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Equation 1.7 indicates that the amount of contraction strain of the muscle only depends on 

initial angle of the braided sleeve and is independent of internal pressure. Figure 1.14 shows 

the dependency of contraction strain on initial angle of the braided sleeve. The amount of 

contraction strain reduces with increasing the initial angle (similar to the force trend in 

equation 1.6) and reaching zero contraction strain at critical angle (54.44⁰). The behavior of 

the muscle changes dramatically above the critical angle and produces expansion strains, the 

phenomena that also were observed in force behavior (equation 1.6). This behavior proves 

that McKibben artificial muscles can be adjusted for specific applications where either 

expansion or contraction strains are required.  

 

Figure 1.14. The relationship between contraction strain and initial angle of the braid. 

 

This particular artificial muscle, however, presents some disadvantages such as the 

requirement of a separated mechanical air compressor, a noisy system, a heavy system to 

carry for human or robots and high electricity consumption [109]. To overcome mentioned 

disadvantages several attempts, have recently been made to replace the air with water or 

chemo-sensitive materials to introduce more compact and less noisy system.  
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[85] kilowatts) 

Inexpensive 

 

Pneumatic McKibben 

artificial muscle 

 

Fast (<1 sec) 

High strains (25-30%) 

High device packaging  

Air refilled needed 

Hydraulic McKibben 

artificial muscles  

Good response time (~1 minute) 

No need for fluid refilled 

High strains (25-30%) 

Pump, valve and piping 

High device packaging 

 

A pH-activated artificial 

muscle using the 

McKibben-type braided 

structure 

[115, 116] 

Good contractile strain (19%) 

Good isomeric force (120 N) 

Pump, valve and piping 

High device packaging 

 

High response time 

(>10 min) 

 

Table 1.5 represents the advantages and disadvantages of the most common types of available 

artificial muscles in order to compare them with biological muscles. It clearly appears that, 

CNT actuators, shape memory alloys and relaxor ferroelectric are very fast actuators but offer 

very low strains around 1-5%. Furthermore, conducting polymers are not fast; however, low 

voltage operation still makes them an interesting candidate to be employed as an artificial 

muscle when the low electricity efficiency is tolerable. Foroughi et al. [13] and Lima at al. 

[59] muscles offer very practical torsional actuations but suffer from low contractile strains, 

which makes them inappropriate where linear biological like muscle behavior is required. 

Haines et al. [85] muscle is a very practical device with properties very close to that of linear 

biological muscle. Further investigation is currently taking place in order to overcome the 

disadvantages of this muscle such as creep. 

Pneumatic/hydraulic artificial muscles are fast (1sec – 1 min), show high range of strains (25-

30%) and isometric forces, although, these systems are heavy and bulky which makes them 
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an unsuitable option when a compact and light system is required such as microactuator 

systems.  

Tondu et al. muscle [113-116] generates reasonable actuation strain and force. However, 

there are still some remaining problems that need to be considered, such as the long response 

time (> 10 min), and the required pump for delivering acid/base solutions to the pH sensitive 

hydrogel.  

The main aim of this thesis is to create or develop a new type of McKibben artificial muscle 

by eliminating the need of pump/compressor as well as piping to reduce the device packaging 

of these muscles. The lighter and more compact type of these muscles is more suitable for 

portable applications. Attempts to improve the performance of the currently available 

hydraulic McKibben muscles by reducing the stiffness of the inner tube have also been 

included in this study. It has been found that this part of the muscle consumes some of the 

input pressure and ultimately reduces the muscle performance. Paraffin as a temperature 

sensitive material was also selected to replace the pressurized fluid used in HAMs. A 

thermodynamic equation was subsequently introduced to predict the performance of these 

muscles by using temperature as an actuation driving force.      
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2.1.1. Effect of the inner tube stiffness on the static properties of an ideal cylindrical 

McKibben artificial muscle 

 

A classical model of an ideal purely cylindrical McKibben artificial muscle relates the 

static force F produced by the muscle to its control pressure P and its contraction strain 

ɛ[14]. This model can take the following form: 

Fidealcyl(P, ε) = (πR0
2)P [a(1 − ε)2 − b],                       0 ≤ ε ≤ εmax             (2.1) 

 

where R0 is the initial radius of the braid, a =3/tan
2∝0, b = 1/sin

2∝0. Equation 2.2 indicates 

that the maximum contraction strain is independent of applied pressure and is given by: 

 

εidealcyl max = 1 − (
1

1.732 cos∝0
 )                                                                      (2.2) 

 

This equation only requires the knowledge of two geometric parameters characterizing the 

artificial muscle: the initial braid angle α0 and the initial muscle radius R0 which is usually 

assumed to be the initial external inner tube radius, and considered as being equal to the 

initial internal braided sleeve radius. This model assumes a full transmission of the 

pressurized stress inside the inner rubber tube to the external braided sleeve. Such an 

assumption is generally verified in the case of pneumatic artificial muscles working in a 

typical [1–5 bars] range if a sufficiently thin inner tube made of a soft rubber was chosen. 

Meller et al. [15] and Pillsbury et al. [16] have recently demonstrated the effects of bladder 

stiffness on HAM/PAM performance with increasingly stiff bladders significantly limit the 

maximum strain achieved and slightly reducing the blocked force. A semiempirical approach 
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was introduced by Meller et al.[15] to account for bladder stiffness in the ideal model by 

introducing fitting parameters KF and Kɛ for force and strain, respectively: 

𝐹 = KF(πr0
2) P [a(1 − Kϵϵ)2 − b]                                                                 (2.3) 

 

where KF is the ratio of the measured blocked force to the maximum force predicted by Eq. 

(2.1) and Kɛ is the ratio of the maximum strain predicted by Eq. (2.1) to the measured 

maximum strain. In this chapter the effect of bladder stiffness on HAM performance is re-

considered and a simple alternative approach to modelling.  

    

2.2. Experimental  

 

2.2.1. Prototype fabrication  

 

McKibben artificial muscles normally consist of four important parts: an elastic tube, a 

cylindrical reinforcement braid, and two connectors for the pressurized fluid supply. To 

determine the effect of inner tube stiffness on the actuator performance, inner tubes made of 

natural rubber latex with two different thickness (0.28 and 0.56 mm) and a silicon rubber tube 

(thickness of 1 mm, Holman Flex tube) were used inside the braid. All bladders had an 

external diameter of 4.5-5.0 mm. Shimadzu EZ tensile machine were also used to measure 

the stiffness of the bladders by axially stretching the rectangular bladder samples. Cylindrical 

braids with thickness of 0.44 mm and outer radius in the unstrained state (R0) of 3 mm, made 

from polyphenylene sulfide (PPS) were obtained from JDD TECH Company, China. 

Crescent zip lock was also used to connect the muscle to tube connections. The initial angle 

(αo) of the braided sleeve (Fig. 2.1) was kept constant at 35
◦
. The muscle was fabricated as 
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follows: first, the inner tube was cut into the desired length of 35, 50, or 80 mm. Next, the 

inner tube was inserted into the braided sleeve, and finally the PVC connector tubes were 

glued to both ends of the inner tube. 

 

 

 

Figure 2.1. Polymeric braided sleeve used for hydraulic McKibben muscle. (a) resting state (b) 

expanded stat (c) photographs of HAMs of different lengths with tube connectors. 

 

2.2.2. Actuation set up 

 

The experimental set up was specially designed to measure actuation strain, generated force, 

response time and water pressure (Fig. 2.2). The sealed actuation system consisted of four 

important parts: a low voltage water pump (6 V, flow rate: 0.5 l/min, Flodos/NF6 KPDCB), a 

small water container (25 ml), McKibben muscle and a manual valve. Care was taken when 

filling the actuator and connecting tubes with water so as to remove any trapped air. The 
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entire system had a total weight of only 350 g, making it easily usable in robotic machines. 

The main mass of the system was due to the pump and power supply which can be optimized 

depending on the application. The operation is simply by opening and closing the manual 

valve. When the valve is closed while the pump is working the water becomes pressurized 

inside the muscle and causing the muscle to contract in length. Dual-mode lever system 

machine (Aurora Scientific, Model 300B) and Shimadzu EZ tensile machine were employed 

to record actuation stroke and force generated. The lever arm and tensile machine were 

connected to the artificial muscle, while the other end of the muscle was fixed. An e-corder 

data logger (ED 410, e-DAQ) was used to connect the lever arm unit to a PC, and e-DAQ 

Chart was used to record the data. The internal water pressure inside the muscle was also 

monitored by using a digital pressure meter (GEMS sensors and controls-3300R012). The 

current and voltage applied to the pump were noted periodically.  
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Figure 2.2. (A) Schematic view of the actuation setup used for hydraulic McKibben muscle 

(B) Photo of the portable actuation system. 

 

In this chapter, both isometric and isotonic standard tests for hydraulic artificial muscles were 

performed to obtain actuation results in accordance with corresponding physiological 

definitions:  

Isometric force: The muscle length was fixed to be constantly equal to its initial length and 

the maximum muscle force generation (the ‘blocked force’) recorded by using a force sensor 

as shown in Figure 2.3.  

                     (a)                                                                            (b)   

                                           F1 = 0 F2 > F1 

 L0 L=L0 

 

Figure 2.3. Isometric test (a) before muscle stimulation (b) after muscle stimulation. 
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Isotonic contraction: A given tensile force of 4.9 N was applied to the muscle by using a 

lever arm. This method was used to record the isotonic length variation of the muscle as 

described in schematically in Figure 2.4. 

 

                  (a)                                                                            (b) 

 

 F1 = 0     F2 = F1 

  

                                         L0                                                                         L<L0 

                                           

 

Figure 2.4. Isotonic test (a) before muscle stimulation (b) after muscle stimulation. 

 

Force–stroke curves: The possible force/stroke combinations were obtained by first 

measuring the isometric blocked force and then allowing the muscle to contract while 

simultaneously measuring force and stroke at a fixed pressure. 

 

2.3. Results and discussion 
 

2.3.1. Effect of the unloaded muscle length on isometric force generation and isotonic 

actuation strain with constant pressure 

 

An analysis of the effects of actuation length on the response time and isotonic strain 

behavior was made by comparing three different muscles lengths of 35, 50 and 80 mm under 

load of 4.9 N and water pressure of 2.5 bar (250 kPa) applied for ∼1 s and then released. 

Figure. 2.5 exhibits that all muscles contracted continuously during the pressurization period 
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with the shortest length (35 mm) achieving a strain of 23% in about 1 s, while the muscle 

with lengths of 50 and 80 mm generated smaller actuation strains of 18.5 and 16%, 

respectively. The time to reach a target strain of 15% increased with starting muscle length 

from 0.5 s (35 mm) to 0.7 s (50 mm) and 0.9 s (80 mm). The faster response seen in the 

shorter muscle was likely attributed to the smaller volume of water needed to pressurize the 

muscle. The expansion response time due to depressurizing the muscles was also dependent 

on muscle length but considerably faster than pressurization in all cases. Furthermore, the 

muscle of 80 mm produced the highest actuation displacement and greatest power (0.075 

Watts) compared to the other two muscles with shorter lengths.  

 

 

Figure 2.5. Isotonic actuation test under constant water pressure (2.5 bar) applied for 1.1 sec 

and given load of 4.9 N; pressurization-depressurization tests were performed four times on 

each HAM and the average maximum strains for each HAM length are shown by solid 

squares. The ranges of maximum strain values are represented by the error bars calculated as 

one standard deviation around the mean. 

 

The instantaneous power was also calculated during contraction as the product of 

displacement and load per contraction time and is shown in Figure. 2.6. It appears that the 
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longest muscle (bladder stiffness:78 N/m) produced the highest power around 0.075 W which 

peaked after just 0.32 seconds, as a result of generating more displacement. All of the 

muscles were able to produce 0.052 W power after 0.19 seconds regardless of their lengths. 

The overall power conversion efficiency was 8.9% based on the input electrical power of 

0.84 W needed for the hydraulic pump. The efficiency of this particular systems is higher 

than liquid crystal elastomers (<5%), conducting polymers (1-5%), carbon nanotube actuators 

(0.1%) and shape memory alloys (5%). Biological muscles (8-40%) and dielectric elastomers 

(30%) offer significantly more efficiencies than this muscle.  

 

 

Figure 2.6. Corresponding power output obtained from the isotonic test; (2.5 bar) and given 

load of 4.9 N. 

 

Isometric force generation is one of the essential requirements for many applications of 

artificial muscles such as robotic surgery and artificial jumping legs. According to Volder 

et al. [17] high forces of 1–10 N are required for robotic devices and surgery tools. Here 

we compared the three different HAM muscles with water pressure of 2.5 bar to investigate 
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the effect of actuation length on muscle performance. The maximum isometric force of 26 

N was recorded for the 80 mm long muscle in just 1.4 s. According to Figure. 2.7, the 

muscle ability in force generation scales approximately with actuator length. The shortest 

muscle (35 mm) generates isometric force of 11 N in 1.2 s, which is almost half of the 

muscle with 80 mm length. These results were very consistent for four consecutive 

pressurization–depressurization tests. Only one muscle was made at each length and each 

muscle was tested using four separate pressurization /depressurization steps to assess the 

reproducibility in force generation.    

Previous studies have shown little effect of braid length on the force generated when 

pressurized [18]. However, our muscles have comparatively small aspect ratios and below 

the recommended ratio of 14 [19] so that end effects may limit the force generated, 

especially in the shorter samples. The decision on making samples with small aspect ratios 

was made because of the interest in microactuator applications. The performances of our 

muscles are compared with previous HAMs systems, as summarized in Table 1.4 (chapter 

1). The reported systems vary considerably in size and operating pressures. The reported 

maximum (blocked) forces covered a wide range with the larger diameter muscles 

generated the higher forces. Three previous studies used similarly small diameter braids as 

used in the present work of less than 6 mm [7, 12, 13]. The maximum contraction (free) 

strains from these small diameter braids were of a similar magnitude (∼20%) and the 

maximum blocked forces were either similar or lower than those reported in the present 

study. The comparison highlights that it is possible to generate HAM performance 

comparable with other literature studies with the use of a low voltage/low power electric 

pump and a limited pressure range of 2.5 bar. 
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Figure 2.7. (A) Isometric force test under constant water pressure (2.5 bar). Pressurization-

depressurization tests were performed four times on each HAM and the average maximum 

forces for each HAM length are shown by the solid squares. The ranges of maximum force 

values are represented by the error bars calculated as one standard deviation around the mean. 

(B) Isometric force test under constant water pressure (2.5 bar). The dot points are indicating 

the maximum number of each pressurization-depressurization cycle which was obtained four 

times on each HAM. 

Muscle length: 35 mm 

Muscle length: 50 mm 
Muscle length: 80 mm 

(A) 

(B) 


