Colloidal transport on magnetic garnet films

Tierno Pietro
Universitat de Barcelona

Frances Sagues
Universitat de Barcelona

Tom H. Johansen
University of Wollongong, tomjo@uow.edu.au

Thomas Fischer
Universita`t Bayreuth

http://ro.uow.edu.au/engpapers/4177

Publication Details
Colloidal transport on magnetic garnet films†

Pietro Tierno,*ab Francesc Sagués,ab Tom H. Johansencd and Thomas M. Fischere

Received 27th May 2009, Accepted 31st July 2009
First published as an Advance Article on the web 25th August 2009
DOI: 10.1039/b910427e

This article reports several recent discoveries related to the controlled transport of paramagnetic colloidal particles above magnetic garnet films. The garnet films are thin uniaxial ferromagnetic films in which ferromagnetic domains can be organized into symmetric patterns consisting of stripes or bubbles and generate strong local magnetic field gradients. Application of an external homogeneous magnetic field on a larger scale compared to the spatial periodicity of the magnetic pattern in the film modulates the potential generated at its surface and induces the controlled motion of colloidal particles placed above the film. Several novel dynamical regimes are observed and reported, from localized trajectories to direct particle transport, depending on the geometry of the underlying magnetic pattern and on the parameters, which control the external driving field, such as frequency, strength and direction. Moreover, we show that this strategy allows separation and sorting of bi-disperse particle systems based on the particle size as well as the transport of chemical or biological cargoes attached to the colloidal carriers. Controlled transport of micro-sized cargoes (chemical or biological) by colloidal particle carriers in a microfluidic environment can bring significant contributions in several fields from targeted drug delivery to the realization of precise fluid-based micro-scale devices.

I. Introduction

Colloidal particles are very promising candidates for the controlled delivery of chemicals and drugs in fluid media on the small scale, since the particle surface can be chemically functionalized1,2 and the available particle size ranges from tens of nms to hundreds of microns.3,4 Another important advantage is that colloidal particles can be readily manipulated by applying relatively small forces, such as those obtained by optical,5,6 electric,7,8 magnetic9,10 or thermal forces.11,12 The last few years have witnessed many advances13,14 in using light sources to manipulate and exert radiation pressure on micrometric colloidal particles.15,16 Also precise trapping and manipulation over large ensembles of particles has been recently accomplished with the use of fast scanning light beams17 and holographic optical techniques.18 Electric fields are commonly used in electrophoresis19,20 for the transport of colloidal particles subjected to a uniform electric field. Their mobility is determined by the field strength and particle size, and they are often used in chemical synthesis and separation processes.21-24

† Electronic supplementary information (ESI) available: Supplementary videos. See DOI: 10.1039/b910427e

Pietro Tierno studied physics at the University “Federico II” of Napoli. He received a PhD in Natural Sciences from the University of Ulm in 2005. After a postdoc at Florida State University, he moved to the University of Barcelona in 2007. His main research interests focus on soft matter systems with an emphasis on manipulation and transport of colloidal particles with external fields, propulsion in viscous fluids and microscale self-assembly phenomena.

Francesc Sagués received his PhD at the University of Barcelona in 1983. After a postdoc at the University of Texas in Austin, he became associate professor and then full professor of physical chemistry in 2000 at the University of Barcelona. From his background in physical chemistry and statistical physics, his main research interests focus on self-organization processes of soft-matter and bio-inspired systems including monolayers, colloids, liquid crystals, biomembranes and biological tissues encompassing theoretical and experimental approaches.
electric field and dielectrophoresis when there is a field gradient. Controlled manipulation and trapping was also demonstrated in a microfluidic device exhibiting a topological ratchet-like structure by applying a low frequency electric field.

A different way to transporting colloidal particles relies on the use of external magnetic fields, which is very attractive since such fields neither alter the fluid media nor affect biological cells. Magnetic particles can be moved in a fluid by using magnetic field gradients, e.g., by holding a permanent magnet close to the colloidal suspension. This constitutes the principle of separation of magnetic particles from bulk suspensions on which many related techniques are based. However, this method becomes inappropriate when precise control of the particle position and speed is required. Precise manipulation of individual microscopic particles requires magnetic fields that are heterogeneous on the particle scale. Various strategies have been adopted to create such field gradients. For example, Ramadan et al. realized micro-coils on a Si substrate made by electroplated Cu trenches and with micron-size ferromagnetic pillars as magnetic cores. The magnetic field generated by this structure could guide and displace magnetic particles along the trenches. However, the coil configurations require alternate injection of current and could cause undesired local heating of the substrate. Alternatively, Mirowski et al. used a cantilever tip in a microfluidic platform, as a “magneto-robotic” arm providing a movable local magnetic field gradient able to capture magnetic particles much like optical tweezers do. In principle, both methods allow precise control over the motion of one particle, but become unfeasible for large ensembles. A more convenient approach consists in using a magnetically structured substrate, i.e., a substrate with magnetic topographic patterns prepared on the particle scale. The periodic potential generated by these substrates can be modulated by applying an external homogeneous magnetic field and, depending on the pattern period relative to the particle size, transport of the latter could be obtained. Two notable examples in the literature are the works of Yellen et al. and Gunnarson et al. In both cases, magnetic patterned substrates were made by “top-down” techniques such as photolithography, metal evaporation and lift-off process. In ref. 34 the magnetic substrate consists of a rectangular array of cobalt micro-cylinders on a silicon substrate. Application of an external magnetic field rotating in a plane normal to the substrate allows transport of non-magnetic particles dispersed in a ferrofluid. In contrast, in ref. 35 the topographic reliefs in the substrate were magnetic elliptical islands made by permalloy and placed above a substrate in a staircase-like pattern. Applying an external magnetic field rotating now in the plane of the film modifies the stray field of the magnetic ellipses and creates a driving force for the motion of paramagnetic colloidal particles placed on the film.

Going beyond these achievements, we discuss here a new “bottom-up” approach for the controlled transport of paramagnetic colloidal particles which uses ferrite garnet films (FGFs). In these ferromagnetic films, when prepared with sufficiently strong uniaxial anisotropy, magnetic domains are formed and organized into lattices of stripes or bubbles having magnetization perpendicular to film. These domains, each one magnetized oppositely to the adjacent one, are easily modulated in size by applying magnetic fields with a perpendicular component. Thus, with a typical domain size of a few microns, the stray magnetic field on the FGF surface will have tunable modulations on the same scale. In the pioneering work by Goa et al. (and one of us), the stray magnetic field generated from a mobile Bloch wall (BW) inside an in-plane magnetized FGF, was used to manipulate vortices in a type-II superconductor. Afterwards, Helseth et al. (and some of us) showed that the same principle of magnetic micro-manipulation could be applied to paramagnetic colloidal particles deposited above a FGF. Our strategy to transport paramagnetic colloidal particles consists in periodically modulating the magnetic landscape generated by the stray field of uniaxial FGFs. When an aqueous solution of the particles is spread over the film, the particles are pinned to the BWs in the film due to the

Tom H. Johansen

Tom H. Johansen is a full professor of physics at the University of Oslo. His main interests are: (i) the magnetic behaviour of superconductors, in particular avalanche dynamics in the vortex matter, and other non-linear phenomena studied experimentally with single flux quantum resolution using magneto-optical imaging (MOI), (ii) synthesis and characterization of single-crystal ferrite garnet films (FGFs) as high-sensitivity magnetic field sensors in MOI, and (iii) the use of FGFs as devices for pinning and manipulation of superconducting vortices and various kinds of magnetic microparticles, and also as reconfigurable chips for trapping of cold atoms.

Thomas M. Fischer

Thomas M. Fischer received his doctorate from the Johannes Gutenberg University in 1992 and held positions at University of California Los Angeles, the University of Leipzig, the Max Planck Institute of Colloids and Interfaces, and the Florida State University. Since 2007 he works at the University of Bayreuth. His research interests are on soft condensed matter dynamics at interfaces, where he focuses on the autonomous and driven motion of colloids and nano-systems.
intense stray field generated at the surface. Application of an external magnetic field, which moves the BWs allows displacing and manipulating the colloidal particles. The key element in achieving direct controlled transport of paramagnetic colloids above a magnetic garnet is the conversion of a homogeneous time dependent external field into a spatially and temporally varying field on the FGF surface. The garnet film allows for adjustment of the typical length scale of the spatial heterogeneities down to the colloidal scale. Depending on the magnetic domain pattern (stripes or bubbles), the film thickness, and field parameters (strength, frequency or direction), one can achieve different modes of transport, from localized orbital motion to directed transport with particle speeds up to 200 μm s⁻¹. The main advantages in using FGFs with respect to lithography-made patterned substrates are (1) the possibility to externally control the pattern orientation before and during the particle motion; (2) the absence of topographic micro-reliefs, which can disturb the particle motion due to hydrodynamic or steric interactions. Moreover, the garnets are mechanically very robust materials, and inert to most chemicals, and thus can easily be integrated in microfluidic devices or used for other fluid based applications. Developing magnetically controlled transport of paramagnetic particles on surfaces adds a powerful new tool for biochemical and biophysical analysis to the arsenal of microscale technology.

In this perspective we describe recent results related to the controlled transport of paramagnetic colloidal particles placed above magnetic garnet films. We explore the variety of colloidal transport modes that can be triggered depending on the experimental conditions. We show that these transport modes lead to various applications for microfluidic devices such as digital colloidal shift registers, separation and sorting of colloidal bi-disperse systems and transport of chemical or biological cargos. The paper is organized as follows: in section II we describe the magnetic garnet films and the response of these films to external magnetic fields. We also introduce the paramagnetic colloidal particles. Section III shows how to obtain particle motion above these films by applying external magnetic modulations. We show that depending on the magnetic pattern, different modes of transport are achievable, from digital particle motion (hopping) to continuous ballistic transport. FGFs can be used also as platforms to sort particles based on their size and this is achieved from localized orbital motion to directed transport with particle speeds up to 200 μm s⁻¹. The main advantages in using FGFs with respect to lithography-made patterned substrates are (1) the possibility to externally control the pattern orientation before and during the particle motion; (2) the absence of topographic micro-reliefs, which can disturb the particle motion due to hydrodynamic or steric interactions. Moreover, the garnets are mechanically very robust materials, and inert to most chemicals, and thus can easily be integrated in microfluidic devices or used for other fluid based applications. Developing magnetically controlled transport of paramagnetic particles on surfaces adds a powerful new tool for biochemical and biophysical analysis to the arsenal of microscale technology.

In this perspective we describe recent results related to the controlled transport of paramagnetic colloidal particles placed above magnetic garnet films. We explore the variety of colloidal transport modes that can be triggered depending on the experimental conditions. We show that these transport modes lead to various applications for microfluidic devices such as digital colloidal shift registers, separation and sorting of colloidal bi-disperse systems and transport of chemical or biological cargos. The paper is organized as follows: in section II we describe the magnetic garnet films and the response of these films to external magnetic fields. We also introduce the paramagnetic colloidal particles. Section III shows how to obtain particle motion above these films by applying external magnetic modulations. We show that depending on the magnetic pattern, different modes of transport are achievable, from digital particle motion (hopping) to continuous ballistic transport. FGFs can be used also as platforms to sort particles based on their size and this is described in section IV. The coupling of the particles with biological or chemical cargoes and their controlled transport above the magnetic film is described in section V. Section VI concludes this review by outlining promising future research directions.

II. Uniaxial ferrite garnet films

II.1 General requirement

The films creating the dynamic magnetic landscapes must be synthesized having in mind that a number of functional properties are critically important. In addition to (i) allow the formation of appropriate magnetic domain structures, the films must have (ii) a saturation magnetization, \(M_s \), giving stray fields near the surface that create magnetic forces of proper magnitude on the particles, (iii) a strong Faraday effect to allow the domain walls and their motion to be visible using polarized light microscopy, and (iv) a very low coercivity so that the walls can move smoothly, i.e., with a minimum of pinning and resulting intermittency. We have found that a class of materials where all these multi-functional properties come nicely together is the bismuth-substituted ferrite garnets, \((\text{ReBi})_3(\text{FeGa})_5\text{O}_{12}\), where \(\text{Re}\) is yttrium and one or more rare earth elements, grown as single crystalline films on gadolinium gallium garnet (GGG) substrates. In the present work we have used \(\text{Re} = \text{Y, Lu and Pr}\).

II.2 Film growth

To synthesize the FGFs we use the dipping liquid phase epitaxy method. Oxide powders of the constituent rare earths, bismuth, iron and gallium, as well as \(\text{PbO}\) and \(\text{B}_2\text{O}_3\), are initially melted in a thick-walled platinum crucible. To ensure homogeneity of the solution a stirrer mixes the melt while being kept in the 3-zone resistive furnace at 1050 °C for 30 min. Prior to the film growth the melt temperature is reduced to around 700 °C, creating a supercooling of 50–70 K. The GGG substrate wafer is mounted horizontally in a 3-finger platinum holder attached to a shaft rotating by 60 rpm. After a period of pre-heating in the upper section of the furnace, the substrate is carefully lowered and locked in position once its lower side gets in contact with the melt. Subsequent growth from the supersaturated solution for 5–10 min results in a film of a few micron thickness. The substrate is then lifted slightly above the melt, and remaining droplets are removed by a rapid rotation. Finally, the film/substrate is cooled to room temperature sufficiently slow to minimize thermal stress. Before use, the film is cleaned in warm \(\text{HNO}_3\) acid in an ultrasonic bath.

Successful growth also depends critically on the quality and type of substrate. We use 0.5 mm thick GGG wafers cut from Czocharalski grown boules, up to 3 inch in diameter. They should have a minimum of striations and built-in stress, which is obtained by cutting the wafers perpendicular to the boule growth direction. The wafers are electrochemically polished providing an open surface for the epitaxial growth.

To make FGFs with magnetic domain patterns suitable for manipulation we use wafers cut from boules grown in the (111)-direction, resulting in a sufficiently large uniaxial anisotropy to make the spontaneous magnetization perpendicular to the film. Using wafers cut from (100)-grown boules can give in-plane magnetization films with a different domain structure which also allows magnetic manipulation, e.g., of paramagnetic beads and even superconducting vortices. In this article we will review only the work done with the uniaxial FGFs.

II.3 Films in a magnetic field

In a zero-applied field the uniaxial FGFs minimize their energy by forming magnetic domains. For manipulation purposes, the regular domain structures are of particular interest, and two types of periodic structures typically exist: (a) a 1D array of parallel stripes with alternating up/down
magnetization, and (b) a 2D lattice of cylindrical bubbles embedded inside a matrix of reverse magnetization.

When a magnetic field, H_z, is applied perpendicular to the film, the domains initially magnetized parallel to H_z will increase in size at the expenses of the area of antiparallel domains. This is illustrated in Fig. 1 (left), showing how a stripe domain structure evolves as the applied field increases from zero (top to bottom). This behaviour is well described by the model of Kooy and Enz, who found a Fourier series solution to the problem of minimizing the total free energy, the latter consisting of the energy of magnetization in an applied field, the energy of the magnetic walls that separate the domains, and the demagnetization energy. Shown in Fig. 1 (right) are curves for the predicted domain widths as functions of the applied field. At small fields the width of the majority and minority domains, λ_+ and λ_-, change linearly with H_z, while the period of the stripe pattern, $\lambda = \lambda_+ + \lambda_-$, remains essentially constant. In this linear regime the overall domain pattern is quite robust, making the structure very well suited for applications. Note that this is not the case at higher fields where at some point both λ_+ and λ_- diverge, accompanied by large deformations of the pattern itself, often starting with dislocation cliffs (see lower image in Fig. 1).

The stripe period in a zero-applied field, λ_0, is determined by the ratio of the domain wall energy density and $\mu_0 M_z^2$, as well as the film thickness. Typical films used in the present work have $\lambda_0 \sim 2-15 \mu$m. In the linear small field regime it follows from the Kooy and Enz model that the domain wall displacement, x, vs. applied field is given by:

$$x = \frac{\lambda_+ - \lambda_-}{2} = \frac{\pi t/2}{\text{ln}(\cosh(\pi t/\lambda_0))} M_z^s,$$

where t denotes the film thickness. For a FGF with $t = 4 \mu$m, $\lambda_0 = 10 \mu$m, and $M_z^s = 10^5 \text{A m}^{-1}$, the wall displacement becomes $\Delta x = 1 \mu$m for a $\Delta H_z = 10^3 \text{A m}^{-1}$ change in the applied field. Note that $2\Delta x/\lambda$ is the magnetization (normalized by M_z) of such stripe domain films, hence the above expression also gives the initial susceptibility.

A regular lattice of magnetic domains shaped as circular cylinders can be generated in the same type of FGFs by applying a series of high frequency (~ 10 kHz) magnetic field pulses of amplitude $\sim 3 M_z$ and directed perpendicular to the film. The ac field breaks up the long stripe domains, and after this field is removed cylindrical bubbles magnetized axially, i.e., normal to the film, self-organize into a hexagonal configuration embedded in a connected area of opposite magnetization. Similar to the stripe domain films, when subsequently applying a quasi-static field, the bubble domains will increase or decrease in diameter depending on the field being parallel or opposite to the bubble magnetization. For moderate applied fields the bubbles remain circular in shape and maintain the global lattice structure. More details about magnetic bubbles, and stripe domain behaviour, can be found in ref. 51.

II.4 Paramagnetic colloidal particles

Paramagnetic colloidal particles are micron-size polystyrene particles doped with small superparamagnetic iron oxide grains (size from 10 Å to few nms). These particles are commercially available as a monodisperse suspension in water. In the presence of relatively low magnetic fields H ($<10^4 \text{A m}^{-1}$, particle magnetic saturation $\sim 10^5 \text{A m}^{-1}$), the particles become magnetized and acquire a dipole moment, which is proportional to the external field: $m = \gamma H$ where γ is the particle magnetic volume susceptibility and V the particle volume. As a result the particles feel a force pointing in the direction of the gradient of the square of the magnetic field. $F \propto \nabla H^2$ and thus can be moved in a medium only in the presence of a gradient of the magnetic field. For these properties, paramagnetic particles are of great importance in both biological and physical sciences and they can be used to probe forces down to the FN range ($1 \text{FN} = 10^{-15} \text{N}$). For instance, these particles have been used to stretch and manipulate DNA, probe the cell environment, assemble and melt colloidal crystals and study a variety of statistical phenomena.

II.5 Experimental details

In the experiments we used two kinds of paramagnetic particles from Dynal (Norway), with diameters $d_1 = 1 \mu$m and $d_2 = 2.8 \mu$m, and magnetic volume susceptibility $\chi_1 = 1.1$ and $\chi_2 = 0.4$ resp.,53,64 The particles, dispersed in water, are electrostatically stabilized by the negative charges acquired from the dissociation of the surface carboxylic groups (COO–). We diluted the original aqueous suspension of the particles with high deionized water (18.2 MΩ cm, MilliQ system) up to a density $\sim 10^5$ beads mL$^{-1}$ and deposit a few drops on top of the garnet film. Due to gravity, after a few minutes, the particles sediment above the film and are attracted toward the BWs. In some cases we observe some particles that stick to the surface of the film due to the strong attraction of the BWs. To avoid this problem we coat the...
garnet with a thin layer of polysodium-4-styrene sulfonate, which acquires a negative charge in water.

The external homogeneous magnetic field used to modify the magnetic pattern of the film and, in turn move the colloidal particles, was applied by using a set of three orthogonal coils mounted on the rotating stage of a conventional polarization microscope (Leica DMPL or Nikon E400). Field modulations were achieved by connecting two such coils with a waveform generator (Tti-TGA1244) feeding a current amplifier (IMG STA-800 or KEPCO BP). Static magnetic fields were obtained by connecting one such coil with a dc power supply (Tti-EL302Tv). Various CCD cameras having 30–120 fps temporal resolution mounted on the polarization microscopes were used to observe the particles and the film. To measure the particle position and speed we record .AVI videos by using commercial frame-grabbing software (STREAMPIX, NORPIX). These videos were then analyzed frame by frame by using custom-made programs written in MATLAB and using the image processing toolbox.

III. Transport of particles on garnet films

III.1 Stripe patterned film

Directed motion of colloidal particles above a stripe patterned garnet film can be achieved by applying an external oscillating magnetic field H, which is linearly polarized in the (x, z) plane with an angular frequency Ω, and inclination β with respect to the film normal (z axis); $H = H_{0} \sin \beta \sin \Omega t$, $0, \cos \beta \sin \Omega t$) where: $H = \sqrt{H_{x}^{2} + H_{y}^{2} + H_{z}^{2}}$ is the amplitude of the field. The black [red] line refers to the $x(y)$ vs. $y(x)$ position. Part (c) and (d) illustrate the mechanism of motion in two half cycles of the external magnetic field. The particles hop by half the film spatial periodicity, $\lambda/2$ of the stripe pattern when reversing the magnetic field and changing strong domain walls into week domain walls. The movie (video 1) in the ESF shows the particle transport above the magnetic stripe pattern.

Fig. 2 (a) Microscope image of paramagnetic colloidal particles transported above a stripe garnet film. One particle is marked in blue and the corresponding trajectory (blue line) is superimposed to the image. (b) Displacement vs. time of the colloidal particle shown in (a). The black [red] line refers to the $x(t) [y(t)]$ position. Part (c) and (d) illustrate the mechanism of motion in two half cycles of the external magnetic field. The particles hop by half the film spatial periodicity, $\lambda/2$ of the stripe pattern when reversing the magnetic field and changing strong domain walls into week domain walls. The movie (video 1) in the ESF shows the particle transport above the magnetic stripe pattern.

one spatial periodicity of the stripe pattern. The particles pin to the domain walls when the external field is small $\Omega t \sim \pi/2 + \pi n, n = 0,1,2,3, etc.$ and hop to the next domain wall during the times of maximum intensity of the external field $\Omega t \sim \pi n, n = 0,1,2,3, etc.$ For the range of frequencies used ($0 < \Omega < 300 \text{ s}^{-1}$), the domain walls follow instantaneously the external field and thus do not introduce any delay in the particle motion. We note that the mechanism of motion works well also for many particles since the colloids when initially deposited above the stripe form parallel chains. The external field induces dipolar interactions between the moving particles which are repulsive and keep the particle dispersed along the chain during motion. Dipolar interactions in the direction normal to the stripes are negligible due to the large separation of the domain walls with respect to the particle diameter. Thus the particle motion becomes essentially free of dispersion and allows to move the particles without losing information about their relative arrangement.

III.2 Magnetic bubble array

Another way to achieve direct motion on an externally modulated garnet film is to use a magnetic bubble lattice. The two dimensional nature of the magnetic bubble array allows to extend the particles motion to the plane (x,y) and more precisely, along the six crystallographic axes of the lattice. Let us consider one such particle located above the BW of a magnetic bubble that has circular symmetry. The film has a lattice constant $a = 10.7 \mu m$ and the radius of the bubbles $R = 4.1 \mu m$. The external modulation is a precessing magnetic field composed of a rotating component in the (x,y) plane plus a constant component along the z direction; $H = \hat{H} (\sin \beta \sin \Omega t, \sin \beta \cos \Omega t, \cos \beta)$ with $H_{x} = \hat{H} \cos \beta$. If $H_{y} = 0$, the particle rotates around the bubble with the frequency of the field. Fig. 3(a) shows the trajectories of the colloidal...
driving expressed by a linear behaviour of the particles velocity with the external driving in the second scenario. For both cases one can predict for the stripe pattern, while it can be considered as a continuous is different as it produces a motion composed of discrete steps for the magnetic bubble array. Also, the external modulation (resp. lattice constant a) length of the pattern which is equal to the spatial periodicity l.

Fig. 3 (a) Microscope image of paramagnetic particles rotating above a magnetic bubble film when subjected to a rotating magnetic field. (b) Motion of a paramagnetic colloidal particle subjected to a precessing magnetic field. The particle trajectories (blue line) are superimposed to the images. (c) Displacement vs. time of the colloidal particle shown in (b). Black [red] line refers to the $x(t)$ [$y(t)$] position. (c) Scheme showing a magnetic bubble lattice with a paramagnetic particle and subjected to a magnetic field H precessing with frequency Ω and angle ϑ around the z axis. The corresponding movies (videos 2 and 3) of Fig. 3(a) and (b) are deposited as ESI.†

Fig. 4 Velocity v vs. external field frequency Ω for a paramagnetic colloidal particle above magnetic stripes (circles) and magnetic bubbles (squares) domains. Continuous lines are linear fits following the model $v = \Omega/2\pi$.

Fig. 4 shows v vs. Ω for one paramagnetic colloidal particle above magnetic stripes (circles) and magnetic bubbles (squares) domains, where continuous lines are linear fits. The larger lattice constant as compared to the stripe spatial periodicity allows to reach higher speeds for the magnetic bubble lattice up to a maximum of 260 μm s$^{-1}$ for $\Omega = 100$ s$^{-1}$. If the frequency is higher than a critical value, $\Omega > \Omega_c$, the viscous friction with the medium impedes the particles to follow the BW motion, and the velocity drops until the particles stop moving. We note that for the stripe pattern $\Omega_c = 125$ s$^{-1}$ while we found a lower value for the hexagonal one $\Omega_c = 100$ s$^{-1}$.

IV. Particle separation and sorting

The trapping force by which a BW pins a paramagnetic particle depends mainly on the particle elevation above the surface of the film. Thus, smaller particles are more difficult to be released from the BWs than larger ones. The magnetic stray field diverges near the BWs and thus smaller particles experience a stronger field. We show here that this feature can be used to separate and sort colloidal particles based on their size by applying an external field too weak to move the smaller particles but strong enough for the large particles.

4.1 Sorting on striped patterned film

In Fig. 5 we show two microscope images (time separation 1.3 s) of a garnet film with a stripe pattern and having two populations of paramagnetic colloidal particles characterized by two diameters, $d_1 = 1$ μm (small particle) and $d_2 = 2.8$ μm (large particle). The trajectories of both particles, the small in green and the large in blue, are superimposed to the image. The external magnetic field has the form: $H = H_0 \sin(3\Omega t, 0, \sin \Omega t)$, with the in-plane component (H_x) oscillating with three times the frequency of the normal component (H_z). The motion of both particles occurs in discrete steps: during one half cycle of the field the small particle crosses the domain once (green trajectory in Fig. 5) while the large particle hops...
three times that distance: twice in an upward and once in a downward direction (blue trajectory in Fig. 5). This is due to the particular form of the magnetic modulation and to a suitable choice of the field amplitude. Before reaching the maximum amplitude of forcing, the small particle stays fixed above the BW while the large particle, which is less attracted to the BW, has already hopped twice. When the field amplitude reaches its maximum value, the in-plane field changes its value and both particles are forced to hop almost synchronously. As a result both particles have moved in opposite directions and repeating the cycle several times results in a net particle separation. A more detailed explanation of the mechanism of separation can be found in ref. 41. Since particles are moving in opposite directions, accidentally one small and one large particle can collide. In this case the small particle slides over the surface of the larger one to follow the moving chain of small particles without affecting the separation mechanism. Also we note that this technique may be further refined to separate particles with three, four or five different sizes, for example by using more complex magnetic modulations having a planar component of the magnetic field with a frequency 5, 7 or 9 times the frequency of the normal field component.

IV.2 Sorting on magnetic bubble arrays

The same principle of sorting based on particle size can be applied to a magnetic bubble lattice. This is illustrated in Fig. 6, which is composed of four microscope images showing two kinds of paramagnetic particles under an external precessing magnetic field. Again, superimposed to the images are the particle trajectories, in green for the small particle (d1) and in blue for the large one (d2). From Fig. 6(a) to Fig. 6(d) the normal component of the magnetic field \(H_x \) was increased, i.e. the precession angle decreases, while the precession frequency was kept constant. The resulting particle dynamics can be summarized in the following modes: (a) both particles rotate around the magnetic bubbles, (b) the large particle moves above the magnetic lattice while the small particle continues the orbital motion, (c) both particles are transported and (d) the small particle is transported while the large remains localized. The particle sorting is achieved in (b) and (d) since one type of colloid is localized around one magnetic bubble while the other is transported through the array and leaves the observation area. The difference between this sorting with respect to the previous one lies on the nature of the pattern. At high precession angles both particles circulate around the magnetic bubbles since the energy minima between adjacent bubbles are too separated for both particles. Increasing \(H_x \) decreases \(\beta \) and the size of the bubble making the energy minima closer. The large particle, which is less pinned to the BW is thus able to escape while the small particle continues to be localized. Still smaller precession angles are required to release both particles. We note that situation (d), where the small particle escapes and the large is localized, occurs because at the elevation of the large particle the energy minima are much closer than at the elevation of the small particle. The localization is in form of small triangular orbits which will equally occur at very low precession angle for the transport modes described in section III.2.

V. Transport of cargoes on the microscale

One application of the motion of paramagnetic colloidal particles above magnetic garnet films is to load them with micro size cargos that can be delivered at certain locations above the film. All the following results will be demonstrated with garnet films having magnetic stripe domains, although they can be easily extended to the magnetic bubble array.

V.1 Chemical cargoes

The simplest chemical cargo that can be transported in this way is an emulsion droplet attached by capillary forces to the colloidal particle. For example, Fig. 7(a) shows a spherical...
depends mainly on the particle size (V_F). Since the surface tension force dominates over the viscous force (capillary number $Ca \sim 10^{-6}$), the droplet is stable once attached to the colloidal particle and can be transported all over the film surface. The only way the cargo could be released would occur if the colloidal carrier enters a region with a second liquid in which the oil is miscible. This opens up various possibilities on the controlled delivery of very tiny amount of chemicals, which are encapsulated within the oil droplet. There is a limitation on the weight of the cargo that the paramagnetic particle can transport, which is dictated by the magnetic force exerted by the particle during each jump above the BW. This force can be derived as $F = \mu_0 Z V \nabla (H_{tot} H_{tot})$ depends mainly on the particle size (V), its magnetic properties (χ) and on the garnet film since $H_{tot} = H + H_{garnet}$ where H_{garnet} is a function of the film spatial periodicity. Here μ_0 is the magnetic susceptibility of the medium (water) in which the particle moves. Larger (resp. smaller) particles combined with a garnet film having smaller (resp. larger) stripe periods allow an increase (resp. decrease) of the amount of fluid transported. However, too large oil droplets can deposit and stick to the garnet surface, thus restraining this transport mechanism to emulsion droplets smaller than 8.5 µm in diameter. On the other hand there is no limitation over the smallness of the chemical cargoes which can go below the attolitre volume.

A related example of transport of a chemical cargo is shown in Fig. 7b, where a small droplet of nematic liquid crystals (ZLI 1132) is attached to a paramagnetic colloidal particle and transported above a stripe pattern film. The microscopic images were taken in reflected light mode with crossed polarizers in order to observe the brightness of the LC droplet. In this observation mode the colloidal particles appear as round holes with four bright sides. During application of the field, both the particle and the droplet follow the same trajectory with the green and blue paths almost superimposed. We notice that while the colloidal carrier shows the same brightness during all the recording time, the small nematic cargo changes periodically its luminosity, switching periodically from luminescent (state on) to dark (state off). This change in the droplet optical properties is shown in Fig. 8 composed of two polarization microscope images of a colloidal particle with an attached LC droplet before and during the hopping above the BW. It is well known that the orientation of the director in nematic liquid crystals, and thus the associated change in light intensity under crossed polarizers depends on several factors such as application of a magnetic field, fluid flow or even changes in the boundary conditions of a droplet of LC. Competition between the surface alignment forces and the applied torque due to the external field, should govern the switching behaviour of the nematic droplet. In our particular case, the smallness of the droplet itself precludes in principle any kind of anchoring effect. We are thus left with the fluid flow and magnetic field as sources of this intriguing behaviour. One of these effects could be the reason for the observed change brightness. However the phenomenon requires more experimental analysis to be fully understood, but show the potentiality of our transport technique applied on chemical cargoes. For example it could be useful in applications related to opto-magnetic dimmer, microscopic lighting system or for magnetically controlled photonic applications.

V.2 Biological cargoes

Another useful application of the colloidal shift register based on magnetic garnet films relies on the transport of biological cells. It is possible to transport biological entities either by directly attaching the cell to the colloidal particle, as previously reported, or employing in a less invasive way, by using the secondary flow generated by an array of paramagnetic particles moving above the magnetic film. In Fig. 9(a) we show this principle as applied to yeast cells (Saccharomyces cerevisiae)
transporting yeast cells by secondary flow. The superimposed green (blue) trajectory indicates the x position of one colloid (cell). The corresponding movie (video 8) is deposited as ESI. (b) Polarization microscope images illustrating the motion (x position in blue) of a composite particle made by linking two particles with different size through DNA bridge. The corresponding movie (video 9) is deposited as ESI. The small microscope image on the top shows the asymmetric DNA-linked assembly (one small one large particle) on a glass plate.

As stated in the introduction, one advantage of using paramagnetic colloidal particles is that their surface can be chemically functionalized in order to attach DNA molecules and this in turn offers the possibility to use biotin labelled DNA as a linker to form composite colloidal particles. To show the potentiality of this method, and demonstrate the transport of DNA molecules, we realized an asymmetric doublet by attaching complementary biotin labelled single strands of DNA onto streptavidin-coated paramagnetic particles with different size (1.0 μm and 2.8 μm in diameter). Watson–Crick base pairing between the complementary 25 base pairs DNA-strands provided a link between the different sized particles that remained stable at room temperature. Fig. 9b shows the trajectory of one such doublet (blue line) above a garnet film where in the upper inset of the second microscopy image an individual doublet above a glass plate is shown. The same high speeds as for the individual particles (up to 200 μm s$^{-1}$) are achievable. Moreover several assemblies, larger than the elementary doublet are possible by using the DNA linking procedure (detailed described in ref. 76 and 77) and be transported by combining different particles with the same or different size.

Last we also mention the possibility to use our magnetic colloidal propulsion technique to transport specific biological cells such as microphages, by direct ingestion of paramagnetic particles. In this special way, macrophages phagocytize paramagnetic particles or ferrofluids and can be transported across the garnet film after ingestion of the carrier.

VI. Conclusions

Developing magnetic techniques that enable the controlled transport of colloidal particles in fluid media or microfluidic devices could find applications in several field related to the controlled delivery of drugs on the small scale. Due to the small size of the magnetic carriers, these techniques should rely on magnetic fields that vary on the length scale of the particles. Magnetic domains in FGFs could be used as a source of such spatially heterogeneous magnetic fields. Moreover, the domain structures of these films change when applying external magnetic fields. We have shown how to use these garnet films to convert external time dependent magnetic fields applied on a cm scale into magnetic fields heterogeneous on the micron scale in order to manipulate paramagnetic colloidal particles immersed in a fluid above the garnet film. This opens new the possibilities to investigate a large variety of colloidal transport phenomena: from localized orbits to directed motion and sorting capabilities; transport phenomena that can be fully controlled by specific magnetic patterns of the garnet film and by proper external magnetic field modulation.

All experiments shown in the preceding sections involve colloidal particles in the micron size range above magnetic patterns which were easily imaged with conventional optical microscopy. However, the proposed mechanism can be in principle down-scaled to the nanoscale. Patterns on the garnet film are usually of the order of the film thickness. It is thus possible to grow garnet films with patterns of smaller spatial periodicity, although their visualization would become challenging. If we refrain from visualizing the domains we might still follow the motion of quantum dots or single molecules attached to the carriers by using fluorescence techniques. The trapping strength at the domain walls depends on the width of the domains and the thickness of the film. We expect that, if we miniaturize the film, the trapping strength would decrease. This however, would be compensated by the decrease in size of the paramagnetic carriers used. Smaller
carriers can be closer to the domain wall and hence trapped stronger than larger carriers. As a consequence we expect the magnetic transport to be still effective upon miniaturization. These arguments hold as long as the paramagnetic particles are large compared to the domain wall width. When the particles are of the same size as the width of the magnetic domains, the magnetic transport becomes less effective and thermal fluctuations like Brownian motion may play a crucial role.

Acknowledgements

P. T. was supported by “Beatriu de Pinós” program contract no. BP100167. F. S. and P. T. acknowledges financial support by MEC (project no. FIS2006-03525) and DURSI (contract no. 2005SGR00653). T. M. F. acknowledges support from the German Science Foundation (DFG) via the research unit FOR608. T. H. J. is grateful to The Research Councils of Norway and Australia for financial support.

References

9 The transition layer separating two domains with opposite magnetization directions.
22 C. Kosy and V. Enz, Philips Res. Reports, 1960, 15, 76.
24 These particles are usually referred as “super” paramagnetic due to their strong magnetization under external field compared to paramagnetic materials.