






tion. The decoding algorithm of an accumulator is shown in Algorithm

2.3.

Algorithm 2.3 Decoding algorithm of accumulator
Step 1: Initialization
For j = 0, 1, ..., N − 1, compute the LLR information Lj = ln

P (yj=0)
P (yj=1)

Step 2: Forward information:
For j = 0, LF0 = LA

0 + L0;
For j = 1, 2, ..., N − 2, LFj = boxplus(LFj−1, L

A
j ) + Lj

Step 3: Backward information:
For j = N − 2, LBN−2 = boxplus(LA

N−1, LN−1);
For j = n− 3, ..., 0, LBj = boxplus(LBj+1 + Lj, L

A
j )

Step 4 Hard decision:
For j = 0, LE

0 = boxplus(LB0, L0),
for j = 1, 2, ..., N − 2, LE

j = boxplus(LFj−1, Lj + LBj−1)
for j = N − 1, LE

N−1 = boxplus(LFN−2, LN−1).

2.5 Serially Concatenated Codes

Serially concatenated codes are a kind of concatenated codes. The ad-

vantage of these codes is the waterfall region performance can be very

close to the Shannon Limit with a very long overall code length when iter-

ative decoding is used. The encoder of a serially concatenated code which

includes an outer code encoder, an interleaver and an inner code encoder

is shown in Fig. 2.4.

The Fig. 2.5 shows the decoder structure of the serially concatenated

code. The SISO decoders of inner code and outer code are used in the
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Figure 2.4: The encoding circuit of a serial concatenated code.

Figure 2.5: The decoder structure of a serial concatenated code.

iterative decoding. LA
Inner,n and LA

Outer,n denote the L-value a priori in-

formation for Inner code decoder and Outer code decoder, respectively.

Similarly, LE
Inner,n and LE

Outer,n denote the generated extrinsic L-values of

the two decoders. LC,n is the n-th channel observation in L-value.

Notice that, the inner code needs to be recursive so that the interleaver gain

can be obtained. In this way, the bit error rate can be extremely low with

very long overall codeword length.

2.6 Block Markov Superposition Transmission

The BMST is a new type of coding scheme, which can be seen as a big

convolutional codes construct from short codes. It is similar to superposi-
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tion block Markov encoding (SBME) [6], which has been widely used to

prove multiuser coding theorems. Over an AWGN channel, the BER per-

formance of a BMST system can be lower-bounded according to the BER

performance of its basic code and the memory length [7]. This is because

BSMT system, with memory length m, provides an extra coding gain of

10 log10(m + 1) dB to the basic code. Thus, the error floor performance of

BMST can be controlled by memory length and it can reach extremely low

if the memory length is long enough. Specifically, the system complexity

increases linearly with the increasing of memory length, however, the cod-

ing gain increases logarithmically with the increasing of memory length.

Thus, it is not worth increasing memory length when it is large. Gener-

ally, we choose a target BER performance of 10−5 to decide the required

memory length. At this target BER performance, the waterfall region of

BMST can be close to Shannon limits (within one dB away). For BMST

systems with different basic codes, the decoding complexity depends on

the memory length and decoding complexity of the basic codes.

The encoder structure of BMST system with memory length m is de-

picted in Fig. 2.6. u(t), v(t) and c(t) denote the information sequence,

the coded basic code and the output codeword at time t, respectively.
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Figure 2.6: The encoding diagram of the BMST code.

“ENC” denotes the basic code encoder and the basic code of BMST is

a B-fold Cartesian product of a short code Q (codeword denoted by q).

Thus, the input binary sequence ut includes B small binary sequences,

ut = (ut
0, u

t
1, ..., u

t
B−1) and basic code is vt = (qt

0, q
t
1, ..., q

t
B−1). Node “D”

is the register, πi denotes the i-th random interleaver and the total number

of interleaver is m. This BMST code can provide 10 log10(m + 1) dB cod-

ing gain over AWGN channel [7]. Assume the basic code require γR dB to

reach the target BER (10−5) and the Shannon limit at code rate R is γ∗R dB.

In order to approach the Shannon limit, a memory length m ≈ 10
γR−γ∗R

10 is

necessary. The encoding algorithm is shown in Algorithm 2.4.

Notice that the termination in Step 3 will cause a code rate loss. How-

ever the rate loss can be negligible if L is very large. The decoder structure

of BMST codes with L = 4 and m = 2 is shown in Fig. 2.7. The decoding

algorithm starts with dividing the whole decoder into layers. The t-th layer

corresponds to the t-th transmitted basic code. We focus on computing
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Algorithm 2.4 Encoding Algorithm for BMST
Step 1: Initialization
v(t) is initialized to be 0 for t < 0.
Step 2: Loop:
For t = 0, 1, ..., L− 1
a. The information sequence u(t) is encoded to a basic code v(t).
b. Interleave the basic code v(t−i) to w(i) by the i-th interleaver, from
i = 1 to i = m.
c. The output codeword c(t) = v(t) +

∑i=m
i=1 wi .

Step 3: Termination:
After L binary sequences are coded, as a termination, we sent m all zero
sequences at the end of information sequence.

Figure 2.7: The factor graph representation of a BMST code with L = 4
and m = 2.
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the forward feedback information and backward feedback information be-

tween neighbouring layers. An iterative decoding algorithm called iterative

forward-backward decoding algorithm is presented in [6]. In each iteration

round, we compute the forward information from layer 0 to layer L+m−1

and the backward information from layer L + m − 1 to layer 0. When a

predefined certain stopping criterion is satisfied, the hard decision is made

on the output log-likelihood information of basic code decoder. We denote

the L-value channel observation at time t as yt = (yt
0, y

t
1, ..., y

t
n−1), where

yt
j is the j-th component of yt. V t and U t are the corresponding LLRs of

vt and ut. The decoding algorithm can be scheduled as follows:

Step 1: Initialisation

The L-value information over the intermediate edges is initialised to 0. Set

a maximum iteration number Imax > 0.

Step 2: Iteration

For I = 1, 2, ..., Imax

Forward recursion: for t = 0, 1, ..., L+m− 1, the forward feedback infor-

mation from t-th layer to (t + 1)-th layer can be calculated by

Backward recursion: for t = L + m − 1, ..., 1, 0, the backward feedback
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information from (t + 1)-th layer to t-th layer can be calculated by

Step 3: Hard Decision

After the predefined stopping criteria is reached, the hard decisions are

made on U t, for t = 0, 1, ..., L− 1.

Another algorithm called iterative sliding-window decoding with a fixed

decoding delay d is presented in [29]. The iterative sliding-window decod-

ing algorithm is similar to iterative forward-backward decoding algorithm,

but the iteration range is from t to t + d. Thus, it does not require that all

the basic codewords are received. The algorithm can be started when d+1

basic codewords are received and they are decoded one by one.

The decoding complexity can be divided into two parts. One part is

depending on the basic code and we denote this part by Obasiccode. The

other part includes all the remaining steps and the complexity of these
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steps relates to the memory length. For each coded bit, the complexity is

written as

Operbit = (4m− 2)boxplus + (3m + 3)additions + 2 ·Obasiccode. (2.10)
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Chapter 3

Multiple-Rate Serially Concatenated Codes with

Low Error Floors

3.1 Introduction

High rate codes with low error floors are of interest for some applica-

tions where high data rates and low error probabilities are required, e.g.,

magnetic recording systems, optical communications [16], and some fu-

ture wireless transmission systems [17]. Recently, a class of high-rate se-

rially concatenated codes with Hamming codes as the outer code and an

accumulator as the inner code, termed as HA codes (or exHA codes for

extended Hamming outer codes), has been shown to achieve near capac-

ity performance in the waterfall region [5], [16]. However, since the outer

Hamming codes have minimum distance 3 (or 4 for extended Hamming

codes), the resulting serially concatenated codes usually have rather small

minimum distances, thus leading to poor error floor performance. For ex-

ample, the minimum distances of HA codes are typically 2 or 3 when

overall code length is 992 (see the analysis in Section 3.4). This weak-

ness hinders its applications in systems where low error rate is expected
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such as optical communication systems and data storage devices [18]. One

way to mitigate the weakness is to optimise the interleaver design [19].

Another approach is to append a second accumulator to HA codes and

form double serially concatenated codes, termed as HAA codes [20]. It is

shown that HAA codes have minimum distance growing linearly with the

block length and thus they are expected to achieve very good error floor

performance [6]. However, due to the serial concatenation with two accu-

mulators, iterative decoding of HAA codes incurs a non-negligible loss at

the convergence threshold. For example, using (31, 26) Hamming code as

the outer code, the convergence thresholds of HA codes and HAA codes

are Eb/N0 = 2.77 dB and 3.48 dB, respectively [20]. This implies that

the serial concatenation of a second accumulator leads to a threshold loss

of 0.71 dB. Thus, how to balance the performance in error floor region

and waterfall region is a critical issue in the design of high rate codes with

iterative decoding [16].

To increase the minimum distances of HA codes while maintaining their

good decoding thresholds, this Chapter proposes to enhance the outer Ham-

ming codes by using high-rate SPC codes. More specifically, the outer

codes are replaced by product codes [21] with Hamming codes and high-
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rate SPC codes as the two component codes. The resulting serially con-

catenated codes are called HSA codes (or exHSA codes for extended Ham-

ming codes). Using a high-rate SPC code as one component code, the

product code can double the minimum distance of Hamming code and the

code rate loss can be marginal.

The remainder of this Chapter is organised as follows. Section 3.2 gives

a detailed description of the encoder and the associated iterative decoder

for the proposed high rate codes. Three-dimensional EXIT charts are used

for analysing the iterative decoding behaviour of the proposed codes and

iterative decoding threshold are determined in Section 3.3. In Section 3.4,

the low-weight distance spectrum of the proposed codes is calculated, and

the simulation results are presented to confirm the analysis in Section 3.5.

3.2 HSA Codes: Encoder and Decoder

HSA codes is a class of serially concatenated codes with product codes

(constructed from Hamming codes and SPC codes) as the outer code and

an accumulator as the inner code. The encoder and decoder of HSA codes

are detailed in the following two subsections, respectively.
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3.2.1 Encoder

Figure 3.1(a) depicts the encoder structure of the serial concatenation

of an outer code and an inner accumulator through an interleaver π. The

use of Hamming codes and extended Hamming codes as outer codes has

been considered in [16], [5]. Since the minimum distances of Hamming

and extended Hamming codes are very small (3 and 4, respectively), the

resultant serially concatenated codes generally exhibit small minimum dis-

tances, thus leading to high error floor performance. Here, we propose to

use as the outer code the product code with Hamming and SPC compo-

nent codes as shown in Fig. 3.1(b). The product code is depicted as an

array, where each row is a Hamming code and each column is an SPC

code. Compared to HA codes, the rates of HSA codes are reduced by a

factor of (nr − 1)/nr, which is the code rate of the SPC code. It is easy

to control the rate loss by adjusting the number of rows, nr, in the code

array. It is well known that the minimum distance (dmin) of a product code

is the product of the dmin’s of its two component codes [1]. Moreover, the

dmin of SPC codes is 2. Thus, an advantage of using proposed product

codes as the outer code is that the minimum distance of the outer code can

be doubled. More specifically, the minimum distance of the outer code is
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increased from 3 to 6 for the case of Hamming codes and from 4 to 8 for

the case of extended Hamming codes.

Figure 3.1: (a) Encoder strucuture of serially concatenated codes with an
inner accumulator; (b) An outer product code with (extended) Hamming
codes and SPC codes as component codes.

3.2.2 Decoder

From Fig. 3.1(b), each coded bit in the outer product code joins a Ham-

ming code and an SPC code. After the outer product encoding, we can see

from Fig. 3.1(a) that the coded bits of the outer product code are inter-

leaved and then used as the input to the accumulator. Thus, each coded bit

in the outer product code in fact joins 3 code constraints: a Hamming code,

an SPC code, and the accumulator. Accordingly, the iterative decoder can

be constructed by employing three soft-input/soft-output (SISO) decoders
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Figure 3.2: Iterative decoder of HSA codes with three constituent de-
coders. “Acc DEC”, “Ham DEC” and “SPC DEC” denote the accumu-
lator decoder, Hamming decoder and SPC decoder, respectively. π and
π−1 denote the interleaver and deinterleaver.

(i.e., Accumulator decoder, Hamming decoder and SPC decoder) as shown

in Fig. 3.2. The SISO decoder for the inner accumulator can be efficiently

conducted with low complexity by performing the forward-backward al-

gorithm on its factor graph representation [11]. For SISO decoding of

Hamming codes, we adopt the low complexity algorithm proposed in [10],

which is based on the dual code decoding principle firstly developed by

Hartmann and Rudolph in [13]. As the dual codes of extended Hamming

codes are first order Reed-Muller codes whose symbol-by-symbol maxi-

mum a posteriori (MAP) decoding can be done with fast Hadamard trans-

forms (FHTs), SISO decoding of (extended) Hamming codes can also be

efficiently implemented by using FHTs. The SISO decoding of SPC codes

56



is exactly the same as the row decoding in LDPC codes, which can be

implemented by the famous sum-product algorithm (see, e.g., [1]).

Algorithm 3.1 Iterative decoding of HSA codes
Step 1: Initialization
Calculate the L-value, LC,n, from channel observation
LC,n = log P (yn|xn=0)

P (yn|xn=1) = 2yn

σ2 ,

and set all the extrinsic information to 0,
LE

Acc,n = LE
Ham,n = LE

SPC,n = 0, n = 0, 1, ..., N − 1.
Step 2: Iterative decoding
At each iteration, the three constituent decoders are performed in a serial
fashion.
Accumulator decoder: Compute a priori information LA

Acc,n = LE
Ham,n+

LE
SPC,n. Then, input {LA

Acc,n} and {LC,n} to the accumulator decoder and
generate extrinsic information {LE

Acc,n}.
Hamming decoder: Compute a priori information LA

Ham,n = LE
Acc,n +

LE
SPC,n. Then, input {LA

Ham,n} into the Hamming decoder and generate
extrinsic information {LE

Ham,n}.
SPC decoder: Compute a priori information LA

SPC,n = LE
Ham,n +LE

Acc,n.

Then, input {LA
SPC,n} into the SPC decoder and generate extrinsic infor-

mation {LE
SPC,n}.

Step 3: Decision
Compute the L-value LH,n = LE

Acc,n +LE
Ham,n +LE

SPC,n. and make hard
decision x̂n for the nth bit as follows,

x̂n =

{
0 LH,n > 0

1 LH,n ≤ 0
.

If the maximum iteration number reached, stop decoding. Otherwise,
go back to Step 2.

Before we introduce the detailed decoding algorithm, it is necessarily

to introduce some notations. LA
Acc,n , LA

Ham,n and LA
SPC,n denote a priori

information of nth bit in log-likelihood ratio form (L-value) [22] for accu-

mulator decoder, Hamming decoder, and SPC decoder, respectively. Sim-
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ilarly, LE
Acc,n, LE

Ham,n and LE
SPC,n denote the generated extrinsic L-values

of nth bit for the three decoders. The iterative decoding of the proposed

codes can be performed by serially activating the three component SISO

decoders, i.e., “Acc DEC”, “Ham DEC” and “SPC DEC” as shown in Fig.

3.2. The detailed decoding algorithm is summarised in Algorithm 3.1.

3.3 Threshold Analysis Via Three-Dimensional EXIT Chart

The convergence behavior of iteratively decoded systems can be accu-

rately analyzed by using the density evolution (DE) algorithm [27]. How-

ever, as DE tracks the evolution of probability density functions (pdfs) of

soft information, its computational complexity is very high. A simplified

version of DE, referred to extrinsic information transfer (EXIT) chart, is

proposed in [22], which uses mutual information as the surrogate of pdfs.

The input-output relations of constituent decoders are depicted by EXIT

functions which characterizes how a priori information transfer into ex-

trinsic information at the SISO decoder. A decoding trajectory for the

exchange of extrinsic information between constituent decoders can be vi-

sualised in an EXIT chart.

For iterative decoding systems with two component decoders, each de-

coder can be characterised by an EXIT function, which is usually obtained
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via simulation with the assumption that the a priori decoder input follows

the symmetric Gaussian distribution [22]. Graphically, an EXIT function

can be visualised as a curve in the EXIT chart. Notice that as the extrin-

sic information from one decoder is used as the priori information for the

other decoder, the EXIT curve for the second decoder can be drawn in the

same chart for the first decoder by swapping the axes. In this way, the

convergence behavior of the iteratively decoded system with two compo-

nent decoders can be visualised by the decoding trajectory between the two

EXIT curves [22].

Later, the EXIT chart tool is further extended for the analysis of three-

dimensional parallel concatenated system by Ten Brink in [23] and three-

dimensional serially concatenated system by Tüchler in [26]. From the

encoding perspective, the proposed HSA codes can be viewed as a Hybrid

concatenation scheme, the product code and the accumulator are serially

concatenated, while the product code itself can be viewed as a parallel con-

catenation. However, as mentioned in Subsection 3.2.2 each coded bit in

the outer product code joins 3 code constraints and then an HSA code can

be treated as a parallel concatenated code by viewing the product codeword

as the “input”. In fact, the proposed decoder as shown in Fig. 3.2 has the
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same structure as that for parallel concatenated code (see Fig. 3.2 in [22]).

Hence, the three-dimensional EXIT chart developed for parallel concate-

nated codes in [23] can be adopted for the analysis of the proposed codes.

As seen from Fig. 3.2, for a three-dimensional parallel concatenated code,

each constituent decoder has two inputs and one output, which means the

associated EXIT function is a two-input and one-output function, and is

visualised as a surface rather than a curve in the case of two-dimensional

EXIT chart. Now we use the Hamming decoder as an example to explain

how to generate the EXIT surface for a constituent decoder. The EXIT

function denoted as IE
Ham = fHam(IE

Acc, I
E
SPC), where IE

Acc, IE
Ham and IE

SPC

denote the mutual information which are related to the extrinsic informa-

tion generated by accumulator decoder, Hamming decoder and SPC de-

coder, respectively. To approximate the function, we only need a fine grid

of the (IE
Acc, IE

SPC) over the area [0, 1]2, and for each point (IE
Acc, IE

SPC) in

the grid simulation is required to find the associated IE
Ham. The detailed

procedure is similar to that in [22].

As an example, Fig. 3.3 shows the three-dimensional EXIT chart at

Eb/N0 = 3.19 dB for the HSA code with (31, 26) Hamming codes and

(32, 31) SPC component codes . There are three surfaces in the three di-
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Figure 3.3: Three-dimensional EXIT chart for Hamming(31,26)-
SPC(32,31)-Accumulate code at Eb/N0 = 3.19 dB

mensional EXIT chart; each surface corresponds to the extrinsic mutual in-

formation transfer characteristic of a constituent decoder which accepts the

priori knowledge from other two decoders. To insure that successful de-

coding, it is necessary to guarantee that the trajectory can go up to (1, 1, 1).

Equivalently, a tunel from (0, 0, 0) to (1, 1, 1) is required. Otherwise, the

trajectory will get stuck and decoding cannot converge to the correct code-

word. The threshold is the minimum Eb/N0-value at which a tunel from

(0,0,0) to (1,1,1) is possible. With the help of the three dimensional EXIT

chart, we can easily identify the thredholds of HSA codes by graduately

tunning the value of Eb/N0. As an example, the iterative decoding thresh-
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old of HSA codes with the outer product code constructed from (31,26)

Hamming code and (32,31) SPC code is found to be Eb/N0 = 2.80 dB,

which is better than the threshold, Eb/N0 = 3.48 dB, of the HAA codes.

Notice that the corresponding Shannon limit is Eb/N0 = 2.2 dB. Hence,

the proposed HSA code is about 0.6 dB away from the Shannon limit.

3.4 Low Weight Profile Analysis

As the error floor performance is largely determined by low weight

codewords, this section examines and compares the low weight distance

spectra of the proposed codes and the existing ones. For comparison pur-

pose, we compute the low weight profiles for 3 length-992 code ensembles,

i.e., HA code ensemble with (31,26) Hamming outer code, exHA code

ensemble with (32, 26) extended Hamming outer code, and HSA code en-

semble with the product code constructed from (31,26) Hamming code and

(32,31) SPC code as the outer code. Note that the HSA code ensemble has

the same code rate as the exHA code ensemble. Using the uniform inter-

leaver concept [24], the ensemble-average weight enumerator (WE) of the

code ensemble can be computed as:

Ah =
∑

w

AC0
w AAcc

w,h(
N
w

) , (3.1)
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where Ah denotes the ensemble-average number of codewords of weight

h, AC0
w is the WE of the outer code C0 and AACC

w,h , the input-output WE of

the inner accumulator, can be written in closed form as [1]:

AACC
w,h =

(
N − h

bw/2c
)(

h− 1

dw/2e − 1

)
(3.2)

The ensemble-average low-weight profiles are summarised in Table 3.1.

From Table 3.1, we can see that the ensemble-average number of weight-4

codewords for HA codes is 8.5271, which implies that a randomly gen-

erated HA code has a high probability of having a minimum distance no

greater than 4. In fact, 20 length-992 HA codes are constructed by ran-

domly generating 20 interleavers and the triple impulse method in [20] was

used to determine their minimum distances (dmin), among which 9 codes

were found to have dmin = 2 , 10 were found to have dmin = 3, and only

1 has dmin = 4. Similar results are observed for exHA codes. However,

when the outer code is replaced by the product code with (31,26) Hamming

code and (32,31) SPC code as component codes, the values of the low-

weight profile of HSA codes are more than two orders smaller than those

of HA codes and exHA codes. In this case, the triple impulse method fails

to find dmin with reasonable values. This implies that HSA codes could
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Table 3.1: Ensemble-average low-weight profiles of 4 length-992 code en-
sembles with (31,26) Hamming code or (32,26) extended Hamming code
as component codes. Ah is the average number of codewords with Ham-
ming weight h.

A1 A2 A3 A4

HA code 0 0.4541 2.4750 8.5271

exHA code 0 0.4692 1.0427 3.0685

HSA code 0 0 0.0095 0.0293

HAA code 0.0009 0.0010 0.0012 0.0013

Table 3.2: The parameters of 5 serially concatenated codes.
Code Len. Info. Len (Ex)Ham Code SPC code

HA code 992 832 (31,26) –

exHA code 992 806 (32,26) –

HAA code 992 832 (31,26) –

HSA code 992 806 (31,26) (32,31)

exHSA code 992 780 (32,26) (31,30)

have larger dmin’s and much better error floor performance could be ex-

pected. For comparison, we also include in Table 3.1 the low-weight pro-

file for the length-992 HAA code ensemble with (31,26) Hamming outer

code. Although the HAA code ensemble has even smaller values at the

low-weight profile, it incurs a non-negligible performance in the waterfall

region as stated above. In fact, at short block lengths, we find HSA codes

could provide similar error floor performance as HAA codes, as will be

shown in Fig. 3.4.
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Figure 3.4: Frame error rate performance of length-992 high-rate serially
concatenated codes on the AWGN channel with BPSK modulation.

3.5 Numerical Results

To verify the above analysis, 5 length-992 serially concatenated codes

are constructed by using random interleavers. The code parameters of the

constructed 5 serially concatenated codes are listed in Table 3.2. Figure 3.4

compares their frame error rate (FER) performance on the AWGN chan-

nel with BPSK modulation. The maximum iteration number is set to 30.

For each simulation point at least 50 frame errors are collected. As ex-

pected, due to their small minimum distances, the HA and exHA codes

exhibit poor FER performance; the FER error floors appear around FER

of 10−3. Although the HAA code outperforms the HA and exHA codes at
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the error floor region, a degradation of about 0.5 dB in the waterfall region

is observed. The HSA code achieves much better error floor performance

compared to HA and exHA codes and its FER curve tends to show a similar

slope as that of the HAA code at the high SNR region. The exHSA code

achieves the best performance, which is achieved at the cost of a slight

code rate reduction.
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(31,26)Hamming code and (32,31)SPC code

Figure 3.5: Frame error rate performance of three length-992 HSA codes
using (8,7), (16,15) and (32,31)SPC codes, repectively.

In Fig. 3.5, the FER performances of three length 992 HSA codes are

depicted. Their outer codes are constituted by (31, 26) Hamming code

and (8,7), (16, 15) and (32,31) SPC codes, respectively. Thus, they have

the same codeword length but different code rates (0.7339, 0.7863 and
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0.8125). Compared with HSA code using (32, 31) SPC code, the HSA

code using (16, 15) SPC code has a code rate loss of 0.0262. However, this

code rate loss lead to a 2-orders of magnitude improvement at error floor

region. For HSA code using (8,7) SPC code, the code rate loss is 0.0786

and the improvement is at least 4-orders of magnitude.

3.6 Conclusion

Low-weight profile analysis has revealed that randomly generated HA

and exHA codes have high probabilities of producing low weight code-

words, which are responsible for their poor error floor performance. To

overcome this weakness, we have proposed to replace the outer codes in

HA and exHA codes with product codes from (extended) Hamming codes

and high-rate SPC codes. Such a replacement maintains the good waterfall

performance of HA and exHA codes, while the minimum distance of the

outer code is doubled, thus leading to much better error floor performance.
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Chapter 4

Block Markov Superposition Transmission with

Multiple-Rate Basic Codes

4.1 Introduction

In BMST systems, some multiple-rate codes have already been used.

Short Hadamard transform (HT) code, in [28], is a new class of multiple-

rate code with fixed code length. Its generator matrix is an N×N Hadamard

matrix, where N = 2p with p > 0. The code rate can be adjusted by setting

different number of frozen bits. A more flexible and even simpler construc-

tion of multiple-rate codes, called RSPC codes, is proposed in [7]. This is

a family of codes composed by repetition codes and SPC codes. The code

rate can be adjusted by changing the proportion of repetition codes and

SPC codes. Since the code rates of repetition code and SPC code are 1
N

and (N−1)
N , the constructed RSPC codes have a wide code rate range from

1
N to (N−1)

N . More conveniently, the performance of RSPC codes can be

predicted analytically, as is required for determining the memory length of

the BMST-RSPC codes. On the other hand, this RSPC-BMST system has

two disadvantages. One is the system requires very long memory length
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to guarantee the BER performance and the other is the decoding of SPC

codes involves a large number of logarithm and exponent operations. Log-

arithm and exponent operations have higher complexity than other opera-

tions such as addition, subtraction and multiplication. This leads to high

decoding complexity on RSPC codes. As mentioned before, BMST sys-

tem needs very long basic code length (at least 104) to guarantee its BER

performance. To reduce the effect of rate loss, the number of basic code

L is always over 1000. This means that the overall code length of BMST

system is over 107. Thus, the high decoding complexity will be a serious

problem in the simulation.

In this Chapter, we intend to reduce the complexity of RSPC-BMST

system by changing the basic codes. Since the performance of basic codes

depends on the high rate codes, we consider using extended Hamming

(EH) codes to replace SPC codes and using its dual codes, first order RM

codes, as the low rate codes. We denote these codes as RMEH codes. With

the same codeword length and code rate, the BER performance of RMEH

code is better than RSPC code. Therefore, RMEH-BMST system requires

fewer memory length than RSPC-BMST codes. On the other hand, the

decoding complexity of RMEH codes is only half of RSPC codes’. We
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expect the overall decoding complexity of BMST system can be reduced

by half.

4.2 The Composition of RMEH Codes

A multiple-rate codes C(N,K) can be formed by two codes, which have

different code rates but the same codeword lengths. We denote the low rate

code as Clow(n, k1) and the high rate code as Chigh(n, k2). The code rate

range of C is from k1

n to k2

n . Code C can be described mathematically by

a Cartesian product [7], which means the Clow is used α times while Chigh

is used β times. The code rate can be changed by adjusting the ratio α : β.

We denote the codeword length N = n(α + β) and the information block

length K = αk1 + βk2. The code rate k
n can be calculated as follows:

k

n
=

α

α + β
· k1

n
+

β

α + β
· k2

n
. (4.1)

Generally, we set α + β = k2 − k1, then formula 4.1 can be simplified by:

k

n
=

k1 + β

n
=

k2 − α

n
. (4.2)

In formula 4.2, the code rate will be changed by 1
n when β( or α ) is

changed by 1.

For example, we choose (32, 6) first order RM code and (32, 26) ex-
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Table 4.1: The parameters for RMEH codes with n=32.
Rate 3/16 4/16 5/16 6/16 7/16 8/16 9/16 10/16 11/16 12/16 13/16

α 10 9 8 7 6 5 4 3 2 1 0

β 0 1 2 3 4 5 6 7 8 9 10

γ∗(dB) -5.3 -3.8 -2.6 -1.6 -0.7 0.2 1.0 1.8 2.6 3.4 4.3

γ(dB) 1.9 8.34 8.34 8.34 8.34 8.35 8.36 8.36 8.36 8.36 8.36

m 5 14 12 9 7 6 5 4 3 2 2

tended Hamming code to constitute a RMEH code, the parameters are

shown in Table 4.1. The sum of α and β is 10 and the code rate range is

from 3/16 to 13/16. γ denotes the required SNR for RMEH code to reach

a target BER of 10−5 and γ∗ denotes the corresponding Shannon limit. As

introduced before, the coding gain over AWGN channel can be calculated

by 10 log10(m + 1). Thus, the required memory length is m ≈ 10
γ−γ∗

10 − 1.

From table 4.1, we can see the values of γ are all around 8.36 dB (except

at rate 3/16). This is due to the performance of a RM code is much better

than a EH code with the same codeword length. Thus, the performances of

RMEH code are limited by extended Hamming code.

Table 4.2 shows the parameters of a RSPC code, which is formed by

(32, 1) repetition codes and (32, 31) SPC codes. To make a fair compar-

ison, the code rate range of RSPC code is the same with RMEH code in

Table 4.1. We can see that the performances of RSPC code are limited

by SPC codes ( the values of γ are all around 10.9 dB). Compared with
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Table 4.2: The parameters for RSPC codes with n=32.
Rate 3/16 4/16 5/16 6/16 7/16 8/16 9/16 10/16 11/16 12/16 13/16

α 25 23 21 19 17 15 13 11 9 7 5

β 5 7 9 11 13 15 17 19 21 23 25

γ∗(dB) -5.3 -3.8 -2.6 -1.6 -0.7 0.2 1.0 1.8 2.6 3.4 4.3

γ(dB) 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9

m 41 29 21 17 13 11 9 7 6 5 4

RMEH codes, there is a 10.9− 8.36 = 2.54 dB gap at each code rate (ex-

cept at rate 3/16). This is due to the performance of SPC codes is worse

than extended Hamming codes. At each code rate (except at rate 3/16),

the memory length of RSPC code is about twice as much as the memory

length of RMEH codes.

4.3 Decoding Complexity Analysis

In Section 2.6, we have defined the decoding complexity of each coded

bit in BMST as follows:

Operbit = (4m− 2)boxplus + (3m + 3)addityions + 2 ·Obasiccode.

It is clear that the complexity of first two parts is linear correlation with

memory length m. Now we focus on the decoding complexity of basic
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code. For a multiple-rate code, it can be defined as follows:

Obasiccode =
α

α + β
Olow +

α

α + β
Ohigh. (4.3)

Olow and Ohigh denote the decoding complexity per coded bit in low rate

code and high rate code, respectively. To compare the decoding complex-

ity of RSPC codes and RMEH codes, we need to know the decoding com-

plexity of the four component codes. In Chapter 2, we already computed

their decoding complexity. Now, their decoding complexity per coded bit

is shown in Table 4.3. We record 6 different types of operations (addition,

subtraction, multiplication, division, logarithm and exponent). To simplify

the comparison, we use a program to calculate the execution time of the

6 operations. In fact, addition and subtraction have the same execution

time, so they are recorded together. Multiplication and division have the

same execution time and they are recorded together. Moreover, the exe-

cution time of addition, subtraction, multiplication and division is far less

than the execution time of logarithm and exponent. In other words, we

can ignore the influences of additions and multiplications and only need to

compare the numbers of logarithms and exponents. Furthermore, the de-

coding complexity of high rate codes is much higher than low rate codes.
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Table 4.3: The decoding complexity of four short codes (per coding bit).

Addition Multiplication Logarithm Exponent

SPC 6− 12/n 6− 12/n 3− 6/n 6− 12/n

Repetition 2 – – –

RM 3 + 2 log2 n 4 – 1

ExHam 11 + 4 log2 n 8 1 3

Thus, we can focus on the decoding complexity of high rate codes. In the

decoding of SPC code, there are 3 − 6/n logarithms and 6 − 12/n expo-

nents. For EH code, there are only 1 logarithm and 3 exponents. So we

believe that the decoding complexity of EH code is about half that of SPC

code. With half of the memory length and half of the basic code’s decoding

complexity, the decoding complexity of RMEH-BMST system should be

only half of RSPC-BSMT system’s.

Now, we choose a certain code rate 12/16 to make a comparison. Table

4.4 shows the decoding complexity of each coded bit in RSPC-BMST with

m = 4 and RMEH-BMST with m = 2. For RSPC-BMST, the number of

exponents is 36.625, which is about double of the number 17.6 in RMEH-

BMST. The number of logarithms in RSPC-BMST is 18.3125, which is

more than double of 7.8 logarithms in RMEH-BMST. This matches well

with the analysis above.
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Table 4.4: The decoding complexity of per coded bit in RSPC-BMST and
RMEH-BMST when code rate is 12/16.

Addition/Subtraction Multiplication/Division Logarithm Exponent

RSPC(m=4) 52.5584 36.625 18.3125 36.625

RMEH(m=2) 79.4 27.2 7.8 17.6
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Figure 4.1: Performance of RMEH-BMST codes composed of (32, 6) RM
codes and (32, 26) EH codes.

4.4 Simulation Results

4.4.1 Performance of RMEH-BMST codes

Fig. 4.1 presents the performance of RMEH-BMST codes in Table 4.1,

with L = 1000 and B = 31. The iterative sliding-window decoding algo-

rithm is used and the maximum iteration number is 18. The BER perfor-

mance curve of each rate is shown with its lower bound curve. It is clear
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Figure 4.2: The BER performances of RSPC-BMST code and RMEH-
BMST code when code rate is 0.75.

that the performances match well with their lower bound. The waterfall

region performance of each code rate is close to Shannon limit within one

dB away.

4.4.2 Comparison of RMEH-BMST Codes and RSPC-

BMST Codes

Fig. 4.2 shows the BER performance of RSPC-BMST code and RMEH-

BMST code at code rate 12/16. The performance of RMEH-BMST codes

with memory length 2 is almost the same with RSPC-BMST codes with

memory length 4. However, it becomes a 4-orders of magnitude improve-

ment when memory length of RMEH increases to 4. If we set the same
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Figure 4.3: Convergence rate of RMEH-BMST codes and RSPC-BMST
codes (Rate = 12/16, SNR = 4.0 dB).

decoding delay for these two systems, it will take RSPC-BMST codes

940613 ms to come out one frame (with L = 1000) result and take RMEH-

BSMT codes 494639 ms to come out one frame result. This is close to the

numerical analysis in Section 4.3. In fact, the decoding delay of RMEH-

BMST is only half of RSPC-BMST, so RMEH-BMST codes can come out

one frame result with only 269268 ms. Fig. 4.3 shows the convergence rate

of RMEH-BMST codes and RSPC-BMST codes when iterative forward-

backward decoding algorithm is used at code rate 12/16. The performance

of RMEH-BMST codes converges within 70 times iterations and the per-

formance of RSPC-BMST codes converges after 110 times iterations. This
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can be another advantage of RMEH-BMST system.

4.5 Conclusion

In this Chapter, we design a multiple-rate RMEH codes by using first

order RM codes and extended Hamming codes. Due to the few require-

ment on memory length, the decoding complexity of RMEH-BMST codes

is only half of RSPC-BMST codes. This saves much time on BMST sim-

ulations. Numerical results show that the performances of different rate

RMEH-BMST codes are very close to the channel capacity. When itera-

tive forward-backward decoding algorithm is used, the convergence rates

of RMEH-BMST codes are faster than RSPC-BMST codes.
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Chapter 5

Conclusion

This thesis aims to design multiple-rate codes with low error floors un-

der AWGN channel. We learn some existing coding schemes and try to

optimise them. Serial concatenation of Hamming codes and an accumula-

tor usually exhibits poor error floor performance due to their small mini-

mum distances. In Chapter 3, we propose to replace the outer Hamming

codes by product codes constructed from Hamming codes and SPC codes.

In this way, the minimum distance of the outer code can be doubled and

the code rate can be changed if we use different SPC codes. At the same

codeword length, the error floor performances of proposed codes have at

least two orders of magnitude improvement. On the other hand, we use ex-

tended Hamming codes and first order RM codes to constitute multiple-rate

RMEH codes and these codes are integrated into the BMST system. Com-

pared with the existing RSPC-BMST codes, RMEH-BMST codes have

lower decoding complexity, but the code rate range has minor loss.
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