragonal BFO films.

To develop high quality BFO films for applications, epi-

taxial strains from the substrate have been widely used to

tune the crystal phase and the physical behavior, which is

known as “strain engineering”.23 The BFO epitaxial thin

films could be stabilized in several different crystal structure

systems, including monoclinic, tetragonal, rhombohedral,

and orthorhombic arrangements.24 The BFO films used in

the present study are deposited on the SrTiO3 (STO) and ytr-

rium stabilized ZrO2 (YSZ) substrates, respectively, by a

pulsed laser deposition system with a 355 nm Nd:YAG laser

source at a repetition rate of 10Hz. The deposition was car-

ried out at 600 �C with a dynamic oxygen pressure of 20

mtorr. The film thickness is about 150 nm. Figure 1 shows

FIG. 1. (Color online) The x-ray diffraction pattern of the epitaxial growth

BFO films on (a) (001)-STO and (b) (200)-YSZ. The insets illustrate the

schematic drawing of the crystal structures.

a)Authors to whom correspondence should be addressed. Electronic

addresses: ghma@staff.shu.edu.cn and cheng@uow.edu.au.
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the XRD pattern of the polycrystalline BFO films deposited

on (001)-STO and (200)-YSZ, respectively. The film on

(200)-YSZ is well crystallized with rhombohedral phase.

This rhombohedrally distorted perovskite belongs to the R3c

space group.3,7 Each Fe3þ center is coordinated by six O2�

ions, as shown in the inset of Fig. 1. The BFO film deposited

on (001)-STO is crystallized with tetragonal phase. A slight

tetragonal distortion reduces the space group to P4mm and

modifies the overall perovskite structure, therefore the local

Fe3þ environment is quasi-square pyramidal.7,25 One of the

Fe-O axial distances increases to �2.80 Å, and the Fe-O

equatorial bond lengths are reduced to �1.93 Å owing to the

structure strain and symmetry breaking.25 The pure tetrago-

nal phase with small monoclinic distortion can be stabilized

by the large epitaxial stain.26

Figure 2 displays the absorption spectrum of the tetrago-

nal BFO film compared with that of the rhombohedral analog

at room temperature. It is found that the band gap (Eg) of

rhombohedral BFO film on (200)-YSZ substrate is to be

�2.67 eV, which is about 0.2 eV larger than that of tetrago-

nal BFO film on (001)-STO substrate (Eg� 2.48 eV) by a lin-

ear extrapolation of an (a0E)
2 versus E plots to zero. This

result is consistent with the theoretical calculation, which

predicts a smaller band gap in tetragonal BFO film.25,26

The transient reflectivity changes reported here are per-

formed by using a dual-color pump-probe technique. The

light source is a commercial mode-locked Ti: sapphire laser

(Spectra-Physics, Spitfire Pro.) operated at a repetition rate

of 1 KHz, the pulse width of 120 fs, and the center wave-

length of 800 nm. The output pulse train is split by an 8:2

beam splitter. After the beam splitter, the major part is

frequency-doubled in a 1-mm BBO crystal as the pump

beam of �1 mW at the center wavelength of 400 nm

(3.1 eV), the energy of which is larger than the band gap of

BFO films. The fundamental with average power of

�100 lW acts as the probe beam. Both of the pump and

probe beams are focused on the surface of samples with near

normal incidence. The pump beam is modulated at 490Hz

with a mechanic chopper. The reflected probe signal is

detected by a photodiode connected with a lock-in amplifier

to improve the signal to noise ratio. All experiments are per-

formed at room temperature without any competing relaxa-

tion processes from the shift of energy gap or spin ordering

at low temperature.27,28

Figures 3(a) and 3(b) show the typical transient reflec-

tivity changes (DR/R) of BFO thin films on (001)-STO and

(200)-YSZ substrates, respectively. The sharp increase

around zero time delay in DR/R is corresponding to the exci-

tation of hot electrons by the 400-nm pump pulse. The

electron-electron (e-e) scattering is assumed to establish a

thermal distribution of electrons on a time scale typically

faster than the experimental time resolution. Therefore, fol-

lowing the initial rising, DR/R curves contain three succes-

sive relaxation processes. (1) The ultrafast component

(�1 ps) corresponds to the e-ph interaction, which can be

attributed to phonon thermalization through the anharmonic

decay of optical phonons. (2) The subsequent slow compo-

nent (�tens of ps) gives the information of energy exchange

between the lattice and spin systems.29,30 These two proc-

esses can be described by a convolution of the Gaussian

function G(t) (laser pulse) with a bi-exponential decay

function,

DR=R¼ A1exp � t

se�ph

� �
þA2exp � t

ss�ph

� �� �
�GðtÞ: (1)

FIG. 2. (Color online) Variations in (aE)2 with the photon energy E are

used to determine the optical band gap of the BFO films at room

temperature.

FIG. 3. (Color online) Normalized temporal evolution

of differential reflectivity of (a) tetragonal and (b)

rhombohedral BFO films on (001)-STO and (200)-

YSZ, respectively. Solid lines indicate fitting curves.

(c) Pump-fluence dependences of the peak amplitude of

DR/R and se-ph of tetragonal BFO film (blue circles)

and rhombohedral one (red squares), respectively. The

solid lines are guides to the eye.

071105-2 Jin et al. Appl. Phys. Lett. 100, 071105 (2012)

Downloaded 22 Oct 2012 to 130.130.37.84. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions



where A1 and A2 are the amplitudes of the fast and slow

components mentioned above, respectively. se-ph and ss-ph
are the relaxation time constants of the fast and slow compo-

nents, respectively. Equation (1) is used to fit the experimen-

tal data (solid lines in Figs. 3(a) and 3(b)). (3) An oscillation

component appears during the relaxation process in La and

Nb codoping BFO films. But for the samples used in the

present experiment, the oscillation component is too weak to

be identified clearly, which will be presented in another pub-

lication including the information about s-ph coupling.

The relaxation time constants se-ph of BFO films on

STO and YSZ substrates with different crystalline orienta-

tions are extracted by fitting at a pump fluence of 0.8 mJ/cm2.

It can be found that se-ph� 0.66 0.01 ps of tetragonal BFO

film on (001)-STO is faster than se-ph� 1.136 0.06 ps of

rhombohedral one on (200)-YSZ. Furthermore, the fit yields

se-ph� 1.316 0.07 ps for rhombohedral BFO film on (110)-

YSZ substrate, se-ph� 0.586 0.04 ps and 0.706 0.02 ps for

tetragonal BFO films on (110)-STO and (111)-STO sub-

strates, respectively. Remarkably, the current result eluci-

dates that se-ph is almost independent with the crystalline

orientations of the substrates, which suggests a moderate

e-ph coupling strength for the same crystal system.

In general, the photo-excited electrons relaxation time in

a metal is governed by thermalization of electrons through

e-e scattering and transfer of energy from electron degrees of

freedom to lattice degrees of freedom, referred to as the two-

temperature model (TTM).15,16 The assumption behind TTM

regime is that the relaxation time due to e-e collisions se-e
(�tens of fs) is much shorter than se-ph, as a result, electron

system and phonon system can be treated independently with

characteristic temperature of Te and Tl, respectively. A theo-

retical framework expressing se-ph is related to the second

moment of the Eliashberg function khx2i ¼ p
3

kBTe
�hse�ph

, where

hx2i is a mean-square phonon frequency.19–21 This expres-

sion suggests that se-ph is linearly dependent on temperature

of electron Te. However, in our case, se-ph is virtually pump-

fluence independent although the amplitude of the initial

peak of DR/R at zero time delay shows a linear pump-

fluence dependence, as shown in Fig. 3(c). In other words,

TTM is not applicable for multiferroic materials.

Using the kinetic Boltzmann equation with e-e and

e-ph collision integrals, the behavior of hot electrons relaxa-

tion can be re-considered, which has been done both theoret-

ically and experimentally.20,21 The calculated electron

distribution based on the analytical solution of this nonequi-

librium model (NEM) deviates from the equilibrium

Fermi-function particularly for high energies and yields

khx2i ¼ 2p
3

kBTl
�hse�ph

.21 Since the heat capacity of the lattice in

BFO films is much larger than that of electrons, then the lat-

tice temperature Tl is close to room temperature for all fluen-

ces. Our data are consistent with the NEM expectation in

poor metals without the assumption of se-e� se-ph. The e-ph
coupling parameters can be estimated, khx2i� 36.4 and

66.7 meV2 for rhombohedral BFO film on (200)-YSZ and

tetragonal one on (001)-STO, respectively. The stronger

e-ph coupling parameter of tetragonal BFO film, extracted

from the interaction between microscopic degrees of free-

dom, could be regarded as giving rise to the strong electro-

mechanical effect.8,24

In summary, the ultrafast pump-probe spectroscopy is

used to study the transient response of multiferroic BFO

films with tetragonal and rhombohedral crystal structures.

Hot electrons are photo-excited and relaxed with two differ-

ent characteristic times. The fast process is attributed to the

electron-lattice interaction, and the slow one is correspond-

ing to the spin-lattice thermalization. The relaxation time

constants se-ph of tetragonal BFO films are faster than that of

the rhombohedral ones, which suggests that the strength of

e-ph interaction is enhanced by structural strain and symme-

try breaking in tetragonal BFO films. The current experimen-

tal results indicate that crystal structure can be tuned to yield

desired e-ph coupling properties, which is necessary for

achieving predictive functionalities.
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