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ABSTRACT

A method has been developed for the determination of eight N-nitrosamines in drinking water and
treated municipal effluent. The method uses solid phase extraction (SPE), gas chromatography (GC) and
analysis by tandem mass spectrometry (MS-MS) with electron ionization (EI). The target compounds
are N-nitrosodimethylamine (NDMA), N-nitrosomethyethylamine (NMEA), N-nitrosodiethylamine
NDEA), N-nitrosodipropylamine (NDPA), N-nitrosodi-n-butylamine (NDBuA), N-nitrosodiphenylamine
(NDPhA), N-nitrosopyrrolidine (NPyr), N-nitrosopiperidine (NPip), N-nitrosomorpholine (NMorph). The
use of direct isotope analogues for isotope dilution analysis of all analytes ensures accurate
quantification, accounting for analytical variabilities that may occur during sample processing,
extraction and instrumental analysis. Method detection levels (MDLs) were determined to describe
analyte concentrations sufficient to provide a signal with 99% certainty of detection. The established
MDLs for all analytes were 0.4-4ngL~! in a variety of aqueous matrices. Sample matrices were
observed to have only a minor impact on MDLs and the method validation confirmed satisfactory
method stability over intra-day and inter-day analyses of tap water and tertiary treated effluent

samples.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

N-nitrosamines are trace organic contaminants of rapidly
growing health and regulatory concern in drinking water and
reclaimed effluent. N-Nitrosamines that have previously been
identified as drinking water or wastewater contaminants include
N-nitrosodimethylamine (NDMA), N-nitrosomethyethylamine
(NMEA), N-nitrosodiethylamine NDEA), N-nitrosodipropylamine
(NDPA), N-nitrosodi-n-butylamine (NDBuA), N-nitrosodiphenyla-
mine (NDPhA), N-nitrosopyrrolidine (NPyr), N-nitrosopiperidine
(NPip), and N-nitrosomorpholine (NMorph).

Abbreviations: ClI, Chemical ionization; DCM, Dichloromethane; DOC, Dissolved
organic carbon; EI, Electron ionisation; GC, Gas chromatography; HLB, Hydrophilic
lipophilic balance; IDL, Instrument detection level; LLD, Low level of detection;
LOD, Level of detection; MDL, Method detection level; MRM, Multiple reaction
monitoring; MS, Mass spectrometry; NDBuA, N-nitrosodi-n-butylamine; NDEA,
N-nitrosodiethylamine; NDMA, N-nitrosodimethylamine; NDPA, N-nitrosodipro-
pylamine; NMEA, N-nitrosomethyethylamine; NPip, N-nitrosopiperidine;
NMorph, N-nitrosomorpholine; NPyr, N-nitrosopyrrolidine; Q, Quadrupole; SPE,
Solid phase extraction

* Corresponding author. Tel.: +61 2 93855070; fax: +61 2 93138624.

E-mail addresses: jamesmcdonald@unsw.edu.au (J.A. McDonald),
nick_b_harden@agilent.com (N.B. Harden), longn@uow.edu.au (L.D. Nghiem),
s.khan@unsw.edu.au (S.J. Khan).

0039-9140/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
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The formation of N-nitrosamines, specifically NDMA, in treated
sewage and environmental waters has been known for around 40
years [1]. However, these chemicals have not been recognised as
important drinking water contaminants until quite recently. The
increased attention has arisen largely as a result of reports during
the last decade showing that N-nitrosamines could be commonly
formed as disinfection byproducts during chloramination of
wastewaters [2] and drinking waters [3,4].

Since then it has been shown that a much wider range of
disinfection processes including chlorine dioxide, ozone, and even
chlorine in combination with ultraviolet or advanced oxidation
processes, could lead to increased formation of N-nitrosamines
in drinking waters [5,6]. More recently it has been revealed that
N-nitrosamines can also be formed during chlorination and
chloramination in the presence of quaternary amines including
quaternary amine-based coagulants increasingly used in drinking
water treatment [7,8].

In addition to formation during disinfection processes,
N-nitrosamines can contaminate source waters to drinking water
treatment plants, particularly those that are downstream of
discharge points of wastewater treatment plants. Recent evidence
suggests that industrial or commercial discharges may lead
to high concentrations of these chemicals in raw sewage [9].
Wastewater treatment plants that chlorinate effluents prior to
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discharge, but do not achieve breakpoint chlorination, can pro-
duce even greater quantities of N-nitrosamines [10].

Regulation of N-nitrosamines in drinking waters is rapidly
increasing in many parts of the world. NDMA is currently
regulated in the Province of Ontario, Canada, at 9ngL~! [11].
A Canadian national drinking water guideline for NDMA is also
under development [12]. The California Department of Public
Health (CDPH) has set a notification level for NDMA of 10 ngL~!
and five N-nitrosamines (NDMA, NDEA, NDPA, NDPhA and NPyr)
have now been included in the final US EPA Drinking Water
Contaminants List 3 [13]. Guideline concentrations for NDMA and
NDEA (both 10 ngL~') were included in the Australian water
recycling guidelines for the planned augmentation of drinking
water supplies [14].

The World Health Organization Guidelines for Drinking Water
Quality have recently included a guideline for NDMA of
100 ng L=! [15]. This was based on an estimated upper-bound
excess lifetime cancer risk of 10>, the benchmark most com-
monly used by the WHO for setting health-based guidelines.
Consistent with this, recent Australian drinking water guidelines
have also included a health-based guideline value of 100 ng L'
for NDMA [16]. N-nitrosamines were among the highest ranked
emerging disinfection byproducts in a recent prioritization pro-
cess for future public health regulation [17].

The most commonly cited analytical method for the trace
analysis of N-nitrosamines in drinking water is the US EPA
Method 521 [18] and minor variations of it. This method is based
on gas chromatography (GC) with chemical ionization (CI)
tandem mass spectrometry (MS/MS). During the development of
this method, electron ionization (EI) was also assessed, but was
determined to be unable to provide sufficient sensitivity to for the
analysis of N-nitrosamines at low ngL~! concentrations [19].
Accordingly, CI has since been adopted for practically all GC-MS
methods reported for the trace analysis of N-nitrosamines in water.
Recent examples include Hung et al. [20] and Llop et al. [21]. The
most common alternative to this has been analysis by high
pressure liquid chromatography with tandem mass spectrometry
(HPLC-MS/MS) [22-24]. Other advanced methods have included
gas chromatography-high resolution mass spectrometry with EI
[25] and nanoelectrospray ionisation (NSI) with high-field asym-
metric waveform ion mobility spectrometry with time-of-flight
mass spectrometry [26]. However, surprisingly little attention
appears to have been paid to the possibility of improved sensi-
tivity of a low resolution triple-quadruple GC-MS/MS method
using EIL

The increasing regulation of N-nitrosamines will require many
water utilities to take up routine or occasional monitoring for
these chemicals. However, very few Australian water utilities
currently have affordable access to GC-MS/MS instruments
enabled for chemical ionisation and this situation is likely to
prevail also in many other countries. Even fewer utilities have
affordable routine access to HPLC-MS/MS or high resolution mass
spectrometry. Bench-top GC-MS/MS with EI is rapidly gaining
prominence in many environmental and water quality control
laboratories around the world. Accordingly, a sensitive and reli-
able analytical method for the analysis of N-nitrosamines using
triple quadrupole GC-MS/MS with EI is of particular interest to
the water industry.

2. Material and methods

2.1. Chemicals and SPE materials

Eight N-nitrosamines (NDMA, NMEA, NDEA, NDPA, NDBuA,
NPyr, NPip, NMorph), sodium thiosulphate (reagent grade),

dichloromethane (DCM) (spectroscopic grade) and methanol
(HPLC grade) were purchased from Supelco (St Louis, MO,
USA). N-nitrosodimethylamine-D6, N-nitrosodiethylamine-D10,
N-nitrosomethylethylamine-D3, N-nitrosodipropylamine-D14,
N-nitrosodi-n-butylamine-D9, N-nitrosopyrrolidine-D8, N-nitro-
sopiperidine-D10, N-nitrosomorpholine-D8 were purchased from
CDN isotopes (Pointe-Claire, Quebec, Canada). Supelclean coconut
charcoal SPE cartridges (2 g bed weight, particle size: 80/
120 mesh) were purchased from Supelco (St Louis, MO, USA).
Ultrapure water was produced using a Driect-Q filtering system
(equipped with a UV lamp) from Millipore (North Ryde, NSW,
Australia). Kimble culture tubes (13 mm LD. x 100 mm) and a
Thermo Speedvac concentrator (model No. SPD121P) were pur-
chased from Biolab (Clayton, Vic, Australia). Primary stock stan-
dards were prepared for each analyte and isotope-labelled
standard in methanol (1 gL~!, 20 mL) in amber vials and then
further serial diluted with methanol to obtain working standard
solutions of lower concentrations. All standard solutions were
stored at —18°C and prepared freshly every three months.
Working solutions of analytes and isotope labelled standards at
lower concentrations were stored at 4 °C and freshly prepared
from concentrated stock standards monthly. Chemical structures
of target analytes and their isotope labelled standards used in this
study are presented in Table 1.

2.2. Sample collection and preservation

All samples were collected in clean 500 mL amber glass bottles
with polytetrafluoroethylene (PTFE) lined screw caps. Ultrapure
water was produced using a Driect-Q filtering system from
Millipore (DOC=0.1 mg L~ !). Drinking water was collected from
a regular potable water tap at the University of New South Wales
(DOC=2 mg L~ "). Tertiary treated effluent was a disinfected final
effluent from a municipal wastewater treatment plant in western
Sydney (DOC=15 mg L~!). Residual chlorine was quenched in all
tap water and recycled water samples by the addition of approxi-
mately 0.5 g sodium thiosulphate per 500 mL sample.

Samples were spiked with stock solutions of all analytes for
method recovery and detection level determination. The target
concentrations of analytes were dependent on the specific experi-
ments as described in method validation studies section below.
All samples were then further spiked with isotope labelled
standards for accurate isotope dilution quantification (25 pL of a
1mgL~! stock in methanol). Spiked ultrapure water and tap
water samples were extracted without any further treatment or
processing. All samples were extracted within 24 h of collection
and spiking.

2.3. Solid phase extraction

The SPE protocol closely followed that of the US EPA method
521 [18]. Coconut charcoal SPE cartridges were conditioned
by sequentially rinsing with dichloromethane (6 mL), methanol
(6 mL) and ultrapure water (12 mL). A sample volume of 500 L.
was then drawn through the SPE cartridges under vacuum and at
a flow rate not exceeding 5 mL min~'. After loading, cartridges
were rinsed with ultrapure water (3 mL) and dried under a gentle
stream of nitrogen. Unless eluted immediately, loaded cartridges
were stored at 4 °C in sealed bags in the dark. Analytes were
eluted from the cartridge with dichloromethane (4 x 3 mL) into
20 mL glass tubes. Approximately 100 pL of toluene was added to
the eluant minimize evaporative loss of analytes during solvent
removal. The extracts were concentrated under a stream of
nitrogen to approximately 1 mL using a Turbovap LV (Caliper Life
Sciences, Hopkinton, MA, USA) and then transferred to 2 mL GC
vials for instrumental analysis.
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Table 1
Chemical structures of investigated nitrosamines.

Compound Molecular mass (g/mol) Abbreviation Structure
N-nitrosodimethylamine 74.05 NDMA (@]
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2.4. Gas chromatography--tandem mass spectrometry

Samples were analysed on an Agilent 7890A gas chromato-
graph (GC) coupled with an Agilent 7000B triple quadrupole mass
spectrometer (MS/MS).

The GC inlet was operated in splitless mode, held at a
temperature of 280 °C and lined with a single tapered deactivated
inlet liner (4 mm, Aglient Technologies). An injection volume of
1 pL was used. Analytes were separated on an Agilent DB-1701P,
(30m x0.25 mm, 0.25 pm film thickness) column using a
1.2 mL min~! ultrahigh purity helium flow. An injection volume
of 1 uL was used and the oven temperature programme was as
follows; 50 °C held for 1 min then raised to 80 °C at a rate of 10 °C
per min, increased to 180 °C at 15 °C per min, increased to 260 °C
at 35 °C per min and held for 5 min (total run time 13.8 min). The
GC/MS-MS interface temperature was maintained at 260 °C.

Mass spectrometric ionisation was undertaken in electron
impact (EI) ionisation mode with an EI voltage of 70 eV and a
source temperature of 280 °C. The triple quadrupole MS detector
was operated in multiple reaction monitoring (MRM) mode with
the gain set to 100 for all analytes. In order to identify the most
suitable transitions for MRM, analytical standards were initially
analysed in scan mode to identify suitable precursor ions in MS1
with a scan range of m/z 30 to m/z M+ 10 (where M is the mass of
the compound of interest). Fragmentation of the precursor ions in
the collision cell was assessed by performing a product ion scan

using the same mass range and scan time. Product ion intensity
was optimised for each transition by repeated injections at
different collision energies. All samples were run with a solvent
delay of 4.3 min and the analytes were separated into 5 discrete
time segments for MRM monitoring with dwell times ranging
from 10 to 50 ms, depending on the time segment, to achieve 15-30
cycles across each peak for good quantification. All ions were
monitored at wide resolution (1.2 amu at half height).

The ion transitions monitored for all analytes and isotope
standards, as well as the specific dwell times and collision
energies for the method are presented in Table 2. The first MRM
transition shown for each molecule was used for quantification
while the second transition shown was monitored only for
confirmation of molecular identification. A chromatogram showing
quantifier peaks of 8 analytes from an injection of 1 pg on-
column is presented in Fig. 1. Isotopically labelled surrogate
standards were observed to consistently elute before the native
analyte
by 0.01-0.09 s. This is in accordance with the reverse isotopic
effect for chromatographic separation of molecules in the gas
phase [27].

2.5. Identification and quantification

As described in the previous section, two MRM transitions of a
single precursor ion were monitored for each target compound.
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Table 2
GC-MS/MS method parameters.

Segment Analytes Retention MRM Collision Dwell
start time and time transitions energy time
isotope (min) (m/z) V) (ms)
standards
43 NDMA 4.56 74.0 >44.1 3 20
74.0-42.1 7 10
NDMA-D6 4,55 80.0-50.1 3 20
80.0-48.1 7 10
NMEA 5.62 88.0-71.0 3 50
88.0-430 5 50
NMEA-D3 5.6 91.0-740 3 50
91.0-46.0 5 50
NDEA 6.44 102.0-850 5 80
102.0-»56.1 10 80
NDEA-D10 6.39 112.1-94.1 5 80
112.1-62.0 10 80
8.2 NDPA 8.38 130.1-113.0 O 20
130.1-43.0 10 10
NDPA-D14 8.31 144.0-126.1 0 20
144.0-50.1 10 10
NMorph 8.72 116.0-86.0 0 20
116.0-56.1 10 10
NMorph-D8 8.7 1240940 O 20
124.0-62.0 10 10
NPyr 8.9 100.0-70.0 5 20
100.0-55.0 5 10
NPyr-D8 8.86 108.0-78.1 5 20
108.0-62.1 7 10
9.15 NPip 9.11 114.0-970 5 50
1140-840 5 20
NPip-D10 9.07 1241-106.0 5 50
12415940 5 20
10 NDBuA 10.26 158.0-»141.1 3 50
158.0-99.0 5 20
NDBuA-D18 10.17 176.2-1580 O 50
176.2-1100 5 20

Analysis of the acquired data was undertaken using Agilent
MassHunter software. The confirmed identification of a target
compound was only established once the analysis met all of the
identification criteria. These included the observed presence of
the two expected transitions at the same retention time, the area
ratio of two transitions within a range of 20% variability with
respect to the mean area ratio of all calibration solutions, and a
consistent analyte-surrogate relative retention time as that of
calibration solutions with relative standard deviation of less than
0.1 min.

2.6. Calibration

Quantitative determination of the target analytes was under-
taken using external calibration principles combined with the
isotope dilution technique. Calibration curves were comprised of
at least 5 points out of seven calibration points for the non-
labelled standards (0.5, 1, 5, 10, 50, 100, 200 and 400 ng mL~! in
DCM) prepared in GC auto-sampler vials. The lowest calibration
point used for each analyte was that corresponding to the lowest
concentration above the analyte-specific method detection
limit (MDL). Each Calibration standard included 50 ng mL~' of
isotopically labelled internal standards. A calibration curve of
relative response ratio versus relative concentration ratio of the
analyte to internal standard was generated from these standards.
A minimum of 5 calibration points was used in all cases,
depending on the concentrations of various samples. All calibra-
tion curves had a minimum correlation coefficient of 0.99 and the
calculated concentration of each -calibration standard was
required to be within 80%-120% of its true value in order for

the sample batch to be considered to have passed quality control
criteria.

2.7. Method validation studies

Isotope labelled compounds were used as surrogate standards to
correct for matrix effects, SPE recovery variability and instrumental
variations for the N-nitrosamine analytes. Method recoveries of the
target analytes were validated in ultrapure water, tap water and
tertiary treated effluent.

SPE absolute recoveries were assessed using the spiked ultra-
pure water, surface water and tertiary treated effluent samples at
both a high concentration (100 ng L~!) and a low concentration
(10ng L~1). Since the aim was to assess the loss of the target
analytes during SPE extraction, the isotope standards (50 ng)
were added to the SPE extracts only after the elution step for
direct relative comparison to the analytes.

Instrument detection levels (IDLs) were determined for a 1 pL
injection of standard solution, as the mass of an analyte that
produces a signal greater than three times the S/N of the
instrument [28]. By this criterion, IDLs were determined as an
on-column mass of 0.1 pg for NDEA and NDPA, 0.2 pg for NPip and
NDBuA, 0.3 pg for NDMA, NMEA, and NMorph and 0.9 pg NPyr.

MDLs were determined in each of the matrices described
above according to Method 1030 C from standard methods for
the analysis of water and wastewater [28]. For each matrix, seven
500 mL samples were spiked with target analytes at concentra-
tions close to the expected MDLs. The samples were then spiked
with isotopic standards, extracted and analysed through all of the
above sample processing and data quantification steps. The seven
samples were not analysed sequentially, but were divided into
two batches and processed independently on different days to
better represent day-to-day variability. MDLs were calculated by
multiplying the standard deviation of seven replicates by Stu-
dent’s T value of 3.14 (one-side T distribution for six degrees of
freedom at the 99% level of confidence). Where the calculated
MDLs were greater than the actual spiked concentration of any
target analytes, a further seven replicates spiked with higher
concentrations were analysed to calculate revised MDLs for those
analytes. Alternatively, where the calculated MDLs were 5 or
more times smaller than the actual spiked concentrations, a
further seven replicates spiked with lower concentrations were
analysed to calculate revised MDLs. This procedure was repeated
until MDLs of all target analytes were determined with a signal-
to-variability ratio within the bounds of the above criteria.

Instrument stability was assessed on an intra-day and inter-
day basis by injecting a standard solution containing all analytes
(50 ng mL~") onto the column three times per day over two
separate days and comparing the variation in the signal intensity
of each analyte standard from these injections. This variation was
expressed at the coefficient of variation (C,) determined as the
ratio of the standard deviation (o) to the mean (u). The absolute
stability of the whole method for measuring surface water and
tertiary treated effluent samples was also assessed by processing
three samples of each matrix within a day and three additional
samples for each matrix on a different day. Note that the
instrument stability calculation does not include correction by
isotope dilution, but the method stability does.

Matrix assessment was undertaken by spiking all of the target
analytes (and isotopic standards) into extracted and reconstituted
surface water and tertiary treated effluent matrix samples. These
spiked matrix samples were then analysed by GC-MS/MS.
The absolute signal of each analyte was compared to a standard
solution (prepared in DCM) of the same concentration in order to
calculate a percentage signal enhancement or suppression.
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Fig. 1. GC-MS/MS chromatogram of eight N-nitrosamines at 1 pg on column.

3. Results and discussion
3.1. Analyte recovery experiments

Background contamination of N-nitrosamines can present
problems for method validation at low ngL~' concentrations.
Sources of contamination can include rubber consumable pro-
ducts such as latex gloves [29] and pipette bulbs, as well as
ion exchange resins used to prepare ultrapure water [30]. Blank
(un-spiked) matrix samples were run to assess background
concentrations of the analytes in ultrapure water and tap water.
A background NDMA concentration of up to 3 ng L~! was found in
tap water samples. This value was variable over time making the
use of this matrix for validation problematic. This was overcome
by exposing tap water samples to ambient daylight for at least
16 h after which the background level of NDMA was undetect-
able. Background levels of five N-nitrosamines were also observed
in tertiary treated effluent samples. These five N-nitrosamines
include NDMA (20 ng L—1), NDEA (5 ng L~ 1), NMorph (6 ng L™ 1),
NPip (4 ng L~ ') and NDBuA (6 ng L~ '). Exposure of this matrix to
light was not effective for the removal of these background levels
particularly for the larger molecular weight nitrosamines and
accurate recovery determination for the compounds present in
this matrix was not possible at the 10 ng L~ ! concentration.

The calculated method recoveries of the target compounds in
ultrapure water and tap water matrices are shown in Table 3. It
was observed that the use of isotope dilution satisfactorily
corrected for any loss during sample processing, matrix effects
and instrument variation leading to accurate quantification in all
tested matrices. For ultrapure and tap water matrices method

recoveries for both low (10ngL~!) and high concentration
(100 ng L~ 1) spikes ranged from 82%-102% (max ¢=10%) for all
target compounds. As described above, five target compounds
(i.e., NDMA, NDEA, NMorph, NPip, and NDBuA) were detected in
tertiary treated effluent and thus their recoveries in the 10 ng L~!
spike were not evaluated. For the three nitrosamines (i.e., NMEA,
NDPA, and NPyr) which did not occur in tertiary treated effluent,
recoveries were in the range between 90% and 98% (max ¢=14%)
in the 10ngL~' spike (Table 3). Method recoveries for all
8 nitrosamines ranged between 81% and 111% in the 100 ng L~!
(max o=9%) spike where background levels were not so signifi-
cant relative to the spike. The results of SPE absolute recoveries of
the target compounds from low concentration (10 ngL~!) and
high concentration (100 ngL~!) spiking tests are presented in
Table 4. In tap water the absolute SPE recoveries ranged from 52%
to 94% when spiked at 100 ng L' and from 62% to 93% when
spiked at 10 ng L~ '. Absolute SPE recoveries from ultrapure water
were (51% to 93%) when spiked at 100 ng L' and (43%-99%)
when spiked at 10 ng L~ !. Relatively poor recoveries are observed
for the lower molecular weight nitrosamines such as NDMA,
NMEA and NPyr because their low log Kow values make them
highly water soluble and less likely to partition into non-polar
media [31]. Overall absolute SPE recoveries were higher in tap
water than in ultrapure water particularly for the low molecular
weight nitrosamines suggesting that dissolved inorganics and/or
organic carbon in the matrix may enhance the SPE recovery.
Absolute SPE recoveries from tertiary treated effluent ranged
from 79% to 101% when spiked at 100 ng L~ ! while when spiked
at 10ngL~' only compounds not present in this matrix
gave meaningful values; NMEA (71%), NDPA (86%), NPyr (70%).
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Method recoveries of analytes from spiking concentrations of 10 ng L~! and 100 ng L™ !, u (+ o) %.

Analytes Ultra pure water n=7 Tap water n=7 Tertiary treated effluent n=7
10ngL~! 100 ngL~! 10ngL~! 100 ngL~! 10ngL! 100 ngL~!

NDMA 100 (6) 96 (5) 90 (3) 100 (4) 111 (9)
NMEA 92 (4) 98 (4) 94 (4) 102 (1) 98 (3) 87 (4)
NDEA 88(6) 92 (7) 93 (4) 100 (2) . 86 (6)
NDPA 84(8) 93 (4) 90 (4) 100 (3) 92 (9) 84 (4)
NMorph 86(2) 90 (5) 92 (5) 100 (2) . 88 (5)
NPyr 68(10) 71 (10) 82 (8) 87 (3) 90 (14) 81 (6)
NPip 72(4) 76 (6) 86 (6) 93 (3) . 94 (4)
NDBuA 94(9) 91 (3) 104 (7) 98 (3) 90 (4)

* Background levels were observed for these compounds in tertiary treated effluent.

Table 4

SPE absolute recoveries of analytes from spiking concentrations of 10 ng L~' and 100 ng L™ ", u (+ o) %.

Analytes Ultra pure water n=7 Tap water n= 7 Tertiary treated effluent n=7
10ngL~! 100 ngL~! 10ngL~! 100 ng L~ ! 10ngL! 100 ngL~!

NDMA 43 (27) 51 (23) 79 (13) 52 (9) 79 (17)
NMEA 55 (23) 71 (10) 62 (12) 72 (5) 71 (19) 80 (9)
NDEA 66 (16) 82 (5) 72 (7) 85 (4) : 84 (7)
NDPA 83 (8) 93 (6) 87 (4) 93 (4) 86 (7) 93 (5)
NMorph 83 (7) 89 (6) 86 (5) 93 (3) ) 101 (8)
NPyr 52 (24) 63 (12) 63 (12) 69 (5) 70 (14) 79 (8)
NPip 72 (12) 78 (6) 76 (7) 83 (3) . 88 (3)
NDBuA 90 (11) 92 (3) 93 (10) 94 (5) 93 (4)

* Background levels were observed for these compounds in tertiary treated effluent.

These results emphasize the importance of isotope dilution for
SPE recovery correction among diverse matrices.

3.2. Electron ionisation optimisation

Optimization of the mass spectral parameters was undertaken
in order to enhance the sensitivity of detection in EI mode. Careful
attention was paid to the selection of suitable MRM transitions to
produce product ions of high intensity and minimal interference.
Once these transitions were selected, product ion formation was
optimised by running numerous experiments at variable collision
energies (between 0 and 40 V). Dwell times were adjusted to
ensure sufficient peak definition.

Electron ionization is regarded as being a ‘hard’ ionization
technique, compared to most chemical ionization processes
which are typically considered to be ‘soft’ ionization techniques.
This means that EI tends to result in greater fragmentation of the
molecular ion compared to CI (which may not lead to fragmenta-
tion at all). This can lead to a loss of sensitivity, especially for
small molecules such as NDMA (MW of 74 amu). In the optimized
method, the selected precursor ion was in all cases the molecular
ion. Tests were undertaken to optimize the formation of the
molecular ion by decreasing the ionization energy. To do this, the
electron ionization energy was decreased from the nominal 70 . to
60, 50, 40 and 30 eV. However, in all cases this did not further
improve the formation of the molecular ion. This is shown by
observation of the NDMA MRM transition m/z 74 —»44.1 in Fig. 2.
All other nitrosamines showed similar decrease in response with
decreasing electron ionization energies.

Change in MS source temperature afforded significant
increase in peak area with higher temperature. Fig. 3 shows a
100 ng NDMA peak under increasing source temperatures.
From these experiments it was observed that 300 °C was the
optimum source temperature for NDMA, with lower ion for-
mation observed at 250°C and 350 °C. Other nitrosamines

showed slight reduction of response at 300 °C so an ion source
temperature of 280 °C was selected for an overall optimization
of response for all nitrosamines.

3.3. Method detection levels

In previously reported methods, the approach taken to deter-
mine the analytical detection limit has been varied (and often not
explicitly stated). The most common procedure has been to
identify an analyte concentration for which a signal-to-noise ratio
(S/N) of 3 can be obtained. The concentration obtained by this
approach is most correctly termed the ‘lower level of detection’
(LLD) or the ‘level of detection’ (LOD) [28]. This approach is
intended to set the probability of both false positives and false
negatives at 5%. However, the LLD method is not well suited to
GC-MS/MS analysis since it is commonly not possible to observe
any ‘noise’ (see Fig. 1). A more robust (but somewhat more
conservative) approach for defining detection limits is adopted
in this study and is referred to as the ‘method detection level’
(MDL). The MDL is used to describe the analyte concentration
that, when processed through the complete method, produces a
signal with a 99% probability that it is different from the blank [28].
In ultrapure water and tap water, MDLs typically ranged between
0.4 and 1.7 ng L~ (Table 5). The MDLs of NMEA, NDPA and NPyr in
tertiary treated effluent ranged between 0.9ng L~' and 4ng L'
(Table 5). Determination of MDLs of the other N-nitrosamines in
this matrix was not possible because of the occurrence of these
compounds in un-spiked tertiary treated effluent (see analyte
recovery experiments section above).

3.4. Instrument stability, matrix effects and calibration range
The results of instrument and method stability assessments

are presented in Table 6. The coefficients of variability (C,=a/u)
on an intra-day basis ranged from 0.01 to 0.09. Slightly greater
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Fig. 2. Effect of decreasing electron energy on 100 ng sample of NDMA. Decreased electron energy led to a decrease in ionization rather than decreased fragmentation of
the molecular ion.
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Fig. 3. Effect of ion source temperature on NDMA response (Legends: red—150 °C; black—200 °C; green—250 °C; purple—300 °C; Blue—350 °C). An optimum source
temperature of 300 °C was identified for NDMA, but 280 °C was more generally optimal for all analytes.
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Table 5

Instrument detection limits (IDL) and method detection limits (MDL) of target analytes in three water matrices.

Analyte IDL pg (on column) Ultra pure water MDL (ngL~ ') n=7 Tap water MDL (ng L~ ') n=7 Tertiary treated effluent MDL (ngL~ ') n=7
NDMA 0.3 0.45 0.81

NMEA 0.3 0.55 0.64 0.9

NDEA 0.1 0.94 0.83 )

NDPA 0.1 0.83 0.96 2.7

NMorph 0.3 0.67 0.43 )

NPyr 0.9 1.16 1.50 4.0

NPip 0.2 0.91 0.67 )

NDBuA 0.2 1.66 1.14

Note: injection volume is 1 pL, thus 1 ng L~! is equal to 1 pg on column mass.

* MDLs for these compounds in tertiary treated effluent were unable to be determined due to background levels in this matrix.

Table 6

Coefficient of variation C,=¢/u for instrument stability and method stability of target analytes in various water matrices.

Analytes Instrument stability® Method stability”

Standard 100 ng mL~’

Tap water 100 ng L~ ! Tertiary treated effluent 100 ng L !

Intra-day n=3 Inter-day n=6 Intra-day n=3 Inter-day n=6 Intra-day n=3 Inter-day n=6
NDMA 0.01 0.03 0.06 0.06 0.07 0.06
NMEA 0.02 0.02 0.04 0.03 0.05 0.06
NDEA 0.01 0.01 0.04 0.05 0.07 0.05
NDPA 0.06 0.09 0.09 0.09 0.09 0.08
NMorph 0.01 0.04 0.03 0.05 0.05 0.04
NPyr 0.01 0.04 0.05 0.04 0.09 0.08
NPip 0.01 0.02 0.03 0.04 0.05 0.05
NDBuUA 0.04 0.04 0.05 0.05 0.06 0.04

2 Instrument stability not corrected by isotope dilution.
> Method stability includes correction by isotope dilution.

Table 7
Signal enhancement/suppression in surface water and tertiary treated effluent
matrices from a spiking concentration of 10ng L™, i (+ o) %.

Tap water matrix n=3  Tertiary treated effluent matrix n=3

NDMA —11(+8) —-10(+9)
NMEA —-10(+8) —10(+10)
NDEA —-11(+9) -7 (+12)
NDPA -8 (+8) -6 (+12)
NMorph  —11(+8) -7 (+13)
NPyr —12(+10) -8 (+16)
NPip —-10(+6) -7 (+12)
NDBuA —-19(+10) —0(+17)

coefficients of variability for instrument variability were observed
on an inter-day basis, from 0.01 to 0.09. Coefficients of variability
for the full method analysis of spiked tap water and tertiary
effluent samples on both an intra-day and inter-day basis were
observably higher. These varied from 0.04 to 0.09 and this
observation emphasises the important of the isotope dilution
process to ensure a high level of analytical reproducibility.

The results of the signal enhancement/suppression assess-
ment in surface water and tertiary treated effluent matrices
are presented in Table 7. This data represent the means and
standard deviations of three samples assessed in each of the
two matrices. Signal suppression was evident for all analytes.
In tap water this ranged between 8% and 19% and 0% and 10%
for tertiary treated effluent. While these results show less
overall signal suppression in the tertiary treated effluent, large
relative standard deviations for this matrix reveal a high
degree of variability thus obscuring any real trends. This
variability again reinforces the importance of isotope dilution
for accurate quantification in real sample matrices.

The linear calibration range for the target compounds was
determined to be from their identified MDLs to 400 ng L~ !, thus
the upper quantification limit is 400 ng L~! for all analytes. The
calibration points for each of the analytes were fitted to linear
regressions and the calibration curve regression correlation coef-
ficients were always at least 0.99 for all sample batches.

4. Conclusion

A rapid analytical method was developed for the analysis
of eight N-nitrosamines in aqueous matrices. While closely follow-
ing previously developed extraction procedures this is the first
method to employ GC coupled to tandem mass spectrometry using
electron impact ionisation rather than chemical ionisation.
The use of GC-MS/MS has enabled unambiguous identification
and non-interfering quantification of closely eluting chromato-
graphic peaks in a very short analysis time of only 14 min.

The use of isotope dilution for all analytes ensures the accurate
quantification, accounting for analytical variability that may be
introduced during sampling, extraction, chromatography, ionisa-
tion or mass spectrometric detection.

The established MDLs for most analytes were 0.4-4ng L~ !ina
variety of aqueous matrices. Higher MDLs were observed for
analytes in tertiary treated effluent however determination of
this and other validation parameters was hindered by background
concentration in this matrix. The method validation confirmed
good method stability over intra-day and inter-day analyses.

Acknowledgements

This work was supported by the Australian Research Council
Linkage Projects LP0989365 (with industry support from Veolia



154 J.A. McDonald et al. / Talanta 99 (2012) 146-154

Water and Seqwater). Additional funding and technical assistance
was provided by Agilent Technology. The Authors thank Mr
Jackson Wong for his assistance with sample extraction and
Sydney Water for providing tertiary treated effluent for method
validation studies.

References

[1] A. Ayanaba, M. Alexander, J. Environ. Qual. 3 (1974) 83-89.

[2] J. Choi, R.L. Valentine, Water Res. 36 (2002) 817-824.

[3] W.A. Mitch, D.L. Sedlak, Environ. Sci. Technol. 36 (2002) 588-595.

[4] W.A. Mitch, J.O. Sharp, RR. Trussell, R.L. Valentine, L. Alvarez-Cohen,
D.L. Sedlak, Environ. Eng. Sci. 20 (2003) 389-404.

[5] Y.-Y. Zhao, ].M. Boyd, M. Woodbeck, R.C. Andrews, F. Qin, S.E. Hrudey, X.-F. Li,
Environ. Sci. Technol. 42 (2008) 4857-4862.

[6] A.D. Shah, W.A. Mitch, Environ. Sci. Technol. 46 (2012) 119-131.

[7] J.M. Kemper, S.S. Walse, W.A. Mitch, Environ. Sci. Technol. 44 (2010)
1224-1231.

[8] S.-H. Park, S. Wei, B. Mizaikoff, A.E. Taylor, C.d. Favero, C.-H. Huang, Environ.
Sci. Technol. 43 (2009) 1360-1366.

[9] M. Krauss, P. Longree, F. Dorusch, C. Ort, J. Hollender, Water Res. 43 (2009)
4381-4391.

[10] S.W. Krasner, P. Westerhoff, B.Y. Chen, B.E. Rittmann, G. Amy, Environ.
Sci. Technol. 43 (2009) 8320-8325.

[11] Safe Drinking Water Act, Ontario Regulation 169/03: Ontario Drinking Water
Quality Standards, (2002).

[12] Health Canada, Federal-Provincial-Territorial Committee on Drinking Water:
Guideline Technical Document on N-nitrosodimethylamine (NDMA) in
Drinking Water for public comment. Website: <http://www.hc-sc.gc.ca/
ewh-semt/consult/_2010/ndma/index-eng.php >, 2010.

[13] Environmental Protection Agency, Drinking Water Contaminant Candidate
List 3-Final. EPA-HQ-OW-2007-1189 FRL-8963-6, 2009.

[14] Natural Resource Management Ministerial Council, Environment Protection
and Heritage Council, National Health and Medical Research Council, in:
National Water Quality Management Strategy, Canberra, 2008.

[15] World Health Organization, Guidelines for drinking-water quality, fourth
edition, 2011.

[16] National Water Quality Management Strategy, Australian Drinking Water
Guidelines, National Health and Medical Research Council, Natural Resource
Management Ministerial Council—Government of Australia, Canberra, 2011.

[17] A. Hebert, D. Forestier, D. Lenes, D. Benanou, S. Jacob, C. Arfi, L. Lambolez,
Y. Levi, Water Res. 44 (2010) 3147-3165.

[18] J.W. Munch, M.V. Bassett, In, National Exposure Research Laboratory, Office
of Research and Development, US EPA., Cincinnati, Ohio, 2004.

[19] J.W. Munch, M.V. Bassett, ]. AOAC Int. 89 (2006) 486-497.

[20] H.W. Hung, T.F. Lin, C.H. Chiu, Y.C. Chang, T.Y. Hsieh, Water Air Soil Pollut.
213 (2010) 459-469.

[21] A. Llop, F. Borrull, E. Pocurull, J. Sep. Sci. 33 (2010) 3692-3700.

[22] Y.Y. Zhao, ]. Boyd, S.E. Hrudey, X.F. Li, Environ. Sci. Technol. 40 (2006)
7636-7641.

[23] M.H. Plumlee, M. Lopez-Mesas, A. Heidlberger, K.P. Ishida, M. Reinhard,
Water Res. 42 (2008) 347-355.

[24] C. Ripollés, E. Pitarch, ].V. Sancho, FJ. Lopez, F. Hernandez, Anal. Chim. Acta
702 (2011) 62-71.

[25] C. Planas, O. Palacios, F. Ventura, ]. Rivera, ]. Caixach, Talanta 76 (2008)
906-913.

[26] Y.Y. Zhao, X. Liu, J.M. Boyd, F. Qin, J.J. Li, X.F. Li, ]. Chromatogr. Sci. 47 (2009)
92-96.

[27] M. Possanzini, A. Pela, A. Liberti, G.P. Cartoni, J. Chromatogr. A 38 (1968)
492-497.

[28] A.D. Eaton, L.S. Clesceri, EW. Rice, A.E. Greenberg (Eds.), American Public
Health Association, Washington DC, USA, 2005.

[29] D. Feng, H.P. Wang, X.L. Cheng, ].D. Wang, LF. Ning, Q.F. Zhou, Y. Zhou,
Q.L. Yang, Int. J. Hyg. Environ. Health 212 (2009) 533-540.

[30] J.M. Kemper, P. Westerhoff, A. Dotson, W.A. Mitch, Environ. Sci. Technol. 43
(2009) 466-472.

[31] T. Fujioka, L.D. Nghiem, S.J. Khan, ]J. McDonald, Y. Poussade, J.E. Drewes,
J. Membr. Sci., 409-410 (2012) 66-74.



	University of Wollongong
	Research Online
	2012

	Analysis of N-nitrosamines in water by isotope dilution gas chromatography-electron ionisation tandem mass spectrometry
	James A. McDonald
	Nick B. Harden
	Long D. Nghiem
	Stuart J. Khan
	Publication Details



