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ABSTRACT
RFID Grouping proof convinces an offline verifier that multi-
ple tags are simultaneously scanned. Various solutions have
been proposed but most of them have security and privacy
vulnerabilities. In this paper, we propose an elliptic-curve-
based RFID grouping proof protocol. Our protocol is proven
secure and narrow-strong private. We also demonstrate that
our grouping proof can be batch verified to improve the ef-
ficiency for large-scale RFID systems and it is suitable for
low-cost RFID tags.

1. INTRODUCTION
Radio Frequency Identification (RFID) technologies are

widely deployed in the industry such as logistics and sup-
ply chain management nowadays. Goods are attached with
RFID tags and their information is stored in the tags. Con-
sider the application scenario where several items are re-
quired to be delivered together. The logistics service provider
needs a proof to convince the customer that this has been
achieved. In 2004, Juels [12] introduced the concept called
yoking proof that proves two tags has been scanned simulta-
neously. In his proposal, an untrusted reader interacts with
two tags and generates a proof to guarantee the combined
presence for the trusted offline verifier. Later, Saito and
Sakurai [19] extended the concept to grouping proof which
allows multiple tags to generate the proof of presence.

Numerous protocols have been proposed in the literature
since the introduction of yoking/grouping proof. Juels pre-
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sented two yoking-proofs in [12] based on message authenti-
cation code (MAC). However, both of them are vulnerable to
replay attacks and compromised tag attacks as illustrated in
[19, 3, 4]. Subsequently, some other grouping proof schemes
based on MAC were proposed in [19, 18] but they are still
vulnerable to replay attacks. In 2008, Burmester, Medeiros
and Motta [4] presented a security model for grouping proofs
based on Universal Composability framework. They pro-
posed three grouping proof schemes that provide anonymity
and forward security properties. The protocols are proved
secure in their model. Later, Peris-Lopez, Orfila, Hernandez-
Castro and Lubbe [17] showed that the protocol is vulner-
able to impersonation attacks. Some other protocols based
on symmetric-key cryptography were proposed in [15, 7, 6,
11, 5]. However they all suffer impersonation attacks and/or
anonymity attacks as illustrated in [17].

Recent studies [1, 8, 14] show that public-key cryptogra-
phy is feasible for lightweight RFID tags. Batina et al. [2]
proposed a grouping proof based on elliptic curve cryptog-
raphy to prevent colluding tag attacks. But the scheme is
vulnerable to impersonation attacks and man-in-the-middle
(MITM) attacks as shown in [10]. Hermans and Peeters
[10] introduced two grouping proof protocols. The protocols
are proved to be impersonation attack resistant and narrow-
strong private. As [16] pointed out, however, whether the
protocols are secure against MITM attacks is not clear. Vau-
denay [20] proved that it is essential to employ public-key
cryptography in RFID to fulfil the highest privacy require-
ment. Symmetric-key based RFID protocols always leak
messages with recognisable information and is not scalable
in large-scale RFID systems. Moreover, corrupted tags are
identifiable even in past and future protocol runs. In this
paper we focus on public-key based grouping proof proto-
cols to guarantee security against powerful adversaries and
provide strong tag privacy.

1.1 Our Contribution
We propose a novel and efficient RFID grouping proof

protocol based on elliptic curve cryptography. The scheme
is provably secure against MITM attacks and impersonation
attacks. It offers tag privacy against powerful narrow-strong



adversaries in the model described in [9]. Additionally we
show that our protocol is especially suitable for verifying
proofs generated by a large number of tags.

The rest of this paper is organised as follows: In Section 2,
we describe the preliminaries for our scheme and define the
security and privacy model. Our elliptic-curve-based RFID
grouping proof protocol is proposed in Section 3. In Section
4, we analyse our scheme and prove its security and privacy.
In Section 5, we show how to develop our scheme into an
efficient batch proof verification scheme and we evaluate the
performance of the scheme. Section 6 concludes this paper.

2. PRELIMINARIES
We now give the definitions of related complexity assump-

tions and present the security and privacy model.

2.1 Complexity Assumptions
Let G be a cyclic additive group with order q, where q is

a k-bit prime.

Definition 2.1. Computational Diffie-Hellman
(CDH) Problem. Given a randomly chosen generator P ∈
G, as well as aP , bP for unknown randomly chosen a, b ∈
Z∗q , compute abP .

Definition 2.2. Decisional Diffie-Hellman (DDH)
Problem. Given a randomly chosen generator P ∈ G, as
well as aP , bP and cP for unknown randomly chosen a, b,
c ∈ Z∗q , decide whether cP = abP .

Definition 2.3. Decisional Diffie-Hellman (DDH)
Assumption. The DDH problem is (t, ε)-hard, if there is
no probabilistic polynomial-time adversary A that can solve
the DDH problem with a probability SuccDDH > ε in time t.

Definition 2.4. One More Computational Diffie-
Hellman (OMCDH) Problem. Given a randomly cho-
sen generator P ∈ G, an element aP ∈ G, an oracle that
can solve the CDH problem for the given aP and arbitrary
bP ∈ G, and a challenge oracle that returns random point
biP ∈ G. After n+ 1 queries to the challenge oracle and at
most n queries to the CDH oracle, an efficient polynomial-
time algorithm must compute the solutions abiP of all CDH
instances with input aP , biP (i = 0, 1, ..., n).

Definition 2.5. One More Computational Diffie-
Hellman (OMCDH) Assumption. The OMCDH prob-
lem is (t, ε)-hard, if there is no probabilistic polynomial-time
adversary A that can solve the CDH problem with a proba-
bility SuccOMCDH > ε in time t.

2.2 Security and Privacy Model
There are three different parties engaging in the grouping

proof protocol: a group of tags, a reader and a verifier.

• Tags Ti are low-cost devices and are able to perform
lightweight cryptographic operations such as elliptic
curve cryptography. A unique key is assigned to each
of the tags while some secrets may also be shared
among all the tags.

• Reader R is potentially untrusted since it can be con-
trolled by a malicious third party.

• Verifier V is an offline trusted third party. Its public
key is known by all parties involving in the protocol.

The reader coordinates the execution of the protocol and
relays the messages between the tags. At the end of the
protocol run, the grouping proof is constructed by the tags
and the reader for the verifier to verify at a certain time
later. Both the tags and the reader have a timeout mech-
anism. They measure the time between sending a message
and receiving the corresponding response. Once the time
exceeds the preset threshold, the protocol execution will be
terminated. This mechanism guarantees the grouping proof
is generated by simultaneously scanning the tags.

Tags are vulnerable to compromise due to their limited
computational capability. An adversary can read the inter-
nal state of a tag. We consider the attack scenario where at
most n − 1 tags in a group of n tags are compromised. It
is a trivial case that the adversary compromises all the tags
and obtains their secrets because it can then forge a valid
grouping proof easily while none of the tags is present.

We use the privacy model introduced by Hermans et al.
[9] in this paper. The oracles defined in the model are as
follows.

• CreateTag(ID)→ Ti: the oracle takes the identifier ID
of a tag as input and registers the tag to the server. Ti

is returned as the reference of the tag.

• Launch()→ π,m: the oracle launches a new protocol
instance π as well as the first message m sent by the
reader.

• DrawTag(Ti, Tj)→ vtag: the oracle takes two tag ref-
erences Ti and Tj as input and generates the virtual
reference vtag. Depending on the value of a random
bit b chosen by the challenger, vtag refers to either Ti

(if b = 0) or Tj (if b = 1). The oracle outputs ⊥ if
either of the tags has been drawn without being freed.
Otherwise it outputs vtag.

• Free(vtag)b: the oracle takes vtag as input and re-
trieves the tuple (vtag, Ti, Tj). Depending on the same
value of b chosen by the challenger, the oracle resets
the volatile memory of tag Ti (if b = 0) or Tj (if b = 1).
Then the oracle moves Ti and Tj from the set of drawn
tags to the set of free tags.

• SendTag(vtag,m)b → m′: the oracle takes a message
m and a tag reference vtag as input. It retrieves the
tuple (vtag, Ti, Tj) and sends m to Ti (if b = 0) or
Tj (if b = 1). Then the oracle outputs the response
message m′ from the tag.

• SendReader(π,m) → m′: the oracle takes a protocol
instance π and a message m as an input. It returns ⊥
if π is not an active instance. Otherwise it outputs the
response m′ from the reader.

• Corrupt(Ti)→ s: the oracle takes a tag reference Ti as
input, and outputs the internal state s of the tag.

Note that we omit the detail of the oracle Result(π). The
oracle is not used in grouping proof protocol because the
verifier verifies the grouping proof offline at a certain stage
later.



The model also defines eight different notions for privacy
and adversaries. A wide adversary has access to Result oracle
while a narrow adversary does not. Result is not used in the
grouping proof protocol as we mentioned above. Thus we
only consider narrow adversaries in this paper. Orthogonal
to these two classes, there are weak, forward, destructive and
strong adversaries. They are classified with the capabilities
of different oracle access. A strong adversary can access all of
the seven oracles defined above multiple times in any order.

2.3 Grouping Proof
A sound grouping proof protocol should be correct, secure

and private. Correctness means a legitimately generated
grouping proof will always be accepted and all the involved
tags should be identified by the verifier correctly.

A scheme is secure if an adversary cannot impersonate a
legitimate tag and forge a valid proof without corrupting
this tag. We consider two types of adversary based on the
ability.

Type I adversary (AI) can perform MITM attacks to
grouping proof protocols. AI can interact with the system
by calling Launch, SendTag, SendReader oracle. The tags are
assumed to be non-compromised. After the oracle calls, AI

outputs a proof that is not constructed when all the tags
are in a matching session (otherwise the proof is valid). AI

wins if the proof is accepted by the verifier. The details of
Type I security experiment are described in Figure 1.

Experiment Expsecure
S,AI

(k):

• Setup: The challenger S

- initialises the system with the security param-
eter k.

- sets up the verifier and creates a set of tags.

• Learning: AI interacts with Launch, SendTag,
SendReader oracles.

• Challenge: AI returns a candidate grouping proof
σ for a set of tags {Ti : i ∈ [0, n]} ⊆ T . If σ is ac-
cepted by the verifier and σ is not constructed when
all the tags Ti are in the same protocol instance, S
outputs 1. Otherwise outputs 0.

Figure 1: Type I Security experiment of grouping
proof protocols.

Definition 2.6. An RFID tag grouping proof scheme is
secure against MITM attacks, if for any polynomially bounded
adversary AI , the probability of success of winning the ex-
periment Expsecure

S,AI
(k) is negligible. In other words,

Advsecure
AI

= |Pr[Expsecure
S,AI

(k) = 1]| ≤ ε.

Type II adversary (AII) is able to compromise tags and
perform impersonation attacks. AII monitors the commu-
nications between the reader and all the participating tags,
and controls all the tags in the group except for one tag T0.
Note that we do not consider the attack scenario where all
the tags are compromised because it would allow the ad-
versary to generate a valid proof without the presence of

the tags. AII is able to interacts with the system by using
SendTag, SendReader, Corrupt oracles. AII outputs a proof
in the end without the presence of T0. AII wins if the proof
is accepted by the verifier. The details of Type II security
experiment are described in Figure 2.

Experiment Expsecure
S,AII

(k):

• Setup: The challenger S

- initialises the system with the security param-
eter k.

- sets up the verifier and creates a set of tags.

- picks a tag T0 as the target tag.

• Learning: AII interacts with SendTag and
SendReader oracles for all the tags. AII can also
interacts with Corrupt(Ti) oracle for Ti 6= T0.

• Challenge: AII returns a candidate grouping proof
σ. If σ is accepted by the verifier, S outputs 1.
Otherwise outputs 0.

Figure 2: Type II Security experiment of grouping
proof protocols.

Definition 2.7. An RFID tag grouping proof scheme is
secure against Type II attacks, if for any polynomially bounded
adversary AII , the probability of success of winning the ex-
periment Expsecure

S,AII
(k) is negligible. In other words,

Advsecure
AII

= |Pr[Expsecure
S,AII

(k) = 1]| ≤ ε.

The privacy of grouping proof protocols is based on an in-
distinguishing experiment. The challenger sets up a system
and pick a random bit b. The adversary is able to interact
with the system by using CreateTag, Launch, DrawTag, Free,
SendTag, SendReader, and Corrupt oracles. After interact-
ing with the oracles, A outputs a guess bit g. A wins if
g = b. The details of the privacy experiment are described
in Figure 3.

Experiment ExpNS−private,b
S,A (k):

• Setup: The challenger S

- initialises the system with the security param-
eter k.

- sets up the verifier.

- chooses b ∈R {0, 1}.

• Learning: A interacts with all the seven oracles de-
fined above.

• Challenge: A returns a guess bit g. If g = b, S
outputs 1. Otherwise outputs 0.

Figure 3: Narrow-strong privacy experiment of
grouping proof protocols.



Definition 2.8. An RFID tag grouping proof scheme is
narrow-strong private, if for any polynomially bounded ad-
versary A of the class narrow-strong, the probability of suc-
cess of winning the experiment ExpNS−private,b

S,A (k) is negli-
gible. In other words,

AdvNS−private
A = |Pr[ExpNS−private

S,A (k) = 1]− 1

2
| ≤ ε.

3. OUR PROPOSED PROTOCOL
Firtly, we propose an RFID grouping proof protocol based

on elliptic curve cryptography, which is shown in Figure 5.
The steps of our proposed protocol is illustrated below.
Initialisation phase

Let E be an elliptic curve defined over a finite field Z∗q ,
where q is an k-bit prime number. Assume P is a generator
of G, which is an additive cyclic group of points on the ellip-
tic curve E. Let (xi, Xi = xiP ) denote the private/public
key pairs of the tag Ti in a group of n tags, and (y,Y = yP )
denote the private/public key pair of the verifier V , where
xi, y ∈ Z∗q . H : {0, 1}d × {0, 1}k × {0, 1}k → {0, 1}k is a
random function that takes as input a d-bit and two k-bit
strings, and outputs a k-bit string. kg ∈ {0, 1}d is a d-bit
randomly selected group secret key and shared between tags.
The notations are depicted in Table 1.

Table 1: Notion of symbols

P : a generator of the elliptic curve
xi : the private key of the tag Ti

Xi(= xiP ) : the public key of the tag Ti

y : the private key of the verifier V
Y (= yP ) : the public key of the verifier V
kg : the group secret key shared between the tags
H : a random function

Construction phase
The grouping proof is constructed by the tags in a chain

structure as shown in Figure 4.

1. The reader R randomly chooses a number rs ∈ Z∗q and
broadcasts (“init”, rs) to a group of tags to launch a
new protocol run.

2. Each tag Ti randomly chooses ri ∈ Z∗q and sends ri to
R. Upon receiving the responses from all the tags, R
assigns an index to each of the tags, which indicates
the order for R to interact the tags.

3. For the tag T0, R sends rn−1 as input. T0 randomly
chooses s0 ∈ Z∗q and sends A0 = s0H(kg, rn−1, r0)Y ,
B0 = s0P + x0rsP to the reader R. For each tag
Ti, 1 < i ≤ n− 1, R sends ri−1 as input and gets
(ri, Ai, Bi) as output, where Ai = siH(kg, ri−1, ri)Y ,
Bi = siP + xirsP .

4. R outputs σ = {rs, (ri, Ai, Bi)i∈[0,n−1]} as the group-
ing proof and send σ to the verifier for later verifica-
tion.

The details of our protocol is illustrated in Figure 5.

4. PROTOCOL ANALYSIS
We analyse our scheme in three steps. Firstly we show

the correctness of our scheme; secondly we investigate the
security of our scheme; finally we prove the privacy of our
scheme.

4.1 Correctness
To verify the grouping proof, the verifier V first checks

that the proof was not used before to prevent replay attacks.
Then V performs the computations for i ∈ [0, n− 1]

hi =

{
H(kg, rn−1, r0), if i = 0.

H(kg, ri−1, ri), otherwise.

Xi = r−1
s (Bi − y−1h−1

i Ai).

The reader can directly retrieve the public key of each tag
from the proof instead of an exhaustive search through a
database. If all the public keys are in the database and in
the same group, the proof is accepted.

4.2 Security

Theorem 4.1. The proposed grouping proof protocol is
secure against Type I attacks in the random oracle model

if (2k−n)!

2k!
is negligible.

Proof. Let AI be a Type I adversary that can perform
MITM attacks to our proposed protocol. A simulator S
sets up the system (k, q, d, P,G, E,H). Assume there are n
tags in the group. Let kg denote the shared group key. Let
(xi, xiP ) denote the private/public key pair of the tag Ti.
Let (y, Y = yP ) denote the key pair of the verifier. S main-
tains a list LH = {(kg, rj , ri, h)} and a list LT = {(Ti, ri)}.
Both lists are initially empty. W.l.o.g. we assume there is
only one tag T0 that is not in the same protocol instance
with the other tags. AI calls Launch oracle twice and gets
(π0, rs0P ) and (π1, rs1P ). Let π0 denote the protocol in-
stance where AI interacts with T0 and π1 denote the in-
stance for the rest tags. S simulates SendTag oracle as fol-
lows:

- First SendTag(Ti, rsP ): If (Ti = T0 ∧ rsP = rs0P )∨ (Ti 6=
T0 ∧ rsP = rs1P ), S outputs ri ∈R Z∗q ; otherwise outputs
⊥. If there is an entry (Ti, ·) in LT , S removes the entry.
S adds (Ti, ri) to LT .

- Second SendTag(Ti, rj): If there is no entry (Ti, ·) in LT , S
outputs⊥. Otherwise S retrieves ri from the entry (Ti, ri).
S looks up the list LH . If there is an entry (kg, rj , ri, ·)
in LH , S obtains the value h; otherwise, S selects h ∈R

{0, 1}k such that there is no existing entry (kg, ·, ·, h) in
LH , and adds (kg, rj , ri, h) to LH . If Ti = T0, S outputs
(A = shY,B = sP + x0rs0P ); otherwise S outputs (A =
shY,B = sP + xirs1P ), where s ∈R Z∗q .

At the end of the game, AI outputs

σ = {r∗s , (r∗i , A∗i , B∗i )|i ∈ [0, n− 1]}

as the candidate proof. Upon receiving σ, S checks LH . If
there is an entry (kg, r

∗
i−1, r

∗
i , h
∗
i ), S retrieves the value h∗i ;

otherwise, S randomly chooses h∗i ∈ {0, 1}k such that there
is no entry (kg, ·, ·, h∗i ). S adds (kg, r

∗
i−1, r

∗
i , h
∗
i ) to LH . Note

that for i = 0, r∗i−1 = r∗n−1. S then verifies

Xi = r∗s
−1

(B∗i − y−1h∗−1
i A∗i ).
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Figure 4: Grouping proof systems

If the equation holds, the grouping proof is valid and
Expsecure

S,AI
(k) outputs 1. In order for this to occur, AI must

use the same h∗i to compute Ai. By the definition of Type
I adversary AI cannot corrupt the tags to get kg, so AI

has no access to the list LH . Since LH is uniformly dis-
tributed, AI can only choose the same {h∗i |i ∈ [0, n − 1]}
with the probability no more than 1

P (2k,n)
. Thus we have

Advsecure
AI

≤ (2k−n)!

2k!
. �

Theorem 4.2. The proposed grouping proof protocol is
secure against Type II attacks if the OMCDH problem is
(t, ε)-hard in a cyclic additive group G.

Proof. Assume AII is a Type II adversary against the pro-
posed protocol. We now show how to construct an algorithm
B to solve the OMCDH problem that executes AII . Let P
be a generator of G of order k. Let OCDH(P, aP, bP ) be an
oracle that outputs the CDH solution abP . Let O1 be an
oracle that outputs a random element bP ∈ G. Given an
OMCDH instance (P, aP, b0P, ..., bnP ), B now sets up the
system. B creates a group of m tags. W.l.o.g. we assume T0

is the target tag that AII wants to impersonate. B sets aP
as the public key and a as the private key of T0. Note that
a is unknown to B. B randomly selects private/public key
pairs (xi, xiP ) for the rest m− 1 tags. B chooses kg as the
shared group key and (y, yP ) as the private/public key pair
of the verifier. B also maintains a list LH={(kg, rj , ri, h)},
which is initially empty.
B broadcasts the message (“init”, blP ← O1()) to initiate

(l + 1)th protocol run. B interacts with AII as follows.

• Assume AII issues H query on input (kg, rj , ri) at most
qH times. B outputs h if there is an entry (kg, rj , ri, h)
in the list LH ; otherwise B randomly chooses h such
that there is no entry (kg, ·, ·, h) in LH and adds the
entry (kg, rj , ri, h) to LH .

• For Corrupt queries, B outputs the private key xi of Ti,
as well as the shared group key kg.

• SendTag query is trivial to all the tags except for T0

because AII can calculate the output using the keys
of the compromised tags. When AII issues a SendTag
query to T0 with the input rj , B checks the list LH . If
(kg, rj , r0, h) is in LH , B obtains h; otherwise, B ran-
domly chooses h such that there is no entry (kg, ·, ·, h)
in LH and adds the entry (kg, rj , r0, h) to LH . B
then calls OOMCDH(P, aP, blP ) and gets ablP . B out-
puts (A,B) to AII where A = shY , B = sP + ablP ,
s ∈R Z∗q .

In the challenge phase, B broadcasts bnP ← O1() to ini-
tiate (n + 1)th protocol run. B sends r∗j to AII and AII

outputs (r∗0 , A
∗, B∗). B finds the entry (kg, r

∗
j , r
∗
0 , h
∗) in

LH . Then B computes abnP = B∗−y−1h∗−1A∗. B outputs
{ablP}l∈[0,n] to the challenger, thereby solving the OMCDH
problem.

The simulation fails only when (r∗0 , A
∗, B∗) is a valid group-

ing proof while there is no entry of (kg, r
∗
j , r
∗
0 , h
∗) in the list

LH . Since LH is uniformly distributed, this only occurs
with the probability no more than 1

2k−qH
. Thus we have

Advsecure
AII

≤ ε+ 1
2k−qH

. �

4.3 Narrow-Strong Privacy
Theorem 4.3. The proposed grouping proof protocol is

narrow-strong private if the DDH problem is (t, ε)-hard in
a cyclic additive group G.

Proof. Assume there is an adversary A that can win the
narrow-strong experiment ExpNS−private,b

S,A (k). We now con-
struct an algorithm B run by the challenger that can solve
the DDH problem using A. Given a DDH instance
(P, aP, bP, cP ), B sets Y = bP as the public key of the veri-
fier and kg as the shared group key. B chooses a random bit



Tagi Reader
(xi, Y, kg)

rs ∈R Z∗q
(“init”,rsP )←−−−−−−−

ri ∈R Z∗q
ri−−−−−−−→ If (i = 0)

ri−1←−−−−−−− ri−1 := rn−1;
si ∈R Z∗q
Ai := siH(kg, ri−1, ri)Y
Bi := siP + xirsP

(Ai,Bi)−−−−−−−→
↓

σ := {rs, (ri, Ai, Bi)|i ∈ [0, n− 1]}

Figure 5: The proposed gouping proof protocol

b ∈ 0, 1. B maintains a list LH = {(kg, rj , ri, h)}, which is
initially empty. B interacts with A as follows.

• CreateTag(ID): B creates a tag reference Ti and sets
(x, xP ) as the key pair of Ti.

• Launch(): B randomly chooses rsP and outputs
(“init”, rsP ).

• DrawTag(Ti, Tj): B sets Ti and Tj as drawn tags. B
creates a virtual tag vtag. vtag refers to Ti if b = 0;
otherwise vtag refers to Tj .

• Free(vtag): B resets the volatile memory of vtag and
sets Ti and Tj as free tags.

• Corrupt(Ti): B outputs the private key xi of Ti, as well
as the shared group key kg.

• SendReader: B takes ri as input and outputs a ran-
domly chosen rj .

• First SendTag: B takes (vtag, “init”, rsP ) as input and
outputs a randomly chosen ri.

• Second SendTag: Upon receiving the input (vtag, rj),
B selects s ∈R Z∗q . If there is no record (kg, rj , ·, h) in
the list LH , B randomly chooses h such that (kg, ·, ·, h)
is not in LH and adds (kg, rj , ri, h) to the list; other-
wise B gets h. B outputs A = hcP , B = aP + xbrsP ,
where xb is the private key of Ti or Tj depending on b.

• H(kg, rj , ri): Assume AII issues H query at most qH
times. B outputs h if there is an entry (kg, rj , ri, h) in
the list LH ; otherwise B randomly chooses h such that
there is no entry (kg, ·, ·, h) in LH and adds (kg, rj , ri, h)
to LH .

Eventually A outputs a guess bit g ∈ {0, 1} and B can use
g to solve the DDH problem. cP = abP if g = b; otherwise
cP 6= abP . The simulation fails only whenA outputs g while
(kg, rj , ri, h) is not in LH . The case occurs when A gets
output (A,B) without calling the second SendTag query. It
implies that A guess the correct h. Since LH is uniformly
distributed, this only occurs with the probability no more
than 2−k, i.e. AdvNS−private

A ≤ ε+ 1
2k−qH

. �

5. BATCH VERIFICATION AND PERFOR-
MANCE

We now show how to batch verify the grouping proof for
the verifier. Consider a grouping proof

σ = {rs, (ri, Ai, Bi)|i ∈ [0, n− 1]}

where

Ai = siH(kg, ri−1, ri)Y,

Bi = siP + xirsP.

The verifier, instead of verifying the messages separately,
verifies them as follows:

1. Randomly picks v0, v1, ..., vn−1 ∈ Z∗q ;

2. Computes

hi =

{
H(kg, rn−1, r0), if i = 0.

H(kg, ri−1, ri), otherwise.

A =

n−1∑
i=0

vih
−1
i Ai,

B =

n−1∑
i=0

viBi.

3. Accepts all the tags and outputs accept if the equation
holds

r−1
s (B − y−1A) =

n−1∑
i=0

viXi;

else reject.



The batch verification scheme is correct as

r−1
s (B − y−1A)

= r−1
s (

n−1∑
i=0

viBi − y−1
n−1∑
i=0

vih
−1
i Ai)

= r−1
s (

n−1∑
i=0

visiP +

n−1∑
i=0

virsX −
n−1∑
i=0

visiP )

=

n−1∑
i=0

viXi.

In the verification phase, instead of verifying each proof
generated by each tag, the reader simply adds up all the
proofs of the tags and proceeds one verification in the scheme,
which improves the efficiency of RFID applications with
abundant tags as the verifier does not need to compare each
tag’s public key with the database.

In terms of tag performance of our scheme, the most
complicated operation is scalar multiplication on an ellip-
tic curve. Our protocol can be easily implemented in the
low-cost RFID processor presented in [13]. The RFID chip
is designed in a 130 nm CMOS technology. It operates
in a frequency of 700 KHz. The power consumption of
the processor is 13.8 µW . The number of cycles is 59, 790
per elliptic curve scalar multiplication. In our scheme a tag
performs three scalar multiplications for each protocol run
which means the total number of cycles is 179, 370 and the
cost of time is 256 ms, which is low enough for an RFID
tag.

6. CONCLUSION
We proposed a novel and efficient RFID grouping proof

protocol. With elliptic curve cryptography, the proposed
scheme is provably secure against active attacks such as
man-in-the-middle attacks and impersonation attacks. The
scheme provides narrow-strong privacy in the model described
in [9]. Our scheme also allows the batch verification to re-
duce the workload of the verifier and it is feasible for low-cost
RFID tags in terms of power consumption and processing
time.
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