2016

Iterates of holomorphic self-maps on pseudoconvex domains of finite and infinite type in \mathbb{C}^n

Tran Vu Khanh

University of Wollongong, tkhanh@uow.edu.au

Ninh Van Thu

Vietnam National University

Publication Details
Iterates of holomorphic self-maps on pseudoconvex domains of finite and infinite type in \mathbb{C}^n

Abstract
Using the lower bounds on the Kobayashi metric established by the first author, we prove a Wolff-Denjoy-type theorem for a very large class of pseudoconvex domains in \mathbb{C}^n. This class includes many pseudoconvex domains of finite type and infinite type.

Keywords
self, maps, pseudoconvex, iterates, domains, holomorphic, finite, infinite, type, \mathbb{C}^n

Disciplines
Engineering | Science and Technology Studies

Publication Details

This journal article is available at Research Online: http://ro.uow.edu.au/eispapers/5785
ITERATES OF HOLOMORPHIC SELF-MAPS ON PSEUDOCONVEX DOMAINS OF FINITE AND INFINITE TYPE IN \(\mathbb{C}^n \)

TRAN VU KHANH AND NINH VAN THU

Abstract. Using the lower bounds on the Kobayashi metric established by the first author [16], we prove a Wolff-Denjoy-type theorem for a very large class of pseudoconvex domains in \(\mathbb{C}^n \). This class includes many pseudoconvex domains of finite type and infinite type.

1. Introduction

In 1926, Wolff [22] and Denjoy [9] established their famous theorem on the behavior of iterates of holomorphic self-mappings of the unit disk \(\Delta \) of \(\mathbb{C} \) that do not admit fixed points.

Theorem (Wolff-Denjoy [22, 9], 1926). Let \(\phi: \Delta \rightarrow \Delta \) be a holomorphic self-map without fixed points. Then there exists a point \(x \) in the unit circle \(\partial \Delta \) such that the sequence \(\{\phi^k\} \) of iterates of \(\phi \) converges, uniformly on any compact subsets of \(\Delta \), to the constant map taking the value \(x \).

The generalization of this theorem to domains in \(\mathbb{C}^n, n \geq 2 \), is the focus of this paper. This has been done in several cases:

- the unit ball (see [13]);
- strongly convex domains (see [2, 4, 5]);
- strongly pseudoconvex domains (see [3, 14]);
- pseudoconvex domains of strictly finite type in the sense of Range [20] (see [3]);
- pseudoconvex domains of finite type in \(\mathbb{C}^2 \) (see [15, 23]).

The main goal of this paper is to prove a Wolff-Denjoy-type theorem for a general class of bounded pseudoconvex domains in \(\mathbb{C}^n \) that includes many pseudoconvex domains of both finite and infinite type. In particular, we shall prove the following (the definitions are given below).

Theorem 1. Let \(\Omega \subset \mathbb{C}^n \) be a bounded, pseudoconvex domain with \(C^2 \)-smooth boundary \(\partial \Omega \).

Assume that

(i) \(\Omega \) has the \(f \)-property with \(f \) satisfying \(\int_1^\infty \frac{\ln \alpha}{af(\alpha)} d\alpha < \infty \); and

(ii) the Kobayashi distance of \(\Omega \) is complete.

If \(\phi: \Omega \rightarrow \Omega \) is a holomorphic self-map such that the sequence of iterates \(\{\phi^k\} \) is compactly divergent, then the sequence \(\{\phi^k\} \) converges, uniformly on a compact set, to a point of the boundary.

We say that a Wolff-Denjoy-type theorem for \(\Omega \) holds if the conclusion of Theorem 1 holds. We will prove Theorem 1 in Section 3 using the (known) estimates of the Kobayashi distance on domains of the \(f \)-property and the work by Abate [2, 3, 4].

We now recall some the definitions of the \(f \)-property (see also [16, 17]) and the Kobayashi distance.

2010 Mathematics Subject Classification. Primary 32H50; Secondary 37F99.

Key words and phrases. Wolff-Denjoy-type theorem, finite type, infinite type, \(f \)-property, Kobayashi metric, Kobayashi distance.
Definition 1. Let \(f : \mathbb{R}^+ \to \mathbb{R}^+ \) be a smooth, monotonically increasing functions so that \(f(\alpha)\alpha^{-1/2} \) is decreasing. We say that \(\Omega \subset \mathbb{C}^n \) has the \(f \)-property if there exists a family of functions \(\{\psi_\eta\} \) such that

(i) the functions \(\psi_\eta \) are plurisubharmonic, \(|\psi_\eta| \leq 1 \), and \(C^2 \) on \(\Omega \);
(ii) \(i\partial\bar{\partial}\psi_\eta \geq c_1 f(\eta^{-1})^2 \text{Id} \) and \(|D\psi_\eta| \leq c_2 \eta^{-1} \) on \(\{z \in \Omega : 0 < \delta_\Omega(z) < \delta\} \) for some constants \(c_1, c_2 > 0 \), where \(\delta_\Omega(z) \) is the Euclidean distance from \(z \) to the boundary \(\partial \Omega \).

This is an analytic condition where the function \(f \) reflects the geometric “type” of the boundary. For example, viewing Catlin’s results on pseudoconvex domains of finite type through the lens of the \(f \)-property [6, 7], a domain is of finite type if and only if there exists an \(\epsilon > 0 \) such that the \(t^\epsilon \)-property holds. If domain is convex and of finite type \(m \), then the \(t^1/m \)-property holds [18]. Furthermore, there is a large class of infinite type pseudoconvex domains that satisfy an \(f \)-properties [17, 16]. For example (see [17]), the \(\ln \eta \)-property holds for both the complex ellipsoid of infinite type

\[
\Omega = \left\{ z \in \mathbb{C}^n : \sum_{j=1}^n \exp\left(-\frac{1}{|z_j|^{\alpha_j}}\right) - e^{-1} < 0 \right\}
\]

with \(\alpha := \max_j \{\alpha_j\} \), and the real ellipsoid of infinite type

\[
\tilde{\Omega} = \left\{ z = (x_1 + iy_1, \ldots, x_n + iy_n) \in \mathbb{C}^n : \sum_{j=1}^n \exp\left(-\frac{1}{|x_j|^{\alpha_j}}\right) + \exp\left(-\frac{1}{|y_j|^{\beta_j}}\right) - e^{-1} < 0 \right\}
\]

with \(\alpha := \max_j \{\min\{\alpha_j, \beta_j\}\} \), where \(\alpha_j, \beta_j > 0 \) for all \(j = 1, 2, \ldots \). The influence of the \(f \)-property on estimates of the Kobayashi metric and distance will be given in Section 2.

On hyperbolic manifolds, completeness of the Kobayashi distance (or \(k \)-completeness for short) is a natural condition. For a bounded domain \(\Omega \subset \mathbb{C}^n \), \(k \)-completeness of means

\(k_\Omega(z_0, z) \to \infty \) as \(z \to \partial \Omega \)

for any point \(z_0 \in \Omega \) where \(k_\Omega(z_0, z) \) is the Kobayashi distance from \(z_0 \) to \(z \). It is well-known that this condition holds for strongly pseudoconvex domains [11], convex domains [19], pseudoconvex domains of finite type in \(\mathbb{C}^2 \) [23], pseudoconvex Reinhardt domains [21], domains enjoying a local holomorphic peak function at any boundary point [12]. We also remark that the domain defined by \(\{1\} \) (resp. \(\{2\} \)) is \(k \)-complete because it is a pseudoconvex Reinhardt domain (resp. convex domain). These remarks immediately lead to the following corollary.

Corollary 2. Let \(\Omega \) be a bounded domain in \(\mathbb{C}^n \) with smooth boundary \(\partial \Omega \). The Wolff-Denjoy-type theorem for \(\Omega \) holds if \(\Omega \) satisfies at least one of the following settings:

(a) \(\Omega \) is a strongly pseudoconvex domain;
(b) \(\Omega \) is a pseudoconvex domain of finite type and \(n = 2 \);
(c) \(\Omega \) is a convex domain of finite type;
(d) \(\Omega \) is a pseudoconvex Reinhardt domain of finite type;
(e) \(\Omega \) is a pseudoconvex domain of finite type (or of infinite type having the \(f \)-property with \(f(t) \geq \ln^{2+\epsilon}(t) \) for any \(\epsilon > 0 \)) such that \(\Omega \) has a local, continuous, holomorphic peak function at each boundary point, i.e., for any \(x \in \partial \Omega \) there exist a neighborhood \(U \) of \(x \) and a holomorphic function \(p \) on \(\Omega \cap U \), continuous up to \(\Omega \cap U \), and satisfies

\[
p(x) = 1, \quad p(z) < 1, \quad \text{for all } z \in \Omega \cap U \setminus \{x\};
\]

(f) \(\Omega \) is defined by \(\{1\} \) or \(\{2\} \) with \(\alpha < \frac{1}{2} \).
Finally, throughout the paper we use \(\lesssim \) and \(\gtrsim \) to denote inequalities up to a positive multiplicative constant, and \(H(\Omega_1, \Omega_2) \) to denote the set of holomorphic maps from \(\Omega_1 \) to \(\Omega_2 \).

2. The Kobayashi metric and distance

We start this section by defining the Kobayashi metric.

Definition 2. Let \(\Omega \) be a domain in \(\mathbb{C}^n \), and \(T^{1,0}\Omega \) be its holomorphic tangent bundle. The Kobayashi (pseudo)metric \(K_\Omega : T^{1,0}\Omega \to \mathbb{R} \) is defined by

\[
K_\Omega(z, X) = \inf \{ \alpha > 0 \mid \exists \Psi \in H(\Delta, \Omega) : \Psi(0) = z, \Psi'(0) = \alpha^{-1} X \},
\]

for any \(z \in \Omega \) and \(X \in T^{1,0}\Omega \), where \(\Delta \) be the unit open disk of \(\mathbb{C} \).

In the case that \(\Omega \) is a smoothly pseudoconvex bounded domain of finite type, it is known that there exists \(\epsilon > 0 \) such that the Kobayashi metric \(K_\Omega \) has the lower bound \(\delta_\Omega^{-\epsilon}(z) \) (see [8, 10]), in the sense that,

\[
K_\Omega(z, X) \gtrsim \frac{\| X \|}{\delta_\Omega(z)},
\]

where \(\| X \| \) is the Euclidean length of \(X \). Recently, the first author [16] obtained lower bounds on the Kobayashi metric for a general class of pseudoconvex domains in \(\mathbb{C}^n \), that contains all domains of finite type and many domains of infinite type.

Theorem 3. Let \(\Omega \) be a pseudoconvex domain in \(\mathbb{C}^n \) with \(C^2 \)-smooth boundary \(\partial \Omega \). Assume that \(\Omega \) has the \(f \)-property with \(f \) satisfying \(\int_a^\infty \frac{\alpha \, d\alpha}{f(\alpha)} < \infty \) for \(s \geq 1 \), and denote by \((g(s))^{-1} \) this finite integral. Then,

\[
K(z, X) \gtrsim g(\delta_\Omega^{-1}(z))\| X \|,
\]

for any \(z \in \Omega \) and \(X \in T^{1,0}\Omega \).

The Kobayashi (pseudo)distance \(k_\Omega : \Omega \times \Omega \to \mathbb{R}^+ \) on \(\Omega \) is the integrated form of \(K_\Omega \). \(k_\Omega \) is given by

\[
k_\Omega(z, w) = \inf \left\{ \int_a^b K_\Omega(\gamma(t), \dot{\gamma}(t)) \, dt \mid \gamma : [a, b] \to \Omega, \text{piecewise } C^1 \text{-smooth curve}, \gamma(a) = z, \gamma(b) = w \right\}
\]

for any \(z, w \in \Omega \). An essential property of \(k_\Omega \) is that it is a contraction under holomorphic maps, i.e.,

\[
\text{if } \phi \in H(\Omega, \hat{\Omega}) \text{ then } k_\Omega(\phi(z), \phi(w)) \leq k_\Omega(z, w), \text{ for all } z, w \in \Omega.
\]

We need the following lemma from [11].

Lemma 4. Let \(\Omega \) be a bounded \(C^2 \)-smooth domain in \(\mathbb{C}^n \) and \(z_0 \in \Omega \). Then there exists a constant \(c_0 > 0 \) depending on \(\Omega \) and \(z_0 \) such that

\[
k_\Omega(z_0, z) \leq c_0 - \frac{1}{2} \ln \delta_\Omega(z)
\]

for any \(z \in \Omega \).

We recall that the curve \(\gamma : [a, b] \to \Omega \) is called a minimizing geodesic with respect to the Kobayashi metric between two points \(z = \gamma(a) \) and \(w = \gamma(b) \) if

\[
k_\Omega(\gamma(s), \gamma(t)) = t - s = \int_s^t K_\Omega(\gamma(\tau), \dot{\gamma}(\tau)) \, d\tau, \quad \text{for any } s, t \in [a, b], s \leq t.
\]

This implies that

\[
K(\gamma(t), \dot{\gamma}(t)) = 1, \quad \text{for any } t \in [a, b].
\]
The relation between the Kobayashi distance \(k_\Omega(z, w) \) and the Euclidean distance \(\delta_\Omega(z, w) \) is contained in the following lemma, itself a generalization of [15, Lemma 36].

Lemma 5. Let \(\Omega \) be a bounded, pseudoconvex, \(C^2 \)-smooth domain in \(\mathbb{C}^n \) satisfying the \(f \)-property with \(\int_1^\infty \frac{\ln \alpha}{\alpha f(\alpha)} \, d\alpha < \infty \) and \(z_0 \in \Omega \). Then there exists a constant \(c \) only depending on \(z_0 \) and \(\Omega \) such that

\[
\delta_\Omega(z, w) \leq c \int_{e^{2k_\Omega(z, \gamma)}}^{e^{2k_\Omega(z, \gamma)}} \frac{c_0 + \ln \alpha}{\alpha f(\alpha)} \, d\alpha,
\]

for all \(z, w \in \Omega \), where \(\gamma \) is a minimizing geodesic connecting \(z \) to \(w \) and \(c_0 \) is the constant given in Lemma 4. Here, \(k_\Omega(z_0, \gamma) \) is the Kobayashi distance from \(z_0 \) to the curve \(\gamma \).

Proof. We may assume that \(z \neq w \). Let \(p \) be a point on \(\gamma \) of minimal distance to \(z_0 \). We can assume that \(p \neq z \) (if not, we interchange \(z \) and \(w \)) and denote by \(\gamma_1 : [0, a] \to \Omega \) the reparametrized piece of \(\gamma \) going from \(p \) to \(z \). By the minimality of \(k_\Omega(z_0, \gamma) = k_\Omega(z_0, p) \) and the triangle inequality we have

\[
k_\Omega(z_0, \gamma_1(t)) \geq k_\Omega(z_0, \gamma) \quad \text{and} \quad k_\Omega(z_0, \gamma_1(t)) \geq k_\Omega(p, \gamma_1(t)) - k_\Omega(z_0, p) = t - k_\Omega(z_0, \gamma)
\]

for any \(t \in [0, a] \). Substituting \(z = \gamma_1(t) \) into the inequality in Lemma 4 it follows

\[
\frac{1}{\delta_\Omega(\gamma_1(t))} \geq e^{2k_\Omega(z_0, \gamma_1(t)) - 2c_0}
\]

for all \(t \in [0, a] \). Since \(\gamma_1 \) is a unit speed curve with respect to \(K_\Omega \) we have

\[
\delta_\Omega(p, z) \leq \int_0^a \|\gamma'_1(t)\|dt
\]

\[
\leq \int_0^a \left(g \left(\frac{1}{\delta_\Omega(\gamma_1(t))} \right) \right)^{-1} K_\Omega(\gamma_1(t), \gamma'_1(t))dt
\]

\[
\leq \int_0^a \left(g \left(e^{2k_\Omega(z_0, \gamma_1(t)) - 2c_0} \right) \right)^{-1} dt.
\]

We now compare \(a \) with \(2k_\Omega(z_0, \gamma) + c_0 \). In the case \(a > 2k_\Omega(z_0, \gamma) + c_0 \), we split the integral into two parts and use the inequalities (7) and the fact that \(g \) is increasing. We then have

\[
\delta_\Omega(p, z) \leq \int_0^{2k_\Omega(z_0, \gamma) + c_0} \left(g \left(e^{2k_\Omega(z_0, \gamma_1(t)) - 2c_0} \right) \right)^{-1} dt + \int_{2k_\Omega(z_0, \gamma) + c_0}^a \left(g \left(e^{2k_\Omega(z_0, \gamma_1(t)) - 2c_0} \right) \right)^{-1} dt
\]

\[
\leq \int_0^{2k_\Omega(z_0, \gamma) + c_0} \left(g \left(e^{2k_\Omega(z_0, \gamma) - 2c_0} \right) \right)^{-1} dt + \int_{2k_\Omega(z_0, \gamma) + c_0}^a \left(g \left(e^{2t - 2k_\Omega(z_0, \gamma) - 2c_0} \right) \right)^{-1} dt
\]

\[
\leq \frac{2k_\Omega(z_0, \gamma) + c_0}{g \left(e^{2k_\Omega(z_0, \gamma) - 2c_0} \right)} + \int_{e^{2k_\Omega(z_0, \gamma) - 2c_0}}^\infty \frac{d\beta}{\beta g(\beta)}
\]

\[
\leq \left(\frac{c_0 + \ln s}{g(s)} + \int_s^\infty \frac{d\beta}{\beta g(\beta)} \right) \bigg|_{s=e^{2k_\Omega(z_0, \gamma)}}.
\]

By the definition of \((g(s))^{-1} \) in Theorem 3 and the fact that \(f(\alpha)\alpha^{-1/2} \) decreasing, it follows

\[
\frac{1}{g(s)} \leq \int_{e^{2c_0}}^{\infty} \frac{d\alpha}{\alpha f(\alpha)} = \int_s^\infty \frac{e^{c_0}d\alpha}{\alpha f(\alpha)} \leq \int_s^\infty \frac{e^{c_0}d\alpha}{\alpha^{3/2} f(\alpha)} = \frac{e^{c_0}}{g(s)}.
\]
Let Ω be a domain in \mathbb{C}^n.

Definition 3. Let Ω be a domain in \mathbb{C}^n. Fix $z_0 \in \Omega$, $x \in \partial \Omega$ and $R > 0$. Then the small horosphere $E_{\Omega}(x, R)$ and the big horosphere $F_{\Omega}(x, R)$ of center x, pole z_0 and radius R are defined by

$$E_{\Omega}(x, R) = \{z \in \Omega: \limsup_{\Omega \ni w \to x} [k_{\Omega}(z, w) - k_{\Omega}(z_0, w)] < \frac{1}{2} \ln R\}$$
From (11) and (12), we obtain

\[F_{z_0}(x, R) = \{ z \in \Omega : \liminf_{\Omega \ni w \to x} [k_\Omega(z, w) - k_\Omega(z_0, w)] < \frac{1}{2} \ln R \}. \]

Definition 4. (see [3, p.185]) A domain \(\Omega \subset \mathbb{C}^n \) is called \(F \)-convex if for every \(x \in \partial \Omega \)

\[F_{z_0}(x, R) \cap \partial \Omega \subseteq \{x\} \]

holds for every \(R > 0 \) and for every \(z_0 \in \Omega \).

Remark 1. The bidisk \(\Delta^2 \) in \(\mathbb{C}^2 \) is not \(F \)-convex. Indeed, since \(d_{\Delta^2}((1/2, 1 - 1/k), (0, 1 - 1/k)) - d_{\Delta^2}((0, 0), (0, 1 - 1/k)) = d_\Delta(1/2, 0) - d_\Delta(0, 1 - 1/k) \to -\infty \) as \(\mathbb{N}^* \ni k \to \infty \), \((1/2, 1) \in \overline{F_{\Delta^2}((0, 1), R)} \cap \partial(\Delta^2) \) for any \(R > 0 \).

Remark 2. If \(\Omega \) is either a strongly pseudoconvex domain in \(\mathbb{C}^n \), or a pseudoconvex domain of finite type in \(\mathbb{C}^2 \), or a pseudoconvex domain of strict finite type in \(\mathbb{C}^n \) then \(\Omega \) is \(F \)-convex (see [2, 3, 23]).

Now, we prove that \(F \)-convexity holds on a larger class of pseudoconvex domains.

Proposition 7. Let \(\Omega \) be a domain satisfying the hypotheses of Theorem 7. Then \(\Omega \) is \(F \)-convex.

Proof. Let \(R > 0 \) and \(z_0 \in \Omega \). Assume by contradiction that there exists \(y \in \overline{F_{z_0}(x, R)} \cap \partial \Omega \) with \(y \neq x \). Then we can find a sequence \(\{z_n\} \subset \Omega \) with \(z_n \to y \in \partial \Omega \) and a sequence \(\{w_n\} \subset \Omega \) with \(w_n \to x \in \partial \Omega \) such that

\[k_\Omega(z_n, w_n) - k_\Omega(z_0, w_n) \leq \frac{1}{2} \ln R. \] (11)

Moreover, for each \(n \in \mathbb{N}^* \) there exists a minimizing geodesic \(\gamma_n \) connecting \(z_n \) to \(w_n \). Let \(p_n \) be a point on \(\gamma_n \) of minimal distance \(k_\Omega(z_n, \gamma_n) = k_\Omega(z_0, p_n) \) to \(z_0 \). We consider the following two cases for the sequence \(\{p_n\} \).

Case 1. There exists a subsequence \(\{p_{n_k}\} \) of the sequence \(\{p_n\} \) such that \(p_{n_k} \to p_0 \in \Omega \) as \(k \to \infty \).

\[k_\Omega(w_{n_k}, z_{n_k}) \geq k_\Omega(w_{n_k}, p_{n_k}) + k_\Omega(p_{n_k}, z_{n_k}) \]
\[\geq k_\Omega(w_{n_k}, z_0) - k_\Omega(z_0, p_{n_k}) + k_\Omega(p_{n_k}, z_{n_k}). \] (12)

From (11) and (12), we obtain

\[k_\Omega(p_{n_k}, z_{n_k}) \leq k_\Omega(w_{n_k}, z_{n_k}) - k_\Omega(w_{n_k}, z_0) + k_\Omega(z_0, p_{n_k}) \leq \frac{1}{2} \ln R + k_\Omega(z_0, p_{n_k}) \lesssim 1. \]

This is a contradiction since \(\Omega \) is \(k \)-complete.

Case 2. Otherwise, \(p_n \to \partial \Omega \) as \(n \to \infty \). By Lemma 5 there are constants \(c \) and \(c_0 \) only depending on \(z_0 \) such that

\[\delta_\Omega(w_n, z_n) \leq c \int_{\alpha = 2\delta_\Omega(z_0, \gamma_n)} \frac{c_0 + \ln \alpha}{\alpha f(\alpha)} d\alpha. \] (13)

On the other hand, \(\delta_\Omega(w_n, z_n) \gtrsim 1 \) since \(x \neq y \). Thus, the inequality (13) implies that

\[k_\Omega(z_0, \gamma_n) = k_\Omega(z_0, p_n) \lesssim 1. \] (14)

Therefore,

\[k_\Omega(z_n, w_n) \geq k_\Omega(z_n, p_n) + k_\Omega(p_n, w_n) \]
\[\geq k_\Omega(z_0, z_n) + k_\Omega(z_0, w_n) - 2k_\Omega(z_0, p_n). \] (15)

Combining with (11) and (14), we get

\[k_\Omega(z_0, z_n) \leq k_\Omega(z_n, w_n) - k_\Omega(z_0, w_n) + 2k_\Omega(z_0, p_n) \lesssim \ln R + 1. \]

This is a contradiction since \(z_n \to y \in \partial \Omega \) and hence the proof is complete.

The following theorem is a generalization of Theorem 3.1 in [3].
Lemma 9. Let Ω be a domain satisfying the hypothesis in Theorem \ref{thm:1} and fix $z_0 \in \Omega$. Let $\phi \in H(\Omega, \Omega)$ such that $\{\phi^k\}$ is compactly divergent. Then there is a point $x \in \partial \Omega$ such that for all $R > 0$ and for all $m \in \mathbb{N}$

$$
\phi^m(E_{z_0}(x, R)) \subset F_{z_0}(x, R).
$$

Proof. Since $\{\phi^k\}$ is compactly divergent and Ω is k-complete,

$$
\lim_{k \to +\infty} k_\Omega(z_0, \phi^k(z_0)) = \infty.
$$

For every $\nu \in \mathbb{N}$, let k_ν be the largest integer k satisfying $k_\Omega(z_0, \phi^k(z_0)) \leq \nu$; then

$$
k_\Omega(z_0, \phi^{k_\nu}(z_0)) \leq \nu < k_\Omega(z_0, \phi^{k_\nu+m}(z_0)) \forall \nu \in \mathbb{N}, \forall m > 0. \tag{16}
$$

Again, since $\{\phi^k\}$ is compactly divergent, up to a subsequence, we can assume that

$$
\phi^{k_\nu}(z_0) \to x \in \partial \Omega.
$$

Fix an integer $m \in \mathbb{N}$. Without loss of generality we may assume that $\phi^{k_\nu}(\phi^m(z_0)) \to y \in \partial \Omega$. Using Corollary \ref{cor:6} and the fact that

$$
k_\Omega(\phi^{k_\nu}(\phi^m(z_0)), \phi^{k_\nu}(z_0)) \leq k_\Omega(\phi^m(z_0), z_0) \quad \text{(by (5))}
$$

it must hold that $x = y$.

Set $w_\nu = \phi^{k_\nu}(z_0)$. Then $w_\nu \to x$ and $\phi^m(w_\nu) = \phi^{k_\nu}(\phi^m(z_0)) \to x$. From (16), we also have for $m \geq 0$

$$
\limsup_{\nu \to +\infty} [k_\Omega(z_0, w_\nu) - k_\Omega(z_0, \phi^m(w_\nu))] \leq 0. \tag{17}
$$

Now, fix $m > 0$, $R > 0$ and take $z \in E_{z_0}(x, R)$. Then

$$
\liminf_{\Omega \ni w \to x} [k_\Omega(\phi^m(z), w) - k_\Omega(z_0, w)]
\leq \liminf_{\nu \to +\infty} [k_\Omega(\phi^m(z), \phi^m(w_\nu)) - k_\Omega(z_0, \phi^m(w_\nu))]
\leq \liminf_{\nu \to +\infty} [k_\Omega(z, w_\nu) - k_\Omega(z_0, \phi^m(w_\nu))]
\leq \liminf_{\nu \to +\infty} [k_\Omega(z, w_\nu) - k_\Omega(z_0, w_\nu)]
\leq \limsup_{\nu \to +\infty} [k_\Omega(z_0, w_\nu) - k_\Omega(z_0, \phi^m(w_\nu))]
\leq \limsup_{\nu \to +\infty} [k_\Omega(z, w_\nu) - k_\Omega(z_0, w_\nu)]
\leq \limsup_{\Omega \ni w \to x} k_\Omega(z, w) - k_\Omega(z_0, w)]
< \frac{1}{2} \ln R,
$$

that is $\phi^m(z) \in F_{z_0}(x, R)$. Here, the first inequality follows by $\phi^m(w_\nu) \to x$, the second follows by (5), the fourth follows by (17), and the last one follows from the fact that $z \in E_{z_0}(x, R)$.

\qed

Lemma 9. Let Ω be a F-convex domain in \mathbb{C}^n. Then for any $x, y \in \partial \Omega$ with $x \neq y$ and for any $R > 0$, we have $\lim_{a \to y} E_a(x, R) = \Omega$, i.e., for each $z \in \Omega$, there exists a number $\epsilon > 0$ such that $z \in E_a(x, R)$ for all $a \in \Omega$ with $|a - y| < \epsilon$.

Proof. Suppose that for some $z \in \Omega$ such that there exists a sequence $\{a_n\} \subset \Omega$ with $a_n \to y$ and $z \notin E_{a_n}(x, R)$. Then we have

$$
\limsup_{w \to x} [k_\Omega(z, w) - k_\Omega(a_n, w)] \geq \frac{1}{2} \ln R.
$$
This implies that
\[\liminf_{w \to z} [k_{\Omega}(a_n, w) - k_{\Omega}(z, w)] \leq \frac{1}{2} \ln \frac{1}{R}. \]
Thus, \(a_n \in \overline{F}(x, 1/R) \), for all \(n = 1, 2, \cdots \). Therefore, \(y \in \overline{F}(x, 1/R) \cap \partial \Omega = \{x\} \), which is absurd, and the proof is complete.

Now we are ready to prove our main result.

Proof of Theorem 1. First we fix a point \(z_0 \in \Omega \). By Proposition 8 there is a point \(x \in \partial \Omega \) such that for all \(R > 0 \) and for all \(m \in \mathbb{N} \)
\[\phi^m(E_{z_0}(x, R)) \subset F_{z_0}(x, R). \]
We need to show that for any \(z \in \Omega \)
\[\phi^m(z) \to x \quad \text{as} \quad m \to +\infty. \]
Indeed, let \(\psi(z) \) be a limit point of \(\{\phi^m(z)\} \). Since \(\{\phi^m\} \) is compactly divergent, \(\psi(z) \in \partial \Omega \). By Lemma 9 for any \(R > 0 \) there is \(a \in \Omega \) such that \(z \in E_a(x, R) \). By Proposition 8, \(\phi^m(z) \in F_a(x, R) \) for every \(m \in \mathbb{N}^* \). Therefore,
\[\psi(z) \in \partial \Omega \cap \overline{F}_{a}(x, R) = \{x\} \]
by Proposition 7 thus the proof is complete.

Acknowledgments

The research of the second author was supported in part by a grant of Vietnam National University at Hanoi, Vietnam. This work was completed when the second author was visiting the Vietnam Institute for Advanced Study in Mathematics (VIASM). He would like to thank the VIASM for financial support and hospitality.

References

Tran Vu Khanh

School of Mathematics and Applied Statistics, University of Wollongong, NSW, Australia, 2522
E-mail address: tkhanh@uow.edu.au

Ninh Van Thu

Department of Mathematics, Vietnam National University at Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
E-mail address: thunv@vnu.edu.vn