2007

Synthesis, characterization, and optical properties of In2O3 semiconductor nanowires

Guoxiu Wang
University of Wollongong, gwang@uow.edu.au

Jinsoo Park
University of Wollongong, jp450@uow.edu.au

David Wexler
University of Wollongong, david_wexler@uow.edu.au

Min Sik Park
University of Wollongong, msp532@uow.edu.au

Jung-Ho Ahn
Andong National University

Publication Details

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
In_2O_3 semiconductor nanowires were synthesized by the chemical vapor deposition method through carbon thermal reduction at 900 °C with 95% Ar and 5% O_2 gas flow. The In_2O_3 nanowires were characterized by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence spectroscopy (PL). For the first time, we observed the formation of corundum-type h-In_2O_3 nanowires and branched In_2O_3 nanowires. The PL spectra of In_2O_3 nanowires show strong visible red emission at 1.85 eV (670 nm) at low temperature, possibly caused by a small amount of oxygen vacancies in the nanowire crystal structure.

Semiconductor nanowires have been extensively investigated as building blocks for nanoscale electronic and optoelectronic devices, with the applications ranging from molecular chemical and biological nanosensors, nanocomputing, and data processing to nanoscale light-emitting diodes. On the basis of the bottom-up paradigm for fabricating functional nanoscale devices, controllable synthesis of semiconductor nanowires is especially important. Binary semiconducting oxide nanowires have distinctive optical and electronic properties. A number of semiconductor nanowires, such as Ga_2O_3, SnO, CdO, ZnO, and In_2O_3, have been synthesized by the thermal evaporation method. In_2O_3 is a wide band gap transparent semiconductor (direct band gap of 3.55−3.75 eV and indirect band gap of 2.6 eV), which can be widely used in electronic and optoelectronic devices, flat panel displays, gas sensors, and photocatalysis. Indium oxide thin films have been investigated both as electronics and gas sensors. High-performance thin-film transistors (TFTs) using transparent In_2O_3 thin films have demonstrated excellent operating characteristics with large field-effect mobilities, a good drain-source current on/off modulation ratio, and near-zero threshold voltages. In_2O_3 thin films prepared by the sol−gel method have exhibited the capability to detect low levels (several hundred ppb) of nitrogen dioxide in air. Nanobelts of In_2O_3 have been synthesized via evaporation of In_2O_3 crystalline powders at 1400 °C. Here, we report an efficient technique for synthesizing In_2O_3 nanowires by a carbon thermal reduction method. The crystal structure and optical properties of the as-prepared In_2O_3 nanowires were examined by HRTEM and photoluminescence spectroscopy.

Figure 1a shows the X-ray diffraction patterns of In_2O_3 nanocrystalline powders and the as-grown nanowires. All diffraction lines can be indexed to a cubic structure of the bixbyte Mn_2O_3 (I) type, which belongs to the space group Ia3 (206). The lattice parameter of In_2O_3 nanowires was calculated to be a = 10.115 Å, which is consistent with the standard value for In_2O_3 powders (JCPDS 06-0416). Comparing the diffraction patterns of In_2O_3 powders and In_2O_3 nanowires, it can be seen that the In_2O_3 nanowires present
we are able to synthesize h-In$_2$O$_3$ nanowires via vapor deposition approach for the first time. Recently, displays the quadrilateral cross-section of an In$_2$O$_3$ nanowire and a length extending to more than 100 nm. Their diameter ranging from 30 nm to a few hundred nanometers. h-In$_2$O$_3$ nanocrystals have been synthesized at ambient pressure via surfactant-assisted hydrothermal process. The preparation of h-In$_2$O$_3$ structure. The crystal structure and morphology of individual In$_2$O$_3$ nanowires were further characterized by TEM and HRTEM examination. The In$_2$O$_3$ fibrous deposits were peeled off the Si substrate by FE-SEM analysis. A general FE-SEM image of the as-grown In$_2$O$_3$ nanostructure is shown in Figure 1b. High-density In$_2$O$_3$ nanowires had been successfully synthesized. The In$_2$O$_3$ nanowires are straight and have a diameter ranging from 30 nm to a few hundred nanometers and a length extending to more than 100 μm. Figure 1c displays the quadrilateral cross-section of an In$_2$O$_3$ nanowire with a width-to-thickness ratio of about 1:1. However, we also observed In$_2$O$_3$ nanowires with hexagonal cross-sections (as shown in Figure 1d), indicating the corundum-type h-In$_2$O$_3$ structure. The preparation of h-In$_2$O$_3$ structure requires high temperature and high pressure. Recently, h-In$_2$O$_3$ nanocrystals have been synthesized at ambient pressure via surfactant-assisted hydrothermal process. Here, we are able to synthesize h-In$_2$O$_3$ nanowires via vapor deposition approach for the first time.

The crystal structure and morphology of individual In$_2$O$_3$ nanowires were further characterized by TEM and HRTEM examination. The In$_2$O$_3$ fibrous deposits were peeled off the Si wafer via ultrasonic vibration and then dispersed in ethanol to form a suspension. The suspension was then dropped onto a holey carbon grid for TEM analysis. The In$_2$O$_3$ fibrous deposits were peeled off the Si wafer via ultrasonic vibration and then dispersed in ethanol to form a suspension. The suspension was then dropped onto a holey carbon grid for TEM analysis. After the deposition, we examined the morphology of the white fibrous layer deposited on the surface of the Si substrate by FE-SEM analysis. A general FE-SEM image of the as-grown In$_2$O$_3$ nanostructure is shown in Figure 1b. High-density In$_2$O$_3$ nanowires had been successfully synthesized. The In$_2$O$_3$ nanowires are straight and have a diameter ranging from 30 nm to a few hundred nanometers and a length extending to more than 100 μm. Figure 1c displays the quadrilateral cross-section of an In$_2$O$_3$ nanowire with a width-to-thickness ratio of about 1:1. However, we also observed In$_2$O$_3$ nanowires with hexagonal cross-sections (as shown in Figure 1d), indicating the corundum-type h-In$_2$O$_3$ structure. The preparation of h-In$_2$O$_3$ structure requires high temperature and high pressure. Recently, h-In$_2$O$_3$ nanocrystals have been synthesized at ambient pressure via surfactant-assisted hydrothermal process. Here, we are able to synthesize h-In$_2$O$_3$ nanowires via vapor deposition approach for the first time.

The crystal structure and morphology of individual In$_2$O$_3$ nanowires were further characterized by TEM and HRTEM examination. The In$_2$O$_3$ fibrous deposits were peeled off the Si wafer via ultrasonic vibration and then dispersed in ethanol to form a suspension. The suspension was then dropped onto a holey carbon grid for TEM analysis. Figure 2a shows a straight In$_2$O$_3$ nanowire with a diameter of about 40 nm. Energy dispersive X-ray analysis (EDX) was performed on the individual In$_2$O$_3$ nanowire, revealing that the nanowire consists of only the elements In and O with a ratio of In/O of 41:59, which is close to the In$_2$O$_3$ stoichiometry. Figure 2b shows the bending contour under electron diffraction of a ribbonlike In$_2$O$_3$ nanostructure with a width of 40 nm. On the basis of a previous report, directly evaporating In$_2$O$_3$ at 1400 °C can yield a majority percentage of nanobelts. Through both SEM and TEM observation, we found that there are 10% nanobelts formed among the deposited In$_2$O$_3$ nanowires in our carbon thermal reduction process. Figure 2c shows a branched L-shaped In$_2$O$_3$ nanowire with an Au particle at one end. EDX analysis performed at the dark dot confirmed the Au element. The presence of the Au catalyst at the end of nanowires indicated that the growth of In$_2$O$_3$ nanowires follows the vapor—liquid—solid (VLS) mechanism. A lattice image of the interface between the Au catalyst and the In$_2$O$_3$ nanowire is further shown in Figure 2d, which clearly elucidates the intimate connection between the Au catalyst and the In$_2$O$_3$ nanowire. This is the first time that the formation of complex branched L-shaped In$_2$O$_3$ nanowires has been reported. It seems that this In$_2$O$_3$ nanowire grew along one direction, then suddenly turned 90° and continued to grow perpendicularly to the previous direction. The mechanism governing such complicated growth is unknown. Nevertheless, the synthesis of branched nanowires will be very important for fabricating complex heterostructures and nanoscale devices.

Selected area electron diffraction (SAED) on a single In$_2$O$_3$ nanowire demonstrated a single crystalline cubic (bcc) structure (as shown in Figure 3a). The SAED recorded along the [001] zone axis indicated that the In$_2$O$_3$ nanowires were growing along the [010] direction. Figure 3b further shows the HRTEM image of an In$_2$O$_3$ nanowire. It reveals the lattice fringes of (400) planes, which is perpendicular to the nanowire growth axis [010] direction. We measured the d spacing of the In$_2$O$_3$ nanowire (400) lattice plane to be 2.50 Å. The presence of Au nanoparticles at the ends of In$_2$O$_3$ nanowires directly proves the VLS growth mechanism. In our carbon thermal reduction process, several steps toward the growth of In$_2$O$_3$ nanowires may be involved. First, In$_2$O$_3$ powders react with carbon, producing In and CO or CO$_2$. Simultaneously, indium is evaporated and transported by the flowing gas. At a high temperature, when the indium vapor

atoms come into contact with Au on the Si substrate, they form a liquid Au–In eutectic alloy. Because the carrier gas contains 5% O\textsubscript{2} and indium can form a strong covalent bond with oxygen, indium will be oxidized to In\textsubscript{2}O\textsubscript{3}, resulting in the continuous growth of In\textsubscript{2}O\textsubscript{3} nanowires.

The photoluminescence (PL) spectra of the bulk In\textsubscript{2}O\textsubscript{3} crystalline powders and the as-deposited In\textsubscript{2}O\textsubscript{3} nanowires were measured both at room temperature and at low temperature. The excitation source was a 325 nm He–Cd laser with a power density of 4 mW cm-2. Contrary to the previous reports11,12, we did not observe any luminescence at room temperature, either for In\textsubscript{2}O\textsubscript{3} powders or for In\textsubscript{2}O\textsubscript{3} nanowires. However, we detected a strong red luminescence centered at 680 nm for In\textsubscript{2}O\textsubscript{3} powders and 670 nm for In\textsubscript{2}O\textsubscript{3} nanowires at 10 K, which correspond to 1.80 and 1.85 eV, respectively. The PL spectra of In\textsubscript{2}O\textsubscript{3} powders and nanowires are shown in Figure 4. We noticed that the PL emission intensity of In\textsubscript{2}O\textsubscript{3} nanowires is almost 10 times of that In\textsubscript{2}O\textsubscript{3} powders. It is generally regarded that In\textsubscript{2}O\textsubscript{3} is an n-type semiconductor due to oxygen deficiency caused by the various synthetic processes. Although the PL emission mechanism of In\textsubscript{2}O\textsubscript{3} is not very clear so far, it has been widely recognized that the oxygen vacancies act as donors and induce PL emission under photon excitation13,14. In\textsubscript{2}O\textsubscript{3} has an oxygen-deficient fluorite structure with one-fourth of the anions missing in an ordered way.15 Different synthetic route may lead to varied oxygen vacancies. The lack of PL emission from the as-prepared In\textsubscript{2}O\textsubscript{3} nanowires at room temperature indicates that there could be only small amount of oxygen vacancies presented in the In\textsubscript{2}O\textsubscript{3} nanowires prepared by CVD process under the oxidizing synthetic atmosphere (5% O\textsubscript{2}). The visible red PL emission of In\textsubscript{2}O\textsubscript{3} at 10 K is similar to that of In\textsubscript{2}O\textsubscript{3} thin films that exhibited orange emission at 637 nm.16 Since the diameters of In\textsubscript{2}O\textsubscript{3} nanowires are much larger than the Bohr radius of In\textsubscript{2}O\textsubscript{3} (2.14 nm), quantum-confinement effects can be excluded. Therefore, the observed PL emission could be attributed to a small amount of oxygen vacancies in the In\textsubscript{2}O\textsubscript{3} nanowire crystal structure.

In summary, semiconductor In\textsubscript{2}O\textsubscript{3} nanowires can be massively synthesized via a carbon thermal reduction process. HRTEM analysis confirmed that the In\textsubscript{2}O\textsubscript{3} nanowires grow preferably along the [010] direction and follow the VLS growth mechanism. Complex, branched L-shaped In\textsubscript{2}O\textsubscript{3} nanowires were also observed, which could assist in synthesizing branched semiconductor nanowires. We have detected visible red PL emission at low temperature for as-prepared In\textsubscript{2}O\textsubscript{3} nanowires.

Acknowledgment. This work was financially supported by the Australian Research Council through the ARC Discovery project (DP0559891). The authors would like to thank Prof. G. C. Yi at Pohang University of Science and Technology (POSTEC), Korea for providing PL measurement.

Supporting Information Available: Details of synthesis of In\textsubscript{2}O\textsubscript{3} semiconductor nanowires, XRD, FE-SEM, TEM, HRTEM, and photoluminescence characterizations. This material is available free of charge via the Internet at http://pubs.acs.org.