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Abstract

Clinical trials are research studies which involve both healthy people and

patients. The aim of these trials is to assess the efficacy of a new treatment or

to compare the efficacy of new treatments with the current treatment. In this

thesis, we focus on comparing the efficacy of a new treatment with that of an

existing treatment.

The objective of a clinical trial design is to obtain a correct conclusion as

well as to be concerned with the economic issues. Since this trial involves human

beings, importantly, it should address ethical concerns. In a traditional (equal

randomisation, ER) design, half of the participants will be assigned to an inferior

treatment. When comparing the efficacy of treatments, one of the disadvantages

of the ER design is that although the evidence may be strong that one treatment

is superior to others, a trial cannot finish early. As a result of the issues discussed

above, ethical problems and economic issues arise. In order to cope with these

problems, an adaptive design should be considered. An adaptive design is one

in which a trial can be changed (adapted) during its progress. These changes

are based upon the accrued data. In this thesis, the designs developed involve

two specific areas of adaptive designs: adaptive randomisation and interim anal-

yses. Particular attention is paid to response-adaptive and covariate-adaptive

randomisations.

In this thesis, the designs of Huang et al. (2009) (HNL) are extended and

generalised. The first step is to examine two aspects of these designs: (1) the
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enrolment regime, and (2) the randomisation procedure. We modify the recruit-

ment regime from the adaptive method of HNL, by changing the arrival rate

from exactly one patient per week to an average of one per week. In real life, it

is rare to find that patients come into the trial at a rate of exactly one patient

per week. Then, simulation is carried out to investigate how this more realistic

scenario affects the results. It is found that the differences between the statistical

properties of the two enrolment regimes (i.e. exactly one new patient per week,

and an average of one new patient per week) should not be considered practically

significant. We conclude that the HNL practice is a sensible approach to use, and

follow their practice of having exactly one arrival per week.

We also investigate several important criteria for evaluating and comparing

designs. We focus on the Operating Characteristic curve, and various design

characteristics. It is found that the OC curve is not an appropriate method of

comparing clinical trial designs due to the complication that the OC curve is not

uniquely defined by the difference in treatment means.

In this thesis, eight design characteristics are considered. By using these de-

sign characteristics, in a simulation, we find that as far as economical and ethical

reasons are concerned, the adaptive design that uses the response-adaptive (RA)

randomisation is better than the ER design. If the main concern is statistical

power, the RA design is a competitive design.

The HNL design is also extended to a much more applicable design. We in-

tend to enable it to perform in a more realistic situation. We then develop an

appropriate randomisation procedure by considering the response of the previous

patients and the degree of covariate imbalance. Covariates are some prognos-

tic factors which may be important when considering a cancer trial. Failure to

take account of these covariates might lead to bias or the wrong conclusion. In

order to decrease bias and provide more effective comparisons, in the proposed
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response-adaptive, covariate-adjusted (RACA) design, a subsequent patient will

be more likely to receive the better treatment and the degree of covariate imbal-

ance will be minimized. Covariates are incorporated into a trial by using a better

procedure. That is, the various covariates are considered simultaneously and can

be dependent upon one another.

Then the design characteristics and the degree of covariate imbalance are em-

ployed to compare the performances of the RACA design with those of the RA

design. In a simulation, it is found that, as far as these characteristics are con-

cerned, the performances of the RACA and RA designs are only slightly different.

However, if the degree of covariate imbalance is of principal concern, the RACA

design is superior to the RA design.

We conclude that the RACA design is the best design, and has the advantages

for economic as well as ethical issues. It also gives a reasonable statistical power

which is competitive.

At the conclusion of this thesis, we suggest further lines of research.
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Chapter 1

Introduction

1.1 Clinical trials

Nowadays, clinical trials have widespread acceptance as a reliable method for

assessing the efficacy and safety of a new treatment.

Clinical trials are research studies whose aim is to evaluate the efficacy of a new

treatment or a new treatment procedure (e.g. new surgical procedure), including

a new medical device (e.g. blood pressure gauge). These trials involve both

healthy people and patients. For healthy people, clinical trials can be conducted

to assess the safety of a new treatment. Moreover, for patients, these can be

carried out to evaluate the advantages of a treatment. Clinical trials may also

use to compare a new treatment against a treatment that is already available

(Wang and Bakhai, 2006). Although there are several different kinds of clinical

trials, the research in this thesis concentrates on Treatment Trials. These are

clinical trials which test the efficacy of new treatments or new combinations of

existing treatments.

Most clinical research is conducted in an orderly series of stages, called phases.

There are four phases of clinical trials:

• Phase I trials

This is the first phase, which involves human volunteers. An experimental

treatment will be tested to decide the safe dose that can be given without

1
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toxicity and side effects. This phase requires a small group of people (20-80)

and will last from several weeks to a few months (Pocock, 1993).

• Phase II trials

The aim of Phase II trials is to investigate the efficacy and to further eval-

uate the safety of a treatment in a larger group of people (100-200). These

trials will take longer time than Phase I trials. They might take several

months to several years (Pocock, 1993).

According to Yin (2012), this phase might be carried out to evaluate the

efficacy of a treatment (single arm) or to compare the efficacy of several

treatments (multiple arms). For a single arm, an experimental treatment

will be evaluated and compared with the data from previous studies. When

conducting multiple arms, some patients will be assigned to an experimen-

tal treatment whereas some will be assigned to a placebo or a standard

treatment. Hence, conducting multiple arms might reduce a problem that

occurs because of different situations between the present and previous stud-

ies, such as different populations and different doctors.

• Phase III trials

If a new treatment is demonstrated to be effective in Phase II trials,, this

treatment will proceed to Phase III trials. In these trials, a new treatment

will be evaluated for its efficacy and safety in comparison to the current stan-

dard treatment. These trials recruit hundreds, even thousands, of patients

and may continue from several months to several years (Pocock, 1993).

• Phase IV trials

This phase is conducted after a treatment has been approved and released

onto the market. The aim of this phase is to evaluate the long-term side

effects of the treatment.
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1.2 The design of clinical trials

An experimental design is a process of planning a study to obtain reliable data as

well as a correct conclusion in order to answer the research questions effectively

(Montgomery, 2001). In the design of an experiment, the main concern is to

examine the effect of some intervention on the experimental units under controlled

conditions. The design of an experiment has a very broad application in many

disciplines, including clinical trials.

The design of clinical trials is the process of planning research to assess pro-

posed treatments with respect to safety and efficacy. Although both Phase II

and Phase III trials are involved with clinical trial design, this research focuses

on Phase II trials. This is because Phase III studies require more resources, such

as participants, time and finance. Phase II trials are much smaller and more

manageable than Phase III trials.

The role of a statistician in the design of clinical trials covers many matters,

including: determining the numbers of volunteers likely to be needed to detect

a meaningful difference between the new product and the current treatment;

devising procedures that can be used to decide whether a trial can be finished

ahead of schedule if a difference between the new and current products becomes

apparent very early in the trial; devising rules that determine which procedure

the next volunteer should be allocated to; and evaluating and comparing a new

design with competing designs to decide whether the new design is effective and

competitive.

Of the four topics above, we are most interested in working on the last two.

1.3 Adaptive design

This section introduces an adaptive design, which is the main design to be dis-

cussed throughout this thesis. We will address some aspects of this design about
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which we will be concerned.

In recent years, adaptive designs have played a crucial role in clinical research

and development. According to Dragalin (2006) and Chow et al. (2005), an

adaptive design can be defined as a clinical trial design in which a trial can be

modified by using data collected during the progress of the trial. This data is

used to determine how to change a trial without affecting its validity and integrity.

Adaptive designs are most useful in Phase II and Phase III trials.

The designs developed in this thesis involve two specific areas of adaptive

designs:

1. Adaptive Randomisation

By using this randomisation, the probability that a new patient receives a

treatment varies depending on the collected data, instead of this probability

being fixed over the period of the trial and equal randomisation being used

(Dragalin, 2006). This randomisation is useful for clinical trials because,

mostly, patients are recruited sequentially. In this research, we focus on the

following two forms of randomisations:

• Response-Adaptive Randomisation (or Outcome-Adaptive Randomi-

sation)

Response-Adaptive Randomisation is a randomisation in which the

probability of assigning a patient to a treatment is based on the re-

sponse of the previous patients. A higher proportion of patients are

allocated to a better treatment (Korn and Freidlin, 2011). Conse-

quently, this randomisation can provide ethical advantages over equal

randomisation by decreasing the number of patients assigned to an

inferior treatment.

• Covariate Adaptive Randomisation

According to ?, covariate adaptive randomisation is a randomisation
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which is based on important prognostic factors that might have an in-

fluence on the response. These factors will be identified at the begin-

ning of the trial. In this randomisation, a new patient will be assigned

to a treatment by considering the balance of these factors so far.

2. Interim Analyses

An Interim Analysis is a statistical analysis conducted during the progress

of the trial to ensure both efficacy and safety. Interim Analyses allow for the

possibility of early stopping. The trial will stop early if there is strong evi-

dence that one treatment is superior or the new treatment is not worthwhile

(futility) (Cook and DeMets, 2008).

For the reasons described above, using an adaptive design provides advantages

for economical and ethical reasons. The economical reason is that by using interim

analyses, an adaptive design can reduce the time required to show efficacy or

futility. Decreasing the length of clinical trials results in lower drug development

costs and reduced time to market. The ethical reason is that, by decreasing the

length of trials, an adaptive design can enhance patient wellbeing. Moreover,

since a smaller number of patients will be assigned to an inferior treatment, it

will reduce the risk of receiving an inferior treatment.

1.4 Bayesian Method

In this research, we will produce a prior distribution π(θ) for each parameter

θ, and update it using the information obtained from samples (y) to calculate

the posterior distribution p(θ/y) of the parameter. The updating from the prior

distribution to the posterior distribution is carried out using Bayes’ theorem:

p(θ/y) ∝ f(y/θ).π(θ) = L(θ; y)π(θ), (1.1)
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where f(y/θ) is the sampling distribution of the response variable, L(θ; y) is the

likelihood function and π(θ) is the prior distribution of θ (Mukhopadhyay, 2000,

pp. 477 - 479).

1.5 The literature review

This section reviews the relevant literature on Bayesian Methods, survival analysis

and adaptive designs.

In Huang et al. (2009), the authors suggested a new type of design for ran-

domised clinical trials that includes the following advantages:

• Response-Adaptive Randomisation,

• Interim Analyses.

Another benefit of this design is that both survival and short-term patient

response are used as primary endpoints. This is different from the approaches

described in the earlier literature. Previously, researchers just used survival or

short-term patient response as the primary endpoint. However, they did not use

these endpoints together.

Although survival is the goal of clinical trials, this endpoint does not meet the

requirement of response-adaptive randomisation. This randomisation requires the

results of the previous patients immediately before assigning a treatment to the

next patient. Since using short-term patient response can meet this requirement,

it should be used as a primary endpoint as well.

The authors found that this new type of design can reduce the use of resources

such as the number of patients and the time required for the trial. Additionally,

more patients could be assigned to the better treatment.

The advantages of the Huang et al. (2009) design make it interesting, and it

should be considered further. It will be described in more detail in the following
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section.

Berry (2004) supported the use of the Bayesian approach in adaptive designs.

In these designs, modifications are made to a clinical trial during its progress by

using collected data. Hence, the effectiveness of the design is based on the data

obtained, and updated data will be required. The Bayesian method is a tool to

obtain effective updated information, so it should be used in adaptive designs.

In addition, Berry (2004) stated that the use of adaptive designs is increasing

in cancer trials, not only in trials sponsored by pharmaceutical companies but

also in many trials at The University of Texas M. D. Anderson Cancer Center

(MDACC).

In Berry (2004), Bayesian decision-theory was used to examine the results from

each possible sample size and identified the sample size that has the maximum

expected utility or the minimum expected loss. Utility can be defined in terms of

the efficacy of treatment for patients. In Huang et al. (2009), for example, utility

is the mean progression-free survival time. We can also determine utility in terms

of the economy, e.g., cost, time. A loss may occur from the wrong decision taken

at the conclusion; for example, if treatment A is really better than treatment B

but in a trial we decide that treatment B is superior to treatment A. The loss

happens because patients will take treatment B instead of treatment A.

Berry also suggested that decision-theory can answer the ethical problems

in clinical research. For ethical reason, patients should be effectively treated,

whether they are patients who will receive benefits from the results during the

trial or after the trials as a results of information gained from the trials.

For the reasons described above, the Bayesian method will be used in our

thesis. Moreover, we aim to consider utility of designs in terms of both the

efficacy of treatment and economy.

Let us consider the required sample size for a clinical trial. Dupont and
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Plummer (1990) stated that factors that should be considered when selecting the

sample size are the power of the test, economy, and time. Also, the researcher

should balance the demand of these factors. Dupont and Plummer (1990) consid-

ered some tests such as log rank tests of survival data and t-tests for independent

continuous response data. Peto et al. (1977) and Bewick et al. (2004) explained

that the log-rank test is a procedure that is used to compare survival curves. We

interpret this to mean that it can compare the efficacy of treatments in a clinical

trial by looking at the survival times of patients under each treatment. Hence,

these patients are observed for some specified period, or until death intervenes.

In addition, Clarke and Yuan (2006) considered the determination of sample

sizes by the Bayesian method. According to Inoue et al. (2005), the aim of

Bayesian sample size determination is to find the appropriate sample size to

achieve the required goals. For instance, in decision-theory, researchers require

the sample size that has the maximum expected utility or the minimum expected

loss. For parameter estimation, researchers need the sample size that give the

required width of a confidence interval. In hypothesis testing, researchers require

the sample size that gives a high probability of precisely identifying a hypothesis

as true or false.

It was suggested by Clarke and Yuan (2006) that “sensitivity analyses should

be used to ensure the sample sizes obtained from any one method are robust

against deviations of the prior, likelihood and loss function (if one exists).” Sen-

sitivity analysis is a method used to assess the impact that different values of an

independent variable will have on a dependent variable or the impact that the

change in some assumptions will have on the conclusions (Thabane et al. (2013);

Schneeweiss (2006); Viel et al. (2007)).

In our research, we aim to use the Bayesian method to examine the impact

of a different value of a parameter of the prior distribution on the posterior
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distribution. Thus some ideas in Clarke and Yuan (2006) are relevant to our

research. On the other hand, the results in the paper are not relevant, because

the sample size obtained in the paper is fixed. We plan to use interim analyses

so we can halt the trial when we have enough evidence that one arm is better.

In our research, the sample size is not fixed.

Brutti et al. (2008) applied a robust Bayesian approach to sample size deter-

mination. According to Brutti et al. (2008) and Greenhouse and Wassermann

(1995), the robust Bayesian approach is a method that considers a class of prior

distributions instead of one prior distribution with specific values of the param-

eters. This approach studies the change in the posterior distribution when using

different values of the parameters of the prior distribution. If the posterior dis-

tributions are similar to one another, it means that the design is robust. On

the other hand, if the posterior distributions are substantially different, it means

that the design is not robust. For hypothesis testing, the sample size determi-

nation (SSD) method depends on the test’s power function, which is assessed

under the alternative hypothesis (conditional power). Conditional power is based

mainly on the design values. The design values are the values of the parameters

that are set at the beginning of the trial; e.g., scenario 1 (Huang et al. (2009),

p1 = 0.2, ...;µ1 = 4, ...). Since the SSD method is based on the guessed values of

the parameter, the resulting sample sizes are only locally optimal. Local optimal-

ity can be defined as a result that is optimal for specific values of the parameters

so it is not globally optimal. In order to avoid local optimality, many authors have

supported a Bayesian approach that models uncertainty on the design values.

Brutti et al. (2008) suggested that the sample size can be chosen by con-

sidering the predictive distribution of the posterior probability. The predictive

distribution is the distribution of future data (prediction) conditional on the ob-

served data.
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The sample size obtained in Brutti et al. (2008) is fixed. Thus the results of

the paper are not directly relevant to our research. However, the robust Bayesian

approach is very relevant, because in the research we plan to use a class of prior

distributions and then update it after the information from the trial becomes

available to obtain the posterior distributions.

The Bayesian approach was also used by Sylvester (1988) who used a decision

theory approach for the Phase II design by considering:

• a priori information

This information will be obtained by considering the efficacy of a new treat-

ment or the response rates of other new treatments from previous trials

conducted for the same disease;

• the costs that are incurred when treating a patient with a new treatment;

• the benefits or losses arising from the decisions made at the end of this

phase.

This decisional approach gives a formal determination for the sample sizes used

frequently in the Phase II study. I wrote an R program and verified the results

of Sylvester (1988).

Sylvester (1988) is an interesting paper because it emphasises that the aim of

clinical trials is to obtain correct conclusions and also to reduce the cost of the

trial. Hence, decision theory should be used when conducting trials. In addition,

the cost of the trial should be considered: not only the cost of the Phase II trial

alone, but also the costs after a new treatment is given to a patient. As the

optimal sample size calculated in the paper is used in a fixed-sample size clinical

trial, the paper is not completely relevant to our research. However, the three

dot points above are of importance in this research.
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In our research, we focus not only on the Bayesian Method but also on survival

analysis.

According to Kleinbaum and Klein (2005), the aim of survival analysis is to

study the length of time after receiving a treatment until death. In many investi-

gations, the death of all patients has not occurred by the end of the trial. At the

end, we may therefore keep the information that the remaining subjects were still

alive. However we do not know when they will die. This case is called censored

data. In addition, if patients are lost to follow up during the course of study, the

situation will be also considered as censored data. Brooks (1982) examined the

information loss when data on lifetimes were censored, and considered this data

in both reliability and survival studies.

Although in this research we focus on survival analysis, Brooks (1982) is

not directly relevant. This is because we only use the censored survival times

to update the posterior distribution. We are not concerned about the loss of

information, as we have no way to avoid the data being censored.

In a real clinical trial, we may encounter complex situations. Lakatos (1988)

developed a method of estimating sample sizes for the Log-Rank Statistic when

the risk of the event of interest varies. He considered a situation that allows any

pattern of survival including noncompliance, drop-in and loss to follow-up. In this

situation, although the effect of the treatment was constant throughout the time,

the hazard rate did not stay constant. The hazard function is the probability

that an event of interest (e.g. death) occurs in the next instant, given survival to

time t (Kleinbaum and Klein, 2005). For example, according to Gail (1985), the

hazard rates of “drop-in” patients can be supposed to be 5 percent per year.

Lakatos (1988) used a Markov model to calculate the sample size. In this

model, patients were assumed to be in one of four states, namely loss to follow-

up, the event occurs, ‘Active complier’ and ‘Active noncomplier’. The Log Rank
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Statistic was used in this paper because he estimated the hazard rates of non-

compliance, loss to follow-up and drop-ins in both the treatment and control

groups.

Lakatos (1988) said that “administratively censored” observations mean that

an event of interest does not happen in the length of the trial; the trial for that

patient is stopped for administrative reasons.

In many trials, participants are recruited to a clinical trial for the required

duration, and thus the length of follow-up time differs from one individual to

another. This is called staggered entry, or extended accrual (Lakatos, 1988, Shih,

1995).

We wrote an R program in an attempt to follow Lakatos’s procedure. How-

ever, some results that it gave were different from those in Lakatos (1988). My

supervisor sent an email of enquiry to the author. Lakatos sent us a MATLAB

program that does the calculations. We ran the MATLAB program and obtained

the same results as our R program gave. We therefore conclude that there were

errors in the numerical results in the Lakatos (1988) paper.

The situation mentioned in this paper is different from the situation in our

research. Consequently, in our research, Lakatos (1988)’s situation will not be

directly used. This is because we will carry out the simulation in accord with

Huang et al (2009)’s situation. However, some content of Lakatos (1988) in the

paper is relevant to our research because our patients have staggered entry, i.e.

they do not arrive simultaneously. In addition, censored survival times are used

to update the posterior distribution. We can use the definition of staggered entry

and administratively censored observations in our research.

Lakatos (2002) considered the design of group sequential trials. According to

Pocock (1977), a group sequential design is an adaptive design that allows for

interim analyses. In this design, a group of patients are enrolled sequentially.
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Then an evaluation is performed at periodic intervals. Group sequential trials

are widely used in Phase II clinical trials. Lakatos introduced a Markov model in

Lakatos (1988) for the group sequential design. In addition, this model was used

to calculate the sample size for each interim analysis.

This paper is important because this design can be used in Phase II clinical

trials. In addition our patients are recruited sequentially, so the design used is a

sequential design. We are updating our information before the trial ends, hence

we would also be conducting interim analyses. However, we are not looking at

groups of patients, so that a group sequential design is not used in this research.

We absolutely do not consider groups of patients.

As stated above, one method that will be used in our research is interim

analyses. By conducting interim analyses, early stopping for efficacy will be

relevant. We determine every week whether the trial should be stopped early.

Therefore a hypothesis test will be performed every week. The trial will be

stopped early if arm A (or arm B) is selected as a superior treatment. That is, the

posterior probability of assigning the next patient who is enrolling to treatment

A, pA, has fallen in the critical region. However, in each interim analysis we will

carry out the global hypothesis test. Chang (2008, pp. 54 - 55) considered an

interim analysis of K stages. In each stage, he considered a local hypothesis test.

Our trial is not divided into K stages. We therefore cannot use the method of

Chang.

Another example of adaptive design is the response-adaptive randomisation.

Bather (1981) considered the multi-armed bandit problem, which is a statistical

decision model. Its purpose is to determine a rule for assigning a treatment

to a patient by depending on former outcomes which are successes or failures.

An effective rule should identify the best treatment and treat each patient as

effectively as possible. One method with this strategy is ‘play-the-winner’, which
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is referred to as a response-adaptive randomisation. This method can be used

to compare two treatments with dichotomous outcomes. The basic idea can

be described as follows: the first subject is assigned to a treatment by using

equal randomisation. Then the next patient is allocated to the treatment with

the higher probability of success (Rosenberger and Lachin, 1993). Therefore the

probability of assigning a patient depends upon the probability of success for each

treatment.

In our research, we will focus on comparing two treatments and use the

response-adaptive randomisation. However, our strategy is not the play-the-

winner, because our research will be carried out to compare two treatments for a

continuous response (the progression-free survival time).

Rosenberger and Hu (2004) suggested that currently the main concerns when

comparing clinical trials are the power of the test, sample size, rate of treat-

ment failures, etc. Bandyopadhyay and Bhattacharya (2006) offered a response

adaptive design for comparing two treatments with a continuous response. In

this paper, the response variables were assumed to be normally distributed. The

treatment allocation rule was considered from two aspects:

• minimizing the rate of treatment failures;

• the power of the test.

In our research we will use the response-adaptive randomisation. We also aim

to compare two treatments with a continuous response. However, Bandyopadhyay

and Bhattacharya (2006) is not directly relevant to our research since it did not

consider the prior distributions for various parameters as in Huang et al. (2009).
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1.6 Huang et al. (2009)

This section provides more detail of Huang et al. (2009)(hereafter referred to as

‘HNL’). As described in the previous section, the designs of HNL are adaptive

designs which combine response-adaptive randomisation and interim analyses.

In these designs, both survival and short-term patient response are used as

primary endpoints. Often, survival is used as the primary endpoint because it is

the final aim of the medical treatment. However, the disadvantages of a survival

endpoint are that it requires a lot of time to elapse and it causes some difficulty

when using response-adaptive randomisation.

In response-adaptive randomization, the probability of assigning a treatment

to the next patient is based on the response from the previous patients. That

is, more patients will be assigned to the demonstrably better arm. To assign

a treatment to the subsequent patient, the results so far are required immedi-

ately. This indicates why the survival endpoint causes some difficulty when using

response-adaptive randomisation.

Hence, both survival and short-term patient response are used as the primary

endpoints.

According to Thall and Wathen (2005), in a cancer trial, patient response

is commonly classified into four categories depending upon the outcome of the

patient after completing treatment:

• progressive disease, or death,

• stable disease,

• partial remission (PR),

• complete remission (CR).
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In HNL, short-term response was also considered in the four categories described

above. Then a mean progression-free survival time was assigned to each category.

According to Green et al. (2008) and HNL, the progression-free survival time

can be defined as the length of time from receiving a treatment until the first

event occurs. This event could be resistance, progress of disease, deterioration,

or death.

1.6.1 Theory

In this section, theory used in HNL will be explained. Then we will show how

to obtain the posterior distributions of µx,k and px,k where µx,k is the mean

progression-free survival time of the kth category in arm x and px,k is the proba-

bility of a patient in arm x occupying the kth category of a short-term response,

where px,k > 0 for each k, and px,1 + px,2 + px,3 + px,4 = 1.

Note that we adopt the notation of HNL in many cases.

In an HNL design, the Bayesian model is used to connect the short-term

response with survival response. This is because the model is established by using

the information from the short-term response to update the prior distribution of

the probabilities of being in the four categories and also to update the prior

distribution of the mean progression-free survival time of each category. It can

be also used to predict the long-term survival of patients.

Here we will illustrate how to obtain the posterior distributions on µx,k.

Let x represent the treatment arm (x = a for treatment A, x = b for treatment

B).

Let T k
x,i be the progression-free survival time of participant i in arm x if

this patient occupies the kth category. T k
x,i is assumed to have an exponential

distribution with rate λx,k.

Let t
(k)
x,i be the observed or censored survival time of patient i in arm x in the

kth category. The likelihood of the t
(k)
x,i will be provided below.
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In Bayesian probability theory, if a chosen prior distribution has a suitable

form, then the posterior distribution will be of the same family as the prior dis-

tribution. The choice of the family is based on the likelihood. Prior and posterior

distributions chosen to achieve this are said to be conjugate, and the prior distri-

bution is called the conjugate prior distribution of the likelihood. The conjugate

prior for the parameter λx,k of the exponential distribution is the Gamma distri-

bution.

This research focuses on the mean time between events, µx,k ≡ 1/λx,k, so that

the conjugate prior for the parameter (1/λx,k) of the exponential distribution,

that is the Inverse Gamma distribution, is used.

Let us consider the prior distribution on µx,k.

Initially, µx,k ≡ 1/λx,k is assumed to have an Inverse Gamma (αx,k, βx,k)

distribution, with shape parameter αx,k and scale parameter βx,k. Thus, the

probability density function of the Inverse Gamma distribution is

f(µx,k) = f(1/λx,k) =
βαx,k

Γ(αx,k)
(

1

λx,k

)−αx,k−1e−βx,kλx,k for λx,k > 0,

where αx,k and βx,k are initial simulation parameters that will be updated as the

clinical trial progresses. Now we are going to derive the likelihood of a single

observation t
(k)
x,i .

Let δ
(k)
x,i denote a dummy variable associated with t

(k)
x,i where δ

(k)
x,i = 0 for

censored time and δ
(k)
x,i = 1 for observed time.

For observed times,

f(t
(k)
x,i ) = λx,ke

−λx,kt
(k)
x,i

for t
(k)
x,i ≥ 0. Since the censored survival times are longer than observed times, the
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probability of the censored times is

P (T
(k)
x,i > t

(k)
x,i ) = 1− P (T

(k)
x,i ≤ t

(k)
x,i ) = e−λt

(k)
x,i .

The likelihood of a single observation t
(k)
x,i can be expressed as

(λx,k exp (−λx,kt
(k)
x,i ))

δ
(k)
x,i (exp (−λx,kt

(k)
x,i ))

1−δ
(k)
x,i = λ

δ
(k)
x,i

x,k exp (−λx,kt
(k)
x,i )

for t
(k)
x,i ≥ 0 and

δ
(k)
x,i =

 0 for censored time,

1 for observed time.

For a vector of independent and identically distributed (i.i.d.) observations

(t
(k)
x,1, ..., t

(k)
x,n), the likelihood function is given by

nx,k∏
i=1

λ
δ
(k)
x,i

x,k exp (−λx,kt
(k)
x,i )

= λ
∑nx,k

i=1 δ
(k)
x,i

x,k exp (−λx,k

nx,k∑
i=1

t
(k)
x,i )

By Bayes’ theorem, the posterior distribution satisfies

f(µx,k | t(k)x,i ) ∝ βαx,k

Γ(αx,k)
(

1

λx,k

)−αx,k−1 exp (−βx,kλx,k)λ
∑nx,k

i=1 δ
(k)
x,i

x,k exp (−λx,k

nx,k∑
i=1

t
(k)
x,i )

∝ βαx,k

Γ(αx,k)
(

1

λx,k

)−(αx,k+
∑nx,k

i=1 δ
(k)
x,i )−1 exp [−(βx,k +

nx,k∑
i=1

t
(k)
x,i )λx,k].

Therefore, the posterior distribution of µx,k is IG(α′
x,k = αx,k +

∑nx,k

i=1 δ
(k)
x,i , β

′
x,k =

βx,k +
∑nx,k

i=1 t
(k)
x,i ).

Now we give derivations of the posterior distributions of px,k.

Let Sx,k,i denote the short-term response in the kth category for patient i in

treatment x. If this patient occupies in the kth category, Sx,k,i = 1 and Sx,j,i = 0

for 1 ≤ j ≤ 4, j ̸= k. Suppose that the vectors (Sx,1,i, ..., Sx,4,i) are i.i.d. across
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i = 1, ..., nx and have a multinomial (1, px,1, ..., px,4) distribution. Thus,

f(Sx,1,i, Sx,2,i, Sx,3,i, Sx,4,i) = (px,1)
Sx,1,i × (px,2)

Sx,2,i × (px,3)
Sx,3,i × (px,4)

Sx,4,i

where Sx,1,i + Sx,2,i + Sx,3,i + Sx,4,i = 1.

Suppose we observe the vectors (Sx,1,1, ..., Sx,4,1), ..., (Sx,1,nx , ..., Sx,4,nx). Then

the likelihood function is given by

f(nx,1, ..., nx,4; px,1, ..., px,4) =
nx!

nx,1!nx,2!nx,3!nx,4!
(px,1)

nx,1(px,2)
nx,2(px,3)

nx,3(px,4)
nx,4

where nx is the total number of the patients allocated to arm x, nx,k is the

number of patients in arm x falling in the kth category of a short-term response,

and nx,1 + nx,2 + nx,3 + nx,4 = nx.

The conjugate prior for the parameters (px,1, px,2, px,3, px,4) of the multinomial

distribution is the Dirichlet distribution.

Suppose that (px,1, px,2, px,3, px,4) has a Dirichlet (γx,1, γx,2, γx,3, γx,4) distribution.

Therefore, the probability density function of (px,1, px,2, px,3, px,4) is

f(px,1, px,2, px,3, px,4) =
1

B(γx,1, γx,2, γx,3, γx,4)
(px,1)

γx,1−1(px,2)
γx,2−1(px,3)

γx,3−1(px,4)
γx,4−1

when γx,1, γx,2, γx,3, γx,4 > 0. By Bayes’ theorem, the posterior distribution of

(px,1, px,2, px,3, px,4) satisfies

f(px,1, ..., px,4 | nx,1, ..., nx,4) ∝
nx!

nx,1!nx,2!nx,3!nx,4!B(γx,1, γx,2, γx,3, γx,4)

×(px,1)
(γx,1+nx,1)−1(px,2)

(γx,2+nx,2)−1(px,3)
(γx,3+nx,3)−1(px,4)

(γx,4+nx,4)−1

Hence, the posterior distribution of (px,1, px,2, px,3, px,4) is Dir (γx,1 + nx,1, γx,2 +

nx,2, γx,3 + nx,3, γx,4 + nx,4).

From the derivations above, we see that the statistical theory underlying the

proposed clinical trials is mathematically complicated. Consequently most evalu-



20 Chapter 1. Introduction

ations of the proposed trials are done by simulation, which is more feasible. The

detail of the simulation will be described in the following chapter.

After the information from a patient becomes available, Bayes’ theorem is used

to update the prior distributions of (px,1, px,2, px,3, px,4) and µx,k to evaluate the

posterior probability pA = Pr(µa > µb | data) where µx is the mean progression-

free survival time for arm x, and is defined as

µx =
4∑

k=1

px,kµx,k

for x = a, b.

This posterior probability, pA, is applied to a response-adaptive randomisation

procedure and provides a criterion for an interim analysis.

In HNL, three outcomes were considered. The authors decided that treat-

ment A (or B) would be chosen as the better treatment and the trial would be

terminated if p > pU (or p < pL) for some constants pL and pU . Additionally, the

trial would not reach a conclusion if the maximum number of patients had been

recruited and, if, at the end of the study, neither treatment A nor treatment B

had been chosen as superior.

Finally HNL compared the results of adaptive and common designs. A ‘com-

mon design’ is a design that uses response-adaptive randomisation in a manner

similar to the adaptive design. However, a ‘common design’ does not use the

information from short-term patient response. This is different from the adaptive

design. The ‘common design’ was introduced by HNL because they aimed to show

that, by using short-term response, the adaptive design gave higher power than

the ‘common design.’ They found that the adaptive design requires a smaller

number of patients, and it allows more patients to be assigned to the better

treatment than the ‘common design.’
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1.7 Overview of this thesis

The aim of this thesis is to generalise extensively the adaptive designs of HNL.

Hence, we will develop this design through two aspects, (1) the recruitment regime

and (2) the randomisation procedure, by considering the response of the previous

patients and some prognostic factors which may be important when considering a

cancer trial. Additionally, we will consider whether we can use better procedures

that incorporate prognostic factors. We will also investigate important criteria

for evaluating and comparing the HNL designs with competing designs. Then

we will show an example of using these criteria for assessing and comparing the

designs.

Chapter 2 will investigate the adaptive method of HNL. Our main concern

is to consider a different recruitment regime for this method. In this enrolment

regime, the accrual rate will be changed from exactly one patient per week to an

average of one per week. In reality, an accrual schedule of exactly one patient

per week rarely occurs. An investigation into whether this more realistic scenario

affects the results obtained by HNL from simulation will be carried out.

When designing a clinical trial, researchers need to evaluate and compare a

proposed design with other designs in order to ensure that the proposed design

is effective. This leads to Chapter 3. In this chapter, the principal criteria for

evaluating and comparing designs will be addressed and employed. In particular,

we will focus on several criteria: the Operating Characteristic Curve, and the

design characteristics. Then we will show how to apply these criteria to evaluate

and compare designs.

Chapter 4 will extend the HNL design to a design that is applicable to a more

realistic situation, as the HNL design does not have an appropriate randomisation

procedure.

In the HNL design, the response adaptive randomization is used. Hence, the
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assignment of a treatment to a new patient is based only upon the response of the

previous patients. However, it does not consider the possibility that important

prognostic factors might influence the effect of the treatments. In order to fill this

gap in the HNL design, a subsequent patient will be allocated to a treatment by

considering not only the response of the previous patients but also the prognostic

factors. Then the extension of the HNL design will be evaluated by employing

the criteria in Chapter 4. The simulation results obtained from four designs will

be provided and compared.

Lastly, Chapter 5 will contain the conclusions from the research described in

the preceding chapters and a brief discussion of future research.



Chapter 2

Investigation of the Huang et al.
(2009) method

The aim of this chapter is to investigate the adaptive method of HNL. One step

will be to consider a different enrolment regime for this method. In this regime,

we will change the arrival rate from exactly one patient per week to an average

of one per week. We will examine whether this more realistic scenario affects the

results obtained from simulation.

We begin by investigating the HNL program. The next step is to compare

the results obtained using the HNL program with their published results. Then

an investigation of the adaptive method of HNL is performed. Finally, we will

investigate the difference between the results obtained from an average of one

arrival per week and the results obtained from exactly one arrival per week.

2.1 Huang et al. (2009) program

We examined the HNL program and tried to understand the underlying algo-

rithm. In doing this, some discrepancies and errors were found. The pro-

gram from which the HNL results were obtained is available as Ning (2009).

The program was downloaded from the MD Anderson Cancer Center website

(https : //biostatistics.mdanderson.org/

SoftwareDownload/SingleSoftware.aspx?Software Id = 82). We then checked

23
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Ning (2009) by comparing the results obtained using this program with published

results in HNL.

2.1.1 Aspects of Ning (2009)

In HNL, a trial was conducted to compare two treatments (A and B) for a

continuous response (the progression-free survival time). Recall that, in HNL,

the vectors (Sx,1,i, ..., Sx,4,i) were assumed to have a multinomial (1, px,1, ..., px,4)

distribution where Sx,k,i is the short-term response in the kth category for patient

i in arm x. If this patient belongs in the kth category, Sx,k,i = 1 and Sx,j,i = 0 for

1 ≤ j ≤ 4, j ̸= k. In HNL, T
(k)
x,i was defined as the progression-free survival time

of patient i if she/he is in category k and arm x. T
(k)
x,i was assumed to have an

exponential distribution with rate λx,k where λx,k = 1/µx,k.

Ning (2009) began by generating treatments for the n0 initial patients be-

fore adaptive randomization commenced. These treatments were drawn from a

Bernoulli (1, 0.5) distribution. After these patients were allocated to treatments

A or B, for each patient, the category variable was simulated. Then T
(k)
x,i was

simulated.

In Ning (2009), there were two sets of parameters {px,k and µx,k} with the

same labels, one set for data generation and another for estimation procedures.

Data generation procedure

In the HNL data generation procedure, px,k and µx,k were used to generate the

category variable and the T
(k)
x,i .

It should be noted that, in this thesis, we will introduced the symbols πx,k

and νx,k to distinguish between the values of parameters px,k and µx,k for data

generation and the values for probability estimation.

To avoid confusion of the px,k for the estimation procedure with the px,k used

in the simulations, denote by πx,k the value that was given to this parameter
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for each scenario for the simulations (e.g. under Scenario 1, πx,1 = 0.2, πx,2 =

0.4, πx,3 = 0.1, πx,4 = 0.3). Thus (Sx,1,i, Sx,2,i, Sx,3,i, Sx,4,i) for all patients was

drawn from a multinomial (1, πx,1, πx,2, πx,3, πx,4) distribution.

Additionally, denote the mean progression-free survival time for the simula-

tions by νx,k (e.g. under Scenario 1, νx,1 = 4, ..., νx,4 = 110). Therefore, the T
(k)
x,i

for all patients were drawn from an exponential distribution with λx,k = 1/νx,k.

In Scenario 1, in order to evaluate this design by looking at the Type I error

rate, the values of πx,k and νx,k in the two arms are identical. In this scenario,

the hypotheses are

H0 : µa − µb = 0

H1 : µa − µb ̸= 0.

In contrast, in Scenarios 2 and 3, arm B is assumed to be a superior treatment.

The hypotheses will be

H0 : µa ≥ µb;

H1 : µa < µb.

Due to the assumption in Scenarios 2 and 3, HNL can evaluate the effectiveness

of this design by looking at power. An effective design should have high power.

That is, it should identify the correct superior treatment frequently.

It should be noted that, in a given set of simulations, πx,k and νx,k were kept

constant. This is because in this procedure, px,k = πx,k and µx,k = νx,k. Due to

this, (Sx,1,i, Sx,2,i, Sx,3,i, Sx,4,i) and Tx,i are i.i.d. across i = 1, ..., nx.

Estimation procedure

In this procedure, Bayes’ theorem was used to update the prior distributions of

(px,1, px,2, px,3, px,4) and (µx,1, µx,2, µx,3, µx,4) after the n0 initial patients had en-

tered the trial (i.e. before adaptive randomization). Then the program com-

puted the mean progression-free survival time µx =
∑4

k=1 px,kµx,k and evalu-

ated the posterior probability of assigning the next patient who was enrolling
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to treatment A, pA = Pr(µa > µb | data). Ning (2009) generated the values

of µx,k from an IG(α′
x,k = αx,k +

∑nx,k

i=1 δ
(k)
x,i , β

′
x,k = βx,k +

∑nx,k

i=1 t
(k)
x,i ) distribu-

tion. In addition, the values of px,k were generated using (px,1, px,2, px,3, px,4) ∼

Dir(γx,1 + nx,1, γx,2 + nx,2, γx,3 + nx,3, γx,4 + nx,4).

For those patients who entered the trial after adaptive randomization com-

menced, their treatments were drawn from a Bernoulli (1, 1 - pA ) distribution

where x = 0 for arm A and x = 1 for arm B.

The posterior probability pA is also used to determine which treatment is

selected as the superior treatment. If the design is effective, it can identify the

superior treatment correctly. In all scenarios, the initial values of γx,k, αx,k and

βx,k were identical for arms A and B. It was assumed by HNL that γx,k = 0.5 and

αx,k = 11 for k = 1, 2, 3, 4 and x = a, b. It was assumed also that βx,1 = 40, βx,2 =

300, βx,3 = 750 and βx,4 = 1100 for x = a, b. This values were chosen by HNL

“The amount of information in these prior distributions is approximately equal

to that from 11 patients”.

By assuming the parameter values in the previous paragraph, at the beginning

of the trial the prior distributions of (px,1, px,2, px,3, px,4) and (µx,1, µx,2, µx,3, µx,4)

were the same for arms A and B. However, as the trial progressed, the prior

distributions were updated. The accumulated information is expected to help the

clinical trial determine whether there is a difference between the two treatments.

In the situation described above, Ning (2009) made a decision as to whether

the trial should be terminated early. If n0 equalled 1, in the second week the

prior distributions of (px,1, ..., px,4) and (µx,1, ..., µx,4) were updated. The posterior

probability of assigning patients to arm A was also updated and used to determine

whether to stop the trial early. This procedure was done each week until 120

patients had been admitted or the trial was terminated.

In Ning (2009), after all patients had entered the trial, the authors did not up-
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date the prior distributions of (px,1, ..., px,4) and (µx,1, ..., µx,4), nor did they eval-

uate the posterior probability pA separately during the follow-up period. There-

fore, the trial could not be stopped early once the enrolment period had ended.

However, if we were to modify the original program, we could update the prior

distributions of (px,1, ..., px,4) and (µx,1, ..., µx,4) each week not only during the re-

cruitment period but also during the follow-up period. Therefore, the evaluation

of the posterior probability would be done every week.

Normally, either arm could be superior. However, for simplicity, arm B was

assumed to be the superior treatment if arms A and B were not identical.

We note that, unlike πx,k and νx,k in the data generation procedure, px,k and

µx,k in the probability estimation procedure were drawn from the Dir (γx,k+nx,k)

and IG (αx,k +
∑nx,k

i=1 δ
(k)
x,i , βx,k +

∑nx,k

i=1 t
(k)
x,i ) distributions respectively.

2.1.2 Errors in Ning (2009)

Ning (2009) requested input in months. However in HNL, they looked at patients

per week. In the description of the parameters, ‘atime’ should be ‘addtime’ and

the description of ‘alpha’ was incomplete. In this program, ‘alpha’ represents the

value of γx,k which is a parameter for the Dirichlet distribution. In requesting

input to the program, the scale parameter for the Inverse-gamma distribution

was described as the mean survival time multiplied by the number of patients.

However it was actually the mean survival time multiplied by (the number of

patients minus 1). The variable ‘fstop’ was initialised, and then updated each

time an arm was selected during the n0 weeks, but there was no further use

of this variable. It would seem that it could be completely removed from the

program without affecting it.
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2.1.3 The results from Ning (2009)

In this section, the results obtained using Ning (2009) will be compared with the

published results of HNL.

In HNL, for a given set of design parameters, a total of 5,000 simulations was

carried out to evaluate the performance of the HNL and common designs. The

performances of these designs were compared by using four design characteristics:

the probability of Type I error, the power of the test, the average number of

patients allocated to each arm, and the average number of patients in the trial.

Details of these design characteristics will be provided in the next chapter.

Table 2.1 and Table 2.2 show the results using Ning (2009) for the HNL

design, compared with the published results of HNL when using pU = 0.975, the

maximum sample size (NMax) = 120 and n0 = 1 and 30 respectively. Likewise,

Table 2.3 and Table 2.4 show the results obtained using Ning (2009) for the

common design, compared with the published results of HNL when using pU =

0.993, NMax = 120 and n0 = 1 and 30 respectively.

The results in Table 2.1 illustrate that we matched the published results of

HNL in Scenarios 1 and 2. However, we did not match their results in Scenario

3. This raised a question mark over their results in Scenario 3.

The results displayed in Table 2.2 show that the results obtained using Ning

(2009) were different from the published results of HNL. It can be seen that the

probability of type I error obtained using Ning (2009) is nearly half the value of

the published results. On the other hand, the results shown in Tables 2.3 and

2.4 illustrate that, in Scenario 1, the results obtained using Ning (2009) shown

in these tables were similar to the published results of HNL. We did not match

their results for the other Scenarios.

We wondered why we could not match some published results even though we

used their program and their parameters. My supervisor sent an email of enquiry
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Table 2.3: Comparison of the results for the common design obtained using Ning
(2009) with the published results of HNL when using pU = 0.993, NMax = 120
and n0 = 1

Scenario Arm µx Source Average Probability of selection as the superior arm

1

A 60
A 57.0356 0.0490
B 59 0.046
C 57.8096 0.0414

B 60
A 57.8430 0.0458
B 59 0.045
C 57.2428 0.0516

total
A 114.8786
B 118
C 115.0524

2

A 55
A 32.2380 0.0056
B 26 0.002
C 32.7410 0.0044

B 85
A 72.0948 0.3920
B 77 0.429
C 71.6232 0.4010

total
A 104.3328
B 103
C 104.3642

3

A 55
A 20.7580 0.0014
B 21 0.001
C 20.9422 0.0012

B 127
A 63.2780 0.8322
B 72 0.648
C 62.5738 0.8456

total
A 84.0360
B 93
C 83.5160

Let source A represent the results using Ning (2009) with seed 1234; source B
represent the published results of HNL; and source C represent the results using
Ning (2009) with seed 5678.



32 Chapter 2. Investigation of the Huang et al. (2009) method

Table 2.4: Comparison of the results for the common design obtained using Ning
(2009) with the published results of HNL when using pU = 0.993, NMax = 120
and n0 = 30

Scenario Arm µx Source Average Probability of selection as the superior arm

1

A 60
A 57.5362 0.0428
B 58 0.047
C 58.0710 0.0428

B 60
A 58.2444 0.0420
B 58 0.047
C 57.6376 0.0434

total
A 117.6596
B 116
C 115.7086

2

A 55
A 34.3592 0.0028
B 29 0.004
C 34.3592 0.0028

B 85
A 71.0160 0.3966
B 70 0.477
C 70.2794 0.4078

total
A 105.3752
B 99
C 104.6386

3

A 55
A 23.2552 0.0006
B 22 0.0004
C 23.8484 0

B 127
A 59.3472 0.8852
B 58 0.832
C 60.3108 0.8706

total
A 82.6024
B 80
C 84.1592

Let source A represent the results using Ning (2009) with seed 1234; source B
represent the published results of HNL; and source C represent the results using
Ning (2009) with seed 5678.
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to the authors. Huang responded that

There may be a glitch in our simulations. For example,

the cut-off value we used might be 0.03, 0.035 etc, instead of 0.025.

We need to adjust this cut-off value so that the type I error

in scenario 1 is close to 10%, then use the same cut-off value

for all scenarios.

(received on 7/7/12)

The author said that their simulations may have a glitch. We therefore con-

cluded that it was likely that some results of Ning (2009) might differ from their

published results. However, one point where we disagreed with Ning (2009) was

as follows:

Huang (personal communication sent on 7/7/12) said that, in their simula-

tions, they may have used the value of the cut off that gives a Type I error rate

of 10% in Scenario 1, instead of the value of the cut off mentioned in the paper.

Furthermore, this cut-off value should be used for all scenarios. We do not know

if they just used one cut-off value. However, if they did use this cut-off value in

all scenarios, why in some scenarios were the results using Ning (2009) similar to

their published results? For example, in Table 2.1, under scenario 1, it is clear

that the probabilities of type I error obtained using Ning (2009) were similar to

the published results. Additionally, under scenario 2, the power of the test ob-

tained using Ning (2009) is in agreement with their results. Hence, we assumed

that they used pU = 0.975 and the same pU as ours. Therefore, we disagreed with

some of the results in their paper.

We felt that there were some discrepancies in some part of Table 2.2. This is

because we obtained good agreement in scenario 1, for Table 2.1, Table 2.3 and

Table 2.4.

For the common design, the reasons that in Scenarios 2 and 3 the results

obtained using Ning (2009) were different from the published results of HNL are

as follows:
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Firstly, as mentioned above, there was a ‘glitch’ in the simulations in HNL.

In addition, the authors merely explained (HNL, p.1686) that, in Scenario

1, the survival times for subjects in the two treatments were assumed to follow

exponential distributions with mean µA and µB respectively. They also assumed

that the prior distributions of µA and µB had IG(α, β) distributions with α = 2

and β = 60. These parameter values provided ‘reasonably noninformative prior

distributions’ with µ = β/(α − 1) = 60 which was approximately equal to the

mean progression-free survival time under Scenario 1. So, for Scenario 1, we

knew how they obtained the estimated values of µA and µB in the common

design. They chose these values from the estimated values of µA and µB in

the HNL design. For example, the values of µA and µB under Scenario 1 equal

0.2 × 4 + 0.4 × 30 + 0.1 × 75 + 0.3 × 110 = 53.3. They then approximated the

values of µA and µB by 60 (each).

For Scenarios 2 and 3, however, HNL did not specify the values of µA and

µB that they used for the common design. Consequently, we needed to choose

some values. We selected these values from the approximate values of the HNL

parameters. For example, in Scenario 2, in the HNL design, µA and µB were

53.3 and 84.4 respectively. We approximated the values of the µA and µB for the

common design in arm A by 55, and in arm B by 85. A similar approach was

made in Scenario 3. Under Scenario 3, in the HNL design, µA and µB were 53.3

and 126.5. So the values of µA and µB for the common design were estimated as

55 and 127 respectively. This was our attempt to emulate the parameter used in

HNL.

2.2 The recruitment regime

The principal objective of this chapter is to examine the recruitment regime of

the HNL design. In HNL, patients came to a trial at an arrival rate of exactly
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one patient per week. This might be because HNL aimed to keep the process

simple. However, we felt that this arrival rate was artificial. Consequently, we

established a new enrolment regime by changing the accrual rate from exactly

one patient per week to an average of one per week.

We used an exponential distribution with a mean of one patient per week

to generate the waiting time before the next patient was recruited to the trial.

This was done because the exponential distribution is a common distribution for

arrival times. The exponential distribution also has the ‘memoryless’ property,

that is P(T > s + t | T > t) = P(T > s). See Asimow and Maxwell (2010,

pp. 237) for proof of the ‘memoryless’ property. Regardless of the value of t, the

time until the next arrival has the same distribution as the original exponential

distribution for the interarrival time. If a week has elapsed since the previous

patient, this does not make it more or less likely that another week will elapse

before the next patient is enrolled. In addition, we chose the average of one per

week since it was reasonable to compare with exactly one patient per week.

In this chapter, since patients came to a trial at an arrival rate of an average

of one per week, the schedule for evaluating the pA was different from that of

HNL. In HNL, patients were enrolled in the trial at a rate of exactly one patient

per week. After n0 patients had entered the trial, the posterior probability pA

was evaluated every week. This was because the assignment of a new patient was

based on the pA. In contrast, we evaluated the pA at the arrival time of a new

patient instead of evaluating it every week.

Generally, in order to evaluate the pA (see detail in the estimation procedure

in Section 2.1.1), δ
(k)
x,i and t

(k)
x,i were measured. Recall that t

(k)
x,i is the observed or

censored time of patient i if she/he occupies category k and arm x.

During the enrolment period, t
(k)
x,i is given by

t
(k)
x,i = min(the current time− itharrival time, T

(k)
x,i ). (2.1)
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After all patients have entered the trial and no more calculations are done

until the trial ends, the current time is replaced by the maximum duration of

trial. The quantity t
(k)
x,i is then given by

t
(k)
x,i = min(the maximum duration of trial− itharrival time, T

(k)
x,i ). (2.2)

Recall that δ
(k)
x,i is a dummy variable associated with t

(k)
x,i where δ

(k)
x,i = 0 for

censored time and δ
(k)
x,i = 1 for observed time. During the enrolment period, if

the finish time of patient i is less than or equal to the current time, then δ
(k)
x,i = 1.

Otherwise, δ
(k)
x,i = 0. However, after all patients have entered the trial, the current

time is replaced by the maximum duration of trial. Hence, if the finish time of

patient i is less than or equal to the maximum duration of the trial, then δ
(k)
x,i = 1.

Otherwise, δ
(k)
x,i = 0.

As discussed above, in the two recruitment regimes, the schedules for evaluat-

ing the pA are different. Hence, in this chapter, the current time, the finish time

of a patient i and the maximum duration of a trial used to calculate δ
(k)
x,i and t

(k)
x,i

are different from those in HNL as well.

In HNL, the current time is the arrival week of a new patient, which is the

same as the order of all patients. For example, if patient i is enrolling in the trial,

the current time will be the ith week. Furthermore, the finish time of patient i

can be given by i+ T
(k)
x,i .

Let us consider t
(k)
x,i and δ

(k)
x,i when patient (i+1) is enrolling. In HNL, following

(2.2), t
(k)
x,i = min((i + 1) − i, T

(k)
x,i ). To calculate δ

(k)
x,i , if (i + T

(k)
x,i ) is less than or

equal to (i+ 1), δ
(k)
x,i = 1. Otherwise, δ

(k)
x,i = 0.

For example, let us consider t
(k)
x,2 and δ

(k)
x,2. Suppose that patient 3 is arriving

and T
(k)
x,2 = 5. In HNL, t

(k)
x,2 = min(3− 2, 5) = 1. Also, δ

(k)
x,i = 0 because 2 + 5 = 7

is greater than 3.

In contrast, in this chapter, the current time is the arrival time of a new
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patient. For instance, if patient i is recruited in the trial, the current time will

be the arrival time of the ith patient. Moreover, the finish time of patient i can

be given by (the arrival time of the ith patient + T
(k)
x,i ).

Let us consider t
(k)
x,i and δ

(k)
x,i when patient (i+ 1) is arriving. In this chapter,

following (2.2), t
(k)
x,i = min(((i + 1)th arrival time) - ( ith arrival time), T

(k)
x,i ). To

calculate δ
(k)
x,i , if (the arrival time of ith patient + T

(k)
x,i ) is less than or equal to

the arrival time of the (i+ 1)th patient, δ
(k)
x,i = 1. Otherwise, δ

(k)
x,i = 0.

For instance, let us consider t
(k)
x,2 and δ

(k)
x,2. Suppose that patient 3 is enrolling

and T
(k)
x,2 = 5. Suppose also that the arrival times of the 2nd and 3rd patients are

2.5 and 4 respectively. Consequently, t
(k)
x,2 = min(4− 2.5, 5) = 1.5. Also, δ

(k)
x,i = 0

because 2.5 + 5 = 7.5 is greater than 4.

In HNL, the maximum duration of the accrual period was 120 weeks because

the maximum number of patients recruited was 120. However, in our research

the maximum duration of the enrolment period was the arrival time of the 120th

patient. The maximum duration of the follow-up period in both HNL and our

research was 40 weeks. Therefore, the maximum durations of trials in HNL and

our research were 160 weeks and (the arrival time of the 120th patient + 40 weeks)

respectively.

Hence, in this chapter, our process is more complicated than that in HNL.

2.3 Comparison of the HNL designs under two

arrival rates

Our main concern is to determine whether the results from the two recruitment

regimes are different. However, if the results are different, we cannot conclude

that the difference comes only from the two accrual patterns. Differences may

have occurred from many sources of variation. Therefore, we require the criterion

used to be a minimum important difference that could indicate that the two
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recruitment regimes lead to different results.

As mentioned in Section 2.1.3, in HNL four design characteristics were em-

ployed to compare the HNL and common designs. Similarly, in this section,

these design characteristics are used to compare the results obtained from the

two enrolment regimes.

There are two groups of design characteristics. The first group consistes of

the probability of Type I error, and the power of the test. Hence, for this group,

we tested whether the two arrival rates gave different probabilities (e.g. the

probabilities of Type I error) or not. In contrast, the second group consisted of

the average number of patients allocated to each arm and the average number

of patients. In this group, they are both means, not probabilities. We therefore

tested to determine whether the two arrival rates gave a different mean or not.

We decided that the difference between the recruitment regimes would be

regarded as ‘practically significant’ (as distinct from ‘statistically significant’) if

either

• the difference between the probabilities obtained from the two arrival rates

is greater than 0.05, or

• the difference between the means under the two arrival rates is greater than

4.

These numbers were chosen because greater than 0.05 and 4 were thought

to be enough to indicate that the differences were caused not only by the other

sources of variation but also were caused by the accrual patterns.

In all cases we used 5,000 simulations.

2.3.1 Hypothesis Testing

We aim to test whether the difference between the probabilities obtained from

the two accrual rates is greater than 0.05. Therefore, we propose to test the
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hypotheses

H0 : |p1 − p2| ≤ 0.05

H1 : |p1 − p2| > 0.05

where p1 represents the probability when the accrual rate of patients is exactly

one patient per week and p2 represents the probability when the accrual rate of

patients is an average of one per week.

It can be seen that H0 : |p1 − p2| ≤ 0.05 means −0.05 ≤ p1 − p2 ≤ 0.05. Thus

we could test the hypothesis at a level of 5% by calculating a 95% confidence

interval (CI) for p1 − p2. Only if the CI lies completely outside (-0.05, 0.05) do

we reject H0. Otherwise, we retain H0.

The quantities p1 and p2 are independent because both are randomly generated

from different trials. In addition npi ≥ 5 and n(1 − pi) = nqi ≥ 5 for i = 1, 2.

As a result, we use the normal distribution as an approximation of the binomial

distribution.

A 95% CI estimate for the difference p1 − p2 is:(
(p̂1 − p̂2)− Z0.025

√
p̂1q̂1
n1

+
p̂2q̂2
n2

, (p̂1 − p̂2) + Z0.025

√
p̂1q̂1
n1

+
p̂2q̂2
n2

)

where n1 is the size of the sample when the accrual rate of patients is exactly one

patient per week, n2 is the size of the sample when the accrual rate of patients is

an average of one per week, q̂1 = 1− p̂1, and q̂2 = 1− p̂2.

Similarly, to test whether the difference between the means under the two accrual

rates is greater than 4, we propose to test the hypotheses

H0 : |µ1 − µ2| ≤ 4

H1 : |µ1 − µ2| > 4

where µ1 is the mean when the arrival rate of patients is exactly one patient per

week and µ2 is the mean when the arrival rate of patients is an average of one

per week.
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In a manner similar to the comparison of p1 and p2, we could test the hy-

pothesis at a level of 5% using a 95% CI for µ1 − µ2. Since both n1(= 5000) and

n2(= 5000) are very large, we can assume that the sample means are Normally

distributed. We do not know σ1 and σ2. However, both samples are so large that

S2
1 and S2

2 should be very good estimates of σ2
1 and σ2

2 respectively.

The 95% CI estimate of the difference is:(X̄1 − X̄2)− Z0.025

√
S2
1

n1

+
S2
2

n2

, (X̄1 − X̄2) + Z0.025

√
S2
1

n1

+
S2
2

n2


If the CI lies entirely outside the interval (-4, 4), we reject H0. Otherwise, we

retain H0.

2.3.2 The Results of the Hypothesis Testing

As discussed earlier, the program by Ning (2009) gave similar results to the

published results of HNL in some situations. Under Scenario 1 these were when

n0 equalled 1, for both the HNL and common designs, and for only the common

design when n0 equalled 30. Under Scenario 2, we matched the published results

of HNL, in the HNL design when n0 equalled 1. We therefore focused on the

comparison of the results from the two recruitment regimes in these situations.

Table 2.5 shows an example of the results of the HNL approach with a re-

cruitment rate of exactly one patient per week for Scenario 1 compared with the

results of the modified approach with the accrual rate being an average of one

patient per week. Using the results in Table 2.5, we carried out hypothesis testing

as described in the previous subsection. The results showed that a 95% CI for

the differences p1−p2 was (-0.019, 0.003). It was clear that the CI lay completely

within the interval (-0.05, 0.05). We therefore retained each H0 and concluded

that there was no significant difference between the probability of type I error

obtained from the two arrival rates. Similarly, the results implied that 95%
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CIs for the differences µ1 − µ2 for arm A and for arm B were (-0.7833, 1.2609)

and (-0.8633, 1.1721) respectively. Hence they lay entirely inside the interval (-4,

4). We therefore retained each H0 and concluded that the average numbers of

patients in arm A (or arm B) did not depend on the two enrolment regimes.

Let us consider the average numbers of patients obtained under the two re-

cruitment regimes. The results were such that a 95% CI for the differences µ1−µ2

was (−0.2623, 1.0487). Hence it lay entirely inside the interval (-4, 4). We there-

fore retained H0 and concluded that the average numbers of patients in the trial

were not based on the two enrolment regimes.

The results from the all the other situations mentioned in the first paragraph

of this subsection follow similarly.

From the results mentioned above, we finally concluded that the differences

between the statistical properties of the two recruitment regimes (i.e. exactly one

new patient per week, and an average of one new patient per week) should not

be considered to be practically significant. Therefore we will continue to follow

the HNL practice of having exactly one arrival per week.
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Chapter 3

Evaluation of Clinical Trial
Designs

The aim of this chapter is to consider major criteria for evaluating a clinical trial

design. This is because the evaluation of the design is an important objective,

when designing a clinical trial. In this chapter, we consider two methods for

evaluating and comparing clinical trial designs. They are consideration of the

Operating Characteristic Curve and other design characteristics. The details of

each method are described in the following sections.

3.1 Operating Characteristic curve

In this section, the Operating Characteristic curve will be considered to assess

the performance of a clinical trial design.

Normally the Operating Characteristic (OC) curve is a useful tool in describ-

ing the capabilities of a sampling plan for discriminating between good or bad

lots in quality control. The OC curve can be also applied to evaluate and compare

adaptive designs. In this research we define the OC function to be the probability

of accepting H0 : µa − µb = 0 for a given value of the parameter(s), so it is equal

to 1 − α when H0 is true, and 1 - power when H0 is false. In a graph of an OC

curve the horizontal axis shows the difference between the mean survival time

of treatment A (µa) and the mean survival time of treatment B (µb), that is,

43
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µ = µa − µb. The vertical axis shows the probability of accepting H0. Therefore

this curve describes the discriminating ability of a design.

If Design A gives a steeper OC curve than a competing design (Design B),

we will decide that Design A is the better design. That is, Design A has greater

ability to distinguish an effective treatment from a less effective one. In this

research, the hypotheses are

H0 : µa − µb = 0

H1 : µa − µb ̸= 0.

The quantity α can be computed from the proportion of the time that we

reject H0 when H0 is true, while power can be computed from the proportion of

the time that we reject H0 when H0 is false. Initially we set the true value of

µ = µa − µb equal to 0. This is the situation that H0 is true, so we estimate α.

Then we change the true value of µ. We use a wide domain for the true value of

µ. In these situations where H0 is false, we therefore calculate power.

3.2 Example of using the Operating Character-

istic to compare designs

In this section, we provide an illustrative example of using the Operating Char-

acteristic to compare designs.

We compare the Operating Characteristics (when H0 is true) of a HNL design

and an alternative design. In HNL, we had µx =
∑4

k=1 px,kµx,k (x = a, b). It is

clear that there are many different choices of the px,ks and µx,ks that give the

same value of µx. Scenarios 1 (a) - 1 (d) of Table 3.1 give four examples for which

µx = 53.3. These scenarios, plus Scenarios 1 (e) - 1 (f) in Table 3.1, provide

situations where µ = µa−µb = 0. For these six scenarios, simulation was used to

estimate the value of P(Retain H0|H0 true). We see that P(Retain H0|H0 true)

was calculated from one minus (the probability that arm A was chosen plus the
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probability that arm B was chosen). For each simulation, data were generated

for Nmax = 120. In Scenarios 1 (a) - 1 (f), we performed hypothesis testing as

described in Section 2.3.1 to test whether the two values of the OC were different.

For example, Scenarios 1 (b) and 1 (e) both had µa − µb = 0, but the values of

P(Retain H0|H0 true) differed by 0.1136. Recall that we decided that two values

of the OC would be regarded as practically different if the absolute value of their

difference exceeds or equals 0.05.

In Scenarios 1 (b) and 1 (e), the 95% CI for the differences p1 − p2 for arm

A was (0.1015, 0.1257). It can be seen that the CI for arm A did not lie within

the interval (−0.05, 0.05). It is also apparent from Table 3.1, that the value

of P(Retain H0 : µa = µb|H0 true) varies considerably, both for the same and

different values of µa − µb. Because of the variability in values of the OC when

µ = 0, we cannot regard P(Retain H0|H0 true) as being a function of µa − µb.

This suggests that the OC curve is not an appropriate method of comparing

clinical trial designs.
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0.0596

0.8886
B

0.1
0.1

0.1
0.7

2
25

51
65

53.3
57.1330

0.0518
total

114.7954

1
(d
)

A
0.5

0.2
0.1

0.2
4

28
97

180
53.3

57.4834
0.0404

0.9202
B

0.5
0.2

0.1
0.2

4
28

97
180

53.3
58.8514

0.0394
total

116.3348

1
(e)

A
0.2

0.2
0.3

0.3
5

7
22

170
60

55.3086
0.0860

0.8324
B

0.2
0.2

0.3
0.3

5
7

22
170

60
54.8254

0.0816
total

110.1340

1
(f)

A
0.2

0.2
0.3

0.3
4

20
44

90
45

57.4108
0.0490

0.8962
B

0.2
0.2

0.3
0.3

4
20

44
90

45
57.4350

0.0548
total

114.8458
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3.3 Design characteristics

In addition to the method in Section 3.1, we can evaluate clinical trial designs

by considering various other design characteristics. In this section, several design

characteristics are investigated and used as criteria to assess the clinical trial

designs.

Jiang et al. (2013) proposed new designs for the phase II clinical trial. These

designs use both a Bayesian decision-theoretic approach and a response-adaptive

randomization procedure. They are used to evaluate the efficacy of two arms with

a binary endpoint. The aim of Jiang et al. (2013) was to make an efficient and

ethical design that can determine the efficacy of a treatment efficiently in order

to screen out an inefficient treatment. In addition, for ethical reasons, this design

should reduce the average sample number and increase the percentage of patients

assigned to the superior treatment. The authors evaluated the performance of

their design by considering several design characteristics - namely, the probability

of Type I error, statistical power, the average number of patients and the average

percentage of patients allocated to the superior treatment. In our research, we

have the same goals. Consequently, in evaluating the procedure, we will use the

same criteria as they did. In addition, comparing the percentage of patients

assigned to the better treatment (PBA) will compare percentages, rather than

actual counts, of patients. This is preferable if there are different total numbers

of patients in the two trials.

Emerson et al. (2007) described the evaluation of a clinical trial design by

considering design characteristics such as the probability of Type I error, and the

power of the trial. They did it by giving an example. This example showed that

the power of the trial increased as the treatment effect (µ = µa − µb) increased.

Cheng and Shen (2005) considered an expected loss function, depending on the

cost of each patient and the costs of making wrong decisions. They determined
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whether or not to terminate the trial by using this function as a criterion. They

also used three design characteristics (the probability of Type I error, the power

of the trial and the average sample size) to compare Bayesian adaptive designs

and other group sequential designs.

Wunder et al. (2012) also compared adaptive designs by evaluating the design

characteristics. In this paper, the authors considered not only the characteristics

mentioned in Cheng and Shen (2005) but also the average number of deaths per

trial and the proportion of early terminations.

Gaydos et al. (2009) stated that the assessment of the proposed adaptive

designs could be performed by investigating design characteristics such as the

Type I error rate, the average duration of the trial, the power of the trial and the

average sample number.

In our research, one of the design characteristics (the probability of Type

I error) is fixed. The probability of Type I error can be estimated from the

proportion of the time that H0 is rejected when H0 is true. In this research, we

use a probability of Type I error of approximately 0.05.

There are seven design characteristics that are employed as criteria to evaluate

the clinical trial designs:

1. The power of the test

The power of the test can be estimated from the proportion of the time

that we reject H0 when H0 is false. A better design will give greater power.

2. The percentage of patients assigned to the better treatment (PBA)

The percentage of patients assigned to the superior treatment can be esti-

mated from the proportion of patients assigned to the superior treatment.

We will decide that the design is more effective if it has a higher percentage

of patients assigned to the superior treatment.

We adopt this criterion from Jiang et al. (2013).
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3. The probability of early termination (PET)

The probability of early termination can be estimated from the proportion

of times that the trial can be stopped before its scheduled finish. We will

make a decision that a design is more effective if it has a higher probability

of early termination.

4. The average number of patients (ANP)

The average number of patients is the expected number of patients used

in the trial. Under this criterion, if the design uses a smaller number of

patients, it is more effective.

5. The average number of deaths (AND)

The average number of deaths is the expected number of patients dying

in the trial. Under this criterion, if the design gives a smaller numbers of

deaths, it is more effective. Note that, in this research, the AND is the

expected number of patients who occupy category 1. In addition, their

survival times do not exceed the length of the trial.

6. The average length of the trial (ALT)

The average length of the trial is the expected number of weeks that the

trial runs. Under this criterion, a design that has a shorter length of trial

will be a more effective design.

7. Expectation cost

Expectation cost will be described in the next section.

For design characteristics 1 - 3, we decided that these design characteristics

obtained from the two designs were different if the difference was greater than or

equal to 0.05. In contrast, for design characteristics 4 - 6, we made a decision

that these design characteristics obtained from the two designs were different if

the difference was greater than or equal to 4.
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3.3.1 Assumptions

• Of course either arm may be better, but for the case of simplicity it will be

assumed that arm B is better if the two arms are not equally good.

• It is assumed that arm A is a standard treatment or a placebo. Arm B,

however, is a new treatment or an experimental drug.

3.4 Expected cost

According to Emerson et al. (2011), the major aims of evaluating a clinical trial

are to (1) obtain correct conclusions, (2) answer some ethical issues, (3) minimize

the costs of the trials. By using design characteristics 1 and 2 as criteria for

evaluating a design, the first aim can be achieved. We also achieve the second and

third aims by using design characteristics 3 - 6 as criteria. Hence, we still require

a criterion that can combine all objectives to assess a clinical trial simultaneously.

In order to achieve all purposes of evaluating a design simultaneously, in this

section the expected cost of a design will be used as one of the design charac-

teristics. We can evaluate and compare clinical trial designs by looking at the

expected costs of the designs. This is because the factors that influence the ex-

pected costs are the probability of Type I error, the power of the trial and the

average number of patients in the trial. The expected cost of a design combines

the cost of patients, the cost of treatment, and the cost (e.g., the cost of lost

opportunity) if we make a wrong decision.

Since the expected cost is based on the factors mentioned above, by using this

criterion we can achieve all main aims of assessing a clinical design simultaneously.

In this research, two situations will be considered.

1. In situation 1, we have no prior knowledge of how arms A and B differ.

2. In situation 2, we suppose that treatment B is superior to treatment A.
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In both situations, the hypotheses will be

H0 : µa ≥ µb;

H1 : µa < µb.

We decided that a one-sided alternative hypothesis is more appropriate to our

objective. This is because in Section 3.3.1, we assumed that arm A is a standard

treatment or a placebo, whereas arm B is a new treatment or an experimental

drug. Moreover, in situation 1, for a two sided hypothesis, if arm A is selected as a

better treatment, it means that we make a wrong decision and we need to pay the

cost for carrying out a Phase III trial. However, due to the assumption mentioned

above, we do not need to perform the next phase if a standard treatment or a

placebo is selected.

It should be noted here that from now on in this chapter we are only concerned

about this one-sided alternative hypothesis. This is different from HNL. In HNL,

for the first situation, a two-sided hypothesis was considered. In contrast, for the

second situation, HNL considered this one-sided hypothesis.

Let us consider situation 1. If there is no difference between µa and µb, but

we reject H0, we make a wrong decision. We conclude that arm B is a better

treatment, even though the efficacies of arm A and arm B are equal. As mentioned

in Section 1.1, in general, a Phase II trial is used to compare a new treatment

with a standard treatment or an experimental drug with a placebo. If a new

treatment or an experimental drug (that is, arm B in this trial) is selected as a

better treatment, we can proceed to a Phase III trial. This explains why the cost

will be incurred if arm B is chosen as a better treatment and then a Phase III

trial is undertaken.

Moving to situation 2, in this situation, it is supposed that treatment B is

superior to treatment A. If we accept H0, we make a wrong decision. We reject

the superior treatment and incorrectly choose the wrong drug. Hence, the cost



52 Chapter 3. Evaluation of Clinical Trial Designs

of lost opportunity will be incurred if arm B is not chosen as a better treatment.

Let

• e1 be the event that we reject H0 when H0 is true;

• e2 be the event that we accept H0 when H0 is true;

• f1 be the event that we accept H0 when H0 is false;

• f2 be the event that we reject H0 when H0 is false;

• na be the average number of patients in arm A in this Phase II trial;

• nb be the average number of patients in arm B in this Phase II trial;

• n = na + nb be the average number of patients in this Phase II trial;

For the cost, we adopt the notation from Cheng and Shen (2005), that is:

• K0 = the cost of lost opportunity when we reject H0 if H0 is true;

• K1 = the cost of lost opportunity when we accept H0 if H0 is false;

• K2 = the cost of an individual patient excluding his/her cost of treatment.

We also introduce

• Ka = the cost of treatment A per patient;

• Kb = the cost of treatment B per patient.

The expected cost when H0 is true can be defined as

E(cost) =
2∑

i=1

c(ei)P (ei), (3.1)

where c(e1) is the associated cost of the trial when we reject H0 if H0 is true;

c(e1) = nK2 + naKa + nbKb +K0;
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c(e2) is the associated cost of the trial when we accept H0 if H0 is true; c(e2) =

nK2 + naKa + nbKb.

Therefore

E(cost) = (nK2 + naKa + nbKb +K0)P (e1)

+(nK2 + naKa + nbKb)(1− P (e1))

= nK2 + naKa + nbKb +K0P (e1)

From this formula, it can be clearly seen that the expected cost consists of two

parts. Firstly, there is the constant cost that combines the patient’s cost and the

treatment cost. In addition, there is the cost for rejecting H0 if H0 is true, that

is K0P (e1).

The expected cost when H0 is false can be expressed as

E(cost) =
2∑

i=1

c(fi)P (fi), (3.2)

where c(f1) is the associated cost of the trial when we accept H0 if H0 is false

and c(f1) = nK2 + naKa + nbKb +K1;

c(f2) is the associated cost of the trial when we reject H0 if H0 is false and

c(f2) = nK2 + naKa + nbKb.

Therefore

E(cost) = (nK2 + naKa + nbKb +K1)P (f1)

+(nK2 + naKa + nbKb)(1− Pr(f1))

= nK2 + naKa + nbKb +K1Pr(f1)

From the expected cost given above, we can see that again there are two main

parts of the expected cost: the constant cost and the cost of lost opportunity

from accepting H0 if H0 is false, that is K1Pr(f1).
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3.5 Example of using design characteristics to

evaluate designs

In this section, an example of using this method to evaluate the design is shown.

We examine the HNL design for six different treatment effects (µ = µA − µB)

under various values of Nmax.

It should be noted that since we consider a one-sided alternative hypothesis

(see Section 3.4), from now on in this chapter the probabilities of Type I error

can be estimated from the proportion of the time that arm B is selected as a

superior treatment in situation 1.

Table 3.2 displays Type I error rates for the HNL design under various values

of Nmax. In this research, we would like to obtain a Type I error rate of approxi-

mately 0.05. Unfortunately, by fixing the value of pU , the probability of Type I

error increased as Nmax increased. Therefore, we performed many simulations to

find a suitable cut-off pU for each choice of Nmax. The pU was chosen if it gave

a significance level of about 0.05. The results set out in Table 3.2 show that, as

Nmax increased, the ANP got larger. This is to be expected.

Tables 3.3 - 3.7 show the values of six design characteristics when H0 is false

for five different treatment effects under various values of Nmax . The results

displayed in Table 3.3 - 3.7 show that, for any given px,ks and µx,ks, increasing

Nmax increased the ANP, the AND, the power of the trial, the PET, the PBA,

and the ALT. As the Nmax increased, the duration of the trials also increased.

Consequently, the ALT and the ANP increased. When the ALT and the ANP

increased, we got more information, so the trial can increase the probability of

identification that arm B is the superior treatment. The power and the PBA

increased. The ANP also led to larger AND and larger PBA because the AND

was the proportion of the number of patients used. We can also stop trials early,

when the ALT increased. Therefore, the PET increased.
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In addition the power, the PBA and the PET increased, as the treatment effect

increased. Moreover, the ANP, the ALT and the AND decreased, as the treatment

effect increased. This is to be expected. If the treatment effect increases, the

difference between two arms can be detected more easily and quickly. As a result,

the power, the PBA and the PET increase. Due to an increase in the power, the

ANP required to detect difference decreases. Additionally, we can more rapidly

get enough evidence that arm B is better. Therefore the ALT decreases. As

mentioned in design characteristic 4, in this research, the AND is the number

of patients who fall in category 1 and do not survive more than the length of

the trial. Since the ALT decreases at the end of the trial, more patients in this

category are censored, and the AND becomes smaller.
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1
(a)

A
0.2

0.4
0.1

0.3
4

30
75

110
53.3

100
0.9700

48.0744
0.0476

0.0488
B

0.2
0.4

0.1
0.3

4
30

75
110

53.3
47.9476

0.0488
total

96.0220

1
(b
)

A
0.2

0.4
0.1

0.3
4

30
75

110
53.3

120
0.9705

57.3314
0.0506

0.0512
B

0.2
0.4

0.1
0.3

4
30

75
110

53.3
57.1970

0.0512
total

114.5284

1
(c)

A
0.2

0.4
0.1

0.3
4

30
75

110
53.3

140
0.9727

67.3776
0.0540

0.0508
B

0.2
0.4

0.1
0.3

4
30

75
110

53.3
66.1276

0.0508
total

133.9312

1
(d
)

A
0.2

0.4
0.1

0.3
4

30
75

110
53.3

160
0.9741

76.5222
0.0532

0.0574
B

0.2
0.4

0.1
0.3

4
30

75
110

53.3
75.6804

0.0574
total

152.2026

1
(e)

A
0.2

0.4
0.1

0.3
4

30
75

110
53.3

180
0.9760

85.5094
0.0532

0.0612
B

0.2
0.4

0.1
0.3

4
30

75
110

53.3
84.7498

0.0612
total

170.2592
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Table 3.3: Comparison of the design characteristics whenH0 is false under various
values of Nmax when the treatment effect is 24.725

(a) Section 1

Parameters of the design
Case Arm p1 p2 p3 p4 µ1 µ2 µ3 µ4 µx Nmax pU

2(a)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.300

100 0.9700
B 0.100 0.125 0.325 0.450 4 30 75 110 78.025

total

2(b)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.300

120 0.9705
B 0.100 0.125 0.325 0.450 4 30 75 110 78.025

total

2(c)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.300

140 0.9727
B 0.100 0.125 0.325 0.450 4 30 75 110 78.025

total

2(d)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.300

160 0.9741
B 0.100 0.125 0.325 0.450 4 30 75 110 78.025

total

2(e)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.300

180 0.9760
B 0.100 0.125 0.325 0.450 4 30 75 110 78.025

total

(b) Section 2

Properties of HNL design
Case Arm ANP Prob AND power PET PBA ALT

2(a)
A 17.6092 0.0004

9.5254 0.4692 0.4318 0.7756 101.1838
B 60.8466 0.4692

total 78.4558

2(b)
A 19.4612 0.0006

10.8202 0.5126 0.4774 0.7855 111.6356
B 71.2704 0.5126

total 90.7316

2(c)
A 21.3498 0.0004

12.1848 0.5364 0.5070 0.7922 122.4484
B 81.3786 0.5364

total 102.7284

2(d)
A 22.8872 0.0004

13.4424 0.5598 0.5316 0.8006 133.4974
B 91.8742 0.5598

total 114.7614

2(e)
A 24.3630 0.0002

14.9844 0.5794 0.5518 0.8082 144.9730
B 102.6820 0.5794

total 127.0450

Let Prob be the probability of selecting arm A or B as the superior treatment.
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Table 3.4: Comparison of the design characteristics whenH0 is false under various
values of Nmax when the treatment effect is 29.1

(a) Section 1

Parameters of the design
Case Arm p1 p2 p3 p4 µ1 µ2 µ3 µ4 µx Nmax PU

3(a)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

100 0.9700
B 0.100 0.125 0.200 0.575 4 30 75 110 82.40

total

3(b)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

120 0.9705
B 0.100 0.125 0.200 0.575 4 30 75 110 82.40

total

3(c)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

140 0.9727
B 0.100 0.125 0.200 0.575 4 30 75 110 82.40

total

3(d)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

160 0.9741
B 0.100 0.125 0.200 0.575 4 30 75 110 82.40

total

3(e)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

180 0.9760
B 0.100 0.125 0.200 0.575 4 30 75 110 82.40

total

(b) Section 2

Properties of HNL design
Case Arm ANP Prob AND power PET PBA ALT

3(a)
A 15.2326 0.0010

8.6340 0.5602 0.5144 0.7934 93.1390
B 58.4824 0.5602

total 73.7150

3(b)
A 17.0928 0

9.7814 0.6038 0.5646 0.7964 101.3790
B 66.8702 0.6038

total 83.9630

3(c)
A 18.2242 0.0010

10.9084 0.6370 0.6040 0.8059 109.7084
B 75.6442 0.6370

total 93.8684

3(d)
A 19.7536 0.0002

12.1648 0.6464 0.6178 0.8127 120.7268
B 85.6852 0.6464

total 105.4388

3(e)
A 20.6170 0.0004

13.3430 0.6666 0.6428 0.8211 129.5314
B 94.6264 0.6666

total 115.2434

Let Prob be the probability of selecting arm A or B as the superior treatment.
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Table 3.5: Comparison of the design characteristics whenH0 is false under various
values of Nmax when the treatment effect is 34.65

(a) Section 1

Parameters of the design
Case Arm p1 p2 p3 p4 µ1 µ2 µ3 µ4 µx Nmax PU

4(a)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

100 0.9700
B 0.050 0.100 0.250 0.600 4 30 75 110 87.95

total

4(b)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

120 0.9705
B 0.050 0.100 0.250 0.600 4 30 75 110 87.95

total

4(c)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

140 0.9727
B 0.050 0.100 0.250 0.600 4 30 75 110 87.95

total

4(d)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

160 0.9741
B 0.050 0.100 0.250 0.600 4 30 75 110 87.95

total

4(e)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

180 0.9760
B 0.050 0.100 0.250 0.600 4 30 75 110 87.95

total

(b) Section 2

Properties of HNL design
Case Arm ANP Prob AND power PET PBA ALT

4(a)
A 11.9454 0.0002

4.9392 0.6582 0.6192 0.8208 81.9054
B 54.7280 0.6582

total 66.6734

4(b)
A 12.7060 0.0002

5.3568 0.7226 0.6832 0.8261 85.7410
B 60.3630 0.7226

total 73.0690

4(c)
A 13.6142 0

5.9392 0.7500 0.7152 0.8346 93.7046
B 68.6984 0.7500

total 82.3126

4(d)
A 14.4172 0

6.5216 0.7678 0.7404 0.8409 101.0028
B 76.2016 0.7678

total 90.6188

4(e)
A 15.0400 0

6.9746 0.7864 0.7636 0.8468 107.6224
B 83.1264 0.7864

total 98.1664

Let Prob be the probability of selecting arm A or B as the superior treatment.
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Table 3.6: Comparison of the design characteristics of the HNL design when H0

is false under various values of Nmax when the treatment effect is 39.9

(a) Section 1

Parameters of the design
Case Arm p1 p2 p3 p4 µ1 µ2 µ3 µ4 µx Nmax PU

5(a)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

100 0.9700
B 0.050 0.100 0.100 0.750 4 30 75 110 93.20

total

5(b)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

120 0.9705
B 0.050 0.100 0.100 0.750 4 30 75 110 93.20

total

5(c)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

140 0.9727
B 0.050 0.100 0.100 0.750 4 30 75 110 93.20

total

5(d)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

160 0.9741
B 0.050 0.100 0.100 0.750 4 30 75 110 93.20

total

5(e)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

180 0.9760
B 0.050 0.100 0.100 0.750 4 30 75 110 93.20

total

(b) Section 2

Properties of HNL design
Case Arm ANP Prob AND power PET PBA ALT

5(a)
A 10.2916 0.0002

4.3616 0.7490 0.7016 0.8293 72.2350
B 50.0074 0.7490

total 60.2990

5(b)
A 11.0252 0.0002

4.7306 0.803 0.7648 0.8345 76.0328
B 55.5996 0.8030

total 66.6248

5(c)
A 11.5088 0

5.1096 0.8184 0.7906 0.8430 81.6624
B 61.7776 0.8184

total 73.2864

5(d)
A 12.2880 0.0004

5.6092 0.8414 0.8106 0.8464 87.5680
B 67.7040 0.8414

total 79.9920

5(e)
A 12.9784 0

6.1374 0.8464 0.8202 0.8524 95.1284
B 74.9580 0.8464

total 87.9364

Let Prob be the probability of selecting arm A or B as the superior treatment.
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Table 3.7: Comparison of the design characteristics of the HNL design when H0

is false under various values of Nmax when the treatment effect is 70.35

(a) Section 1

Parameters of the design
Case Arm p1 p2 p3 p4 µ1 µ2 µ3 µ4 µx Nmax PU

6(a)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

100 0.9700
B 0.050 0.100 0.100 0.750 3 20 90 150 123.65

total

6(b)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

120 0.9705
B 0.050 0.100 0.100 0.750 3 20 90 150 123.65

total

6(c)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

140 0.9727
B 0.050 0.100 0.100 0.750 3 20 90 150 123.65

total

6(d)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

160 0.9741
B 0.050 0.100 0.100 0.750 3 20 90 150 123.65

total

6(e)
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

180 0.9760
B 0.050 0.100 0.100 0.750 3 20 90 150 123.65

total

(b) Section 2

Properties of HNL design
Case Arm ANP Prob AND power PET PBA ALT

6(a)
A 8.6976 0

3.7558 0.9096 0.8634 0.8351 58.2240
B 44.0624 0.9096

total 52.7600

6(b)
A 8.9552 0

3.8530 0.9456 0.9168 0.8377 58.5000
B 46.2168 0.9456

total 55.1720

6(c)
A 8.9924 0

4.0296 0.9578 0.9428 0.8449 60.2696
B 48.9892 0.9578

total 57.9816

6(d)
A 9.5122 0

4.3556 0.9710 0.9564 0.8476 64.1436
B 52.8874 0.9710

total 62.3996

6(e)
A 9.5762 0

4.4882 0.9724 0.9636 0.8544 67.2426
B 56.2104 0.9724

total 65.7866

Let Prob be the probability of selecting arm A or B as the superior treatment.
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3.5.1 The results of the expected cost

Refer to Section 3.4 for a description of the expected cost. From Table 3.2, in

the event that H0 is true, the expected cost (3.1) mentioned in Section 3.4 can

be written as follows:

Nmax = 100

E(cost) = 96.0220K2 + 48.0744Ka + 47.9476Kb + 0.0488K0,

Nmax = 120

E(cost) = 114.5284K2 + 57.3314Ka + 57.1970Kb + 0.0512K0,

Nmax = 140

E(cost) = 133.9312K2 + 67.3776Ka + 66.1276Kb + 0.0508K0,

Nmax = 160

E(cost) = 152.9754K2 + 76.5222Ka + 75.6804Kb + 0.0574K0,

Nmax = 180

E(cost) = 170.2592K2 + 85.5094Ka + 84.7498Kb + 0.0612K0.

For this example, it can be clearly observed that, when H0 is true, for positive

K0, Ka, Kb and K2, the expected cost increased significantly as Nmax increased

except when Nmax = 140. As mentioned in Section 3.4, if H0 is true, there are two

principal parts of the expected cost: the constant cost and the cost from rejecting

H0 if H0 is true. Again, when Nmax increased, we observed a larger ANP. As a

result, the constant cost is greater. In addition, the cost from rejecting H0 if H0

is true increases as Nmax increases except when Nmax = 140.
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In other examples, where we obtain different coefficient of K0, this might not

be true.

Note that, in this trial, the probability of Type I error was obtained by carrying

out the simulation. We chose the pU if it gave a significance level of about

0.05. Hence, we might not obtain an upward trend of the expected cost as Nmax

increased. The Type I error rates for different Nmaxs are not exactly the same.

For a trial in which the Type I error rate is fixed, certainly, the expected cost

increased significantly as Nmax increased.

From Table 3.3, when the treatment effect is 24.725, in the event that H0 is

false, the expected cost (3.2) mentioned in Section 3.4 can be written as follows:

Nmax = 100

E(cost) = 78.4558K2 + 17.6092Ka + 60.8466Kb + 0.5308K1,

Nmax = 120

E(cost) = 90.7316K2 + 19.4612Ka + 71.2704Kb + 0.4874K1,

Nmax = 140

E(cost) = 102.7284K2 + 21.3498Ka + 81.3786Kb + 0.4636K1,

Nmax = 160

E(cost) = 114.7614K2 + 22.8872Ka + 91.8742Kb + 0.4402K1,

Nmax = 180

E(cost) = 127.0450K2 + 24.3630Ka + 102.6820Kb + 0.4206K1,

From Table 3.4, when the treatment effect is 29.1, in the event that H0 is

false, the expected cost (3.2) mentioned in Section 3.4 can be written as follows:
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Nmax = 100

E(cost) = 73.7150K2 + 15.2326Ka + 58.4824Kb + 0.4398K1,

Nmax = 120

E(cost) = 83.9630K2 + 17.0928Ka + 66.8702Kb + 0.3962K1,

Nmax = 140

E(cost) = 93.8684K2 + 18.2242Ka + 75.6442Kb + 0.0.363K1,

Nmax = 160

E(cost) = 105.4388K2 + 19.7536Ka + 85.6852Kb + 0.3536K1,

Nmax = 180

E(cost) = 115.2434K2 + 20.6170Ka + 94.6264Kb + 0.3334K1.

The equations from the other Tables follow similarly.

It can be clearly observed from the results mentioned above that, if H0 is false,

the coefficients of all costs except K1 increased as Nmax increased. However the

coefficient of K1 decreased as Nmax increased. When the sample size increases,

we obtain more information. As a result, there is an increase in the ability to

detect the differences between the two arms. The obtained power of the test will

increase. Therefore, the coefficient of K1, that is, (1- power), decreases.

As mentioned in Section 3.4, if H0 is false, the expected cost consists of two

main parts: a constant cost and the cost of lost opportunity from accepting H0

if H0 is false. As Nmax increases, we can reduce the cost of lost opportunity

K1Pr(f1) from accepting H0 if H0 is false; however, the constant cost (nK2 +
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naKa + nbKb) increases.

In practice, we need to determine the values ofK1, K2, Ka andKb. If the value

of K1 is considerably larger than the values of K2, Ka and Kb, when the Nmax

is large, the cost of lost opportunity can be reduced by more than the increase

in constant cost. Consequently, in this situation, the expected cost decreases as

Nmax increases.

For illustrative purposes, a simple example is given here. Suppose that the

values of K2, Ka and Kb are 1 unit, whereas the value of K1 is 2000 units. It can

be illustrated by the expected cost from Table 3.3, for Nmax of 100 and 180.

Nmax = 100

E(cost) = 73.7150(1) + 15.2326(1) + 58.4824(1) + 0.4398(2000),

= 1027.03.

Nmax = 180

E(cost) = 115.2434(1) + 20.6170(1) + 94.6264(1) + 0.3334(2000),

= 897.29.

In this case, for an Nmax of 100, the expected cost is 1027.03 units, but the

expected cost is 897.29 units when Nmax is 180. Therefore, in this case, we can

reduce the expected cost slightly when we use a larger Nmax.

However, if the value of K1 is not substantially larger than the values of

K2, Ka and Kb, the expected cost increases as Nmax increases because only the

coefficient of K1 decreases as Nmax increases. In addition, the coefficient of K1,

which is less than 1, is considerably lower than the coefficients of K2, Ka and Kb.

In this situation, if we increase Nmax, the power will increase so the cost of lost

opportunity can be reduced slightly. However, we need to spend a lot of money

to meet the costs of patients and treatments.
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Furthermore the expected cost decreases as the treatment effect increases. If

the treatment effect increases, we can detect the difference between the efficacies

of the two treatments more easily and quickly. The power of the test increases.

In addition, a smaller sample size is required.

Although increasing Nmax can increase the power, there are some limitations

that arise from using a large Nmax. Firstly, it may be difficult to find enough

patients to participate in the trial, such as in a rare disease. In other situations,

we have adequate numbers of patients; however, there may be limits on the

facilities available to treat them. For example, if the trials require a specific tool,

this tool may not be sufficiently available to treat the patients in a large trial.

When planning a clinical trial, we must determine the precision that we require

and our resources such as budget, patients, tools and time, because larger sample

sizes need more resources.

3.6 Example of using design characteristics to

compare clinical trial designs

In this section, we provide simulation results to show how to use design char-

acteristics to compare three designs: the HNL design, the common design and

an equal randomization (ER) design. All designs were produced by using Ning

(2009). Table 3.8 shows some features of the HNL design, the common design

for n0 = 1 and the ER design.

In order to obtain an ER design, we did simulation by using Ning (2009) where

n0 is equal to Nmax. Therefore, the Dir (γx,1+nx,1, γx,2+nx,2, γx,3+nx,3, γx,4+nx,4)

and the IG(α′
x,k = αx,k +

∑nx,k

i=1 δ
(k)
x,i , β

′
x,k = βx,k +

∑nx,k

i=1 t
(k)
x,i ) distributions were

calculated after all patients had been recruited to the trial. Then we simulated

the (px,1, ..., px,4) from the first distribution and the (µx,1, ..., µx,4) from the second.

After that, the program computed µx =
∑4

k=1 px,kµx,k and evaluated p = Pr(µa >
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µb | data). Finally treatment A (or B) was chosen as the better treatment if

pA > pU (or pA < pL). A property of this design is that this trial cannot be

stopped early.

This design is a Bayesian design even though it is not adaptive because it uses

a Bayesian method in the treatment decision process as mentioned above.

Table 3.9 illustrates the Type I error rate for the HNL design, the ER design

and the common design when Nmax is 120. The design characteristics when H0 is

false are shown in Table 3.10 for the HNL design, the ER design and the common

design when the treatment effect is 70.35 and Nmax is 120. We note that, for

the common design, the AND cannot be calculated because in this design, the

short-term response was not classified into four categories, so we cannot say which

patients died. It should be also noted that in this section, n0 = 1 for the HNL

and common designs. In contrast, n0 = 120, for the ER design.

The results set out in Table 3.9 show that, in order to obtain a Type I error rate

of approximately 0.05, the ER design required the lowest value of pU compared

to the other two designs. The common design needed the highest value of pU .

The results shown in Table 3.10 illustrate that the HNL design required the

lowest ANP and the shortest ALT. It also gave the highest PET. Moreover, the

AND obtained from this design is less than one obtained from the ER design. In

contrast, the ER design had the highest ANP and the longest ALT. Furthermore,

it gave the highest power. In this design, the PET is zero because the design

cannot be terminated early. As expected, we got the lowest power from the

common design.

Similar simulations were done for other set of parameter which gave the same

general conclusions.

One of the techniques used in the HNL design is an interim analysis. As

mentioned in Section 1.3, an interim analysis offers opportunities for early ter-
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mination of the trial. In the HNL design, the trial can stop early if one arm is

demonstrably better than another arm. This can reduce the ANP and the ALT.

Since the ALT decreases, the AND becomes small. The information about a short

term response can help us to get sufficient evidence speedily. Therefore, the PET

for the HNL design is highest compared to the other two designs.

In this research, all designs are Bayesian designs. The posterior probabilities

are used to determine the superior treatment. We see that these probabilities are

based on all available information obtained from the trial. Since the ER design

has the highest ANP and the longest ALT, it obtains more information than the

other two designs. The greater information will help it to make better decisions.

This might explain why we get the highest power from the ER design.

From the results in Table 3.10, we carried out hypothesis testing as described

in Section 2.3.1, to test whether these design characteristics for the HNL design,

the ER design and the common design were different.

Let

per denote the probability (e.g. the power) obtained from the ER design;

ph denote the corresponding probability obtained from the HNL design;

pc denote the corresponding probability obtained from the common design;

µer denote the mean (e.g the ANP) obtained from the ER design;

µh denote the corresponding mean obtained from the HNL design;

µc denote the corresponding mean obtained from the common design;

The results of hypothesis testing (all based on 5,000 simulations) when comparing

the design characteristics obtained from the HNL design and the ER design are

as follows:

• 95% CIs for the differences per − ph for the power, for the PET and for

the PBA were (0.0255, 0.0405), (−0.9245,−0.9091) and (−0.3549,−0.3205)

respectively. It can be seen that the CI for the the difference in power
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lay completely inside the interval (−0.05, 0.05). The CIs for the differences

in PET and the PBA, on the other hand, lay entirely outside the interval

(−0.05, 0.05). Consequently we concluded that there was no difference be-

tween the powers, whether or not these powers are associated with the HNL

design or the ER design. However, the PETs and the PBAs obtained from

the two designs were different.

• Similarly, 95% CIs for the differences µer−µh for the ANP, for the AND and

for the ALT were (63.9124, 65.7436), (10.9697, 11.2330) and (100.3759, 102.6241)

respectively. Hence they lay completely outside the interval (-4, 4). We

concluded that the ANPs, the ANDs and the ALTs obtained from the two

designs were different.

Consider the results of hypothesis testing when comparing the design charac-

teristics obtained from the HNL design and the common design. Also consider

the results of hypothesis testing when comparing the design characteristics ob-

tained from the ER design and for the common design. We found that all 95%

CIs for ph−pc (not shown here) and per−pc (not shown here) lay entirely outside

the interval (−0.05, 0.05). Also, all CIs for µh−µc (not shown here) and µer −µc

(not shown here) lay completely outside the interval (-4, 4). It can therefore be

concluded that the design characteristics obtained from the HNL and the com-

mon designs were different. Similarly, we conclude that the design characteristics

obtained from the the ER and the common designs were different.

Further consideration occurs in Section 3.8.1
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Table 3.10: Comparison of the design characteristics when H0 is false for the
HNL design, the ER design and the common design when the treatment effect is
70.35 and Nmax is 120

(a) Section 1

Parameters of the design
Source Arm p1 p2 p3 p4 µ1 µ2 µ3 µ4 µx PU

A
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

0.9705
B 0.050 0.100 0.100 0.750 3 20 90 150 123.65

total

B
A 0.200 0.400 0.100 0.300 4 30 75 110 53.30

0.9050
B 0.050 0.100 0.100 0.750 3 20 90 150 123.65

total

B
A 1 53.30 53.30

0.993
B 1 123.65 123.65

total

(b) Section 2

Properties of HNL design
Source Arm ANP Prob AND power PET PBA ALT

A
A 8.9552 0

3.8530 0.9456 0.9168 0.8377 58.5000
B 46.2168 0.9456

total 55.1720

B
A 59.9992 0

14.9544 0.9786 0 0.5000 160
B 60.0008 0.9786

total 120

C
A 20.491 0.0012

NA 0.8574 0.7666 0.7517 128.4708
B 62.0326 0.8574

total 82.5236

Let source A be the results of the HNL design, source B be the results of the ER
design, source C be the results of the common design, N/A be Not Available

and Prob be the probability of selecting arm A or B as the superior treatment..
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3.6.1 The results of expected cost

Refer to Section 3.4 for a description of Expected cost. From Table 3.9, in the

event that H0 is true, the expected cost (3.1) mentioned in Section 3.4 can be

written as follows:

The HNL design

E(cost) = 114.5284K2 + 57.3314Ka + 57.1970Kb + 0.0512K0,

The ER design

E(cost) = 120K2 + 60.0446Ka + 59.9554Kb + 0.0474K0,

The common design

E(cost) = 115.0482K2 + 57.3608Ka + 57.6874Kb + 0.0482K0,

As mentioned in Section 3.4, if H0 is true, there are two principal parts of the

expected cost: the constant cost and the cost of lost opportunity from rejecting

H0 if H0 is true. Using the HNL and the common designs can reduce the constant

cost compared to the ER designs. For this example, however, they have a higher

cost from rejecting H0 if H0 is true than the ER design. If the value of K0 is

considerably larger than the values of K2, Ka and Kb, using the ER design has a

lower cost than using the other two designs. Otherwise, the HNL and the common

designs have lower cost compared to the ER design.

From Table 3.9, when treatment effect = 70.35, in the event that H0 is false,

the expected cost (3.2) mentioned in Section 3.4 can be written as follows:
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The HNL design

E(cost) = 55.1720K2 + 8.9552Ka + 46.2168Kb + 0.0544K1,

The ER design

E(cost) = 120.0000K2 + 59.9992Ka + 60.0008Kb + 0.0214K1,

The common design

E(cost) = 82.5236K2 + 20.491Ka + 62.0326Kb + 0.14764K1,

As mentioned in Section 3.4, if H0 is false, there are two principal parts of the

expected cost: the constant cost and the cost of lost opportunity from accepting

H0 if H0 is false. Using the HNL design can reduce the constant cost substantially

compared to the other two designs. On the other hand, it has a higher cost of lost

opportunity from accepting H0 if H0 is false than the ER design. If the value of

K1 is significantly larger than the values of K2, Ka and Kb, using the ER design

has a lower cost than using the HNL design. Otherwise, the HNL design requires

lowest cost compared to the other two designs.
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3.7 The expected total costs of the designs

In Section 3.4, the expected cost is one of the design characteristics suggested

to evaluate the performance of a design. In the previous section, we determined

the expected cost when H0 is true, and the expected cost when H0 is false,

separately. In real life, however, this is hardly possible. As a result, in this

section we suggest an alternative criterion by examining the expected cost in

both situations simultaneously.

Parnell (2002) proposed a new criterion for evaluating experimental designs.

In his research, the expected total costs of the trials were investigated. These

were formulated by considering the hypotheses

H0 : µa = µb;

H1 : µa ̸= µb.

According to Parnell (2002, p. 28), the expected total cost of a design can be

defined as

E(total cost) = CE + E(C0), (3.3)

where CE is the direct cost of conducting the trials, and C0 is the cost that results

from the outcomes of the clinical trials. Hence E(C0) is the weighted sum of all

possible costs associated with the four possible outcomes, given by

E(C0) = PH0 × [α× C1 + (1− α)× C2] + (1− PH0)× [β × C3 + (1− β)× C4],(3.4)

where PH0 is the probability that H0 is true;

α is the probability of rejecting H0 when H0 is true;

β is the probability of accepting H0 when H0 is false;

C1 is the associated cost of the trial when we reject H0 if H0 is true;

C2 is the associated cost of the trial when we accept H0 if H0 is true;

C3 is the associated cost of the trial when we accept H0 if H0 is false;
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C4 is the associated cost of the trial when we reject H0 if H0 is false.

In this section, we use the same notation as in Section 3.4, namely,

K0 = the cost when we reject H0 if H0 is true;

K1 = the cost of lost opportunity when we accept H0 if H0 is false;

K2 = the cost of an individual patient, excluding his/her cost of treatment;

Ka = the cost of treatment A per patient;

Kb = the cost of treatment B per patient.

As in Section 3.4, the determination of costs of the designs is considered for

two situations.

• In situation 1, there is no prior knowledge of how arms A and B differ.

• In situation 2, treatment B is supposed to be superior to treatment A.

Again, in these situations, the hypotheses will be

H0 : µa ≥ µb;

H1 : µa < µb.

In this research, we use an adaptive design. Our design also can terminate

early if we have enough evidence that one arm is better. In the two situations,

the numbers of patients required are different. For example, in situation 2, since

we suppose that treatment B is superior to treatment A, the trial may stop

earlier than in situation 1 where the efficacies of arm A and arm B are equal.

Consequently, in situation 2, the trial may require smaller number of patients

than in situation 1.

In this section, we introduce the notation

na1 = the average number of patients in arm A in this Phase II trial in situation

1;

na2 = the average number of patients in arm A in this Phase II trial in situation
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2;

na = PH0 × na1 + (1−PH0)× na2 = the expected number of patients in arm A in

this Phase II trial;

nb1 = the average number of patients in arm B in this Phase II trial in situation

1;

nb2 = the average number of patients in arm B in this Phase II trial in situation

2;

nb = PH0 × nb1 + (1− PH0)× nb2 = the expected number of patients in arm B in

this Phase II trial.

n1 = na1+nb1 = the average number of patients in this Phase II trial in situation

1;

n2 = na2+nb2 = the average number of patients in this Phase II trial in situation

2;

n = na + nb = the average number of patients in this Phase II trial.

Note that n can be computed by using the formula above or by using n =

PH0 × n1 + (1−PH0)× n2. The two different ways give exactly the same answer.

We adopt formula (3.3) from Parnell (2002). By using the definition of Parnell,

CE, C1, C2, C3, C4 are given as

CE = nK2 + naKa + nbKb; (3.5)

C1 = n1K2 +K0;

C2 = n1K2;

C3 = n2K2 +K1;

C4 = n2K2.

Hence CE1 = n1K2 + na1Ka + nb1Kb = the direct cost of conducting the trials in

situation 1;

CE2 = n2K2+na2Ka+nb2Kb = the direct cost of conducting the trials in situation



78 Chapter 3. Evaluation of Clinical Trial Designs

2.

Note that by replacing the n, na, nb, (3.5) can be rewritten as

CE = nK2 + naKa + nbKb

= K2 × [PH0 × n1 + (1− PH0)× n2] +Ka × [PH0 × na1 + (1− PH0)× na2]

+Kb × [PH0 × nb1 + (1− PH0)× nb2]

= PH0 × [n1K2 + na1Ka + nb2Kb] + (1− PH0)[n2K2 + na2Ka + nb2Kb]

= PH0 × CE1 + (1− PH0)× CE2

The associated costs of the trial for these four outcomes are displayed in Table

3.11.

Table 3.11: The associated costs of the trial for four outcomes as given by using
the definition of Parnell (2002).

Situation
Outcome

Accept H0 Reject H0

H0 is true C2 = n1K2 C1 = n1K2 +K0

H0 is false C3 = n2K2 +K1 C4 = n2K2

In this research, we focus on a trial which is carried out to compare two

treatments (arms A and B). Consequently, three outcomes can occur. Firstly,

arm A is chosen as the superior treatment. Secondly, arm B is chosen as the

superior treatment. Thirdly, the trial does not reach a conclusion, if no arm is

selected as a better treatment during the trial. Since there are two situations and

three different outcomes in each situation, in this research, six possible outcomes

will exist instead of just four outcomes as in Parnell (2002).

As mentioned in Section 1.1, in a Phase II trial, an experimental treatment

or a new treatment is compared with a standard treatment or a placebo. If a

new treatment or an experimental drug is chosen as a better treatment, we can

proceed to a Phase III trial.
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Recall that it is assumed that arm A is a standard treatment or a placebo,

whereas arm B is a new treatment or an experimental drug.

Let us consider situation 1. If the efficacies of arm A and arm B are equal,

when we reject H0, we make a wrong decision and decide that one arm is superior

to another arm. If arm B is selected as a superior treatment, then we carry out the

next phase. In reality, when both arms have the same efficacies, the existing drug

should still be used and consequently, the next phase should not be undertaken.

In this case, we pay the cost of conducting the Phase III trial unnecessarily.

Now consider situation 2. If treatment B is superior to treatment A, and we

acceptH0, then the truly superior treatment is not chosen. Treatment A might be

selected, or else the trial might not reach a conclusion. Hence, we incur the cost

of lost opportunity for rejecting the superior treatment and incorrectly choosing

the wrong drug.

From now on let K0 = the cost when arm B is selected as a better treatment

in situation 1; K1 = the cost of lost opportunity when arm A is selected as a

better treatment or a trial does not reach a conclusion in situation 2.

The cost of the trial for these six outcomes is given in Table 3.12.

Table 3.12: The associated cost of the trial for the six outcomes as given in this
research.

Situation
Outcome

Arm A is selected as Arm B is selected as
Conclusion not reached

the better treatment the better treatment
H0 is true n1K2 n1K2 +K0 n1K2

H0 is false n2K2 +K1 n2K2 n2K2 +K1

It can be seen from Table 3.12 that in both situations, the cost of the trial is

the same, if either arm A is selected as the better treatment or else the trial does

not reach a conclusion, .

For this reason, only the associated costs of the trial for four possible outcomes
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will be considered.

Therefore,

E(C0) is the weighted sum of all possible costs of the four possible outcomes.

E(C0) was given by

E(C0) = PH0 × [α× C1 + (1− α)× C2] + (1− PH0)× [β × C3 + (1− β)× C4](3.6)

where na, nb, n, n1, n2 have the same meaning as in (3.5);

α is the probability of selecting arm B as a better treatment, when really, the

efficacies of arm A and arm B are equal;

β is the probability of selecting arm A as a better treatment or having an incon-

clusive trial, when arm B is truly the better arm;

C1 is the associated cost of the trial when arm B is selected as a better treatment,

but in reality, the efficacies of arm A and arm B are equal:

C1 = n1K2 +K0;

C2 is the associated cost of the trial when arm A is selected as a better treatment

or a trial does not reach a conclusion, but in reality, the efficacies of arm A and

arm B are equal:

C2 = n1K2;

C3 is the associated cost of the trial when arm A is selected as a better treatment

or a trial does not reach a conclusion, but arm B is really the better arm:

C3 = n2K2 +K1;

C4 is the associated cost of the trial when arm B is selected as a better treatment

and arm B is truly the better arm:

C4 = n2K2;
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The associated costs of the trial for these four outcomes are shown in Table

3.13.

Table 3.13: The associated costs of the trial for four outcomes.

Situation

Outcome
Arm A is selected as Arm B is selected as
a better treatment a better treatment

or Conclusion not reached
H0 is true C2 = n1K2 C1 = n1K2 +K0

H0 is false C3 = n2K2 +K1 C4 = n2K2

Therefore

E(C0) = PH0 × [α× (n1K2 +K0) + (1− α)× (n1K2)]

+(1− PH0)× [β × (n2K2 +K1) + (1− β)× (n2K2)],

= PH0 × (n1K2 + αK0) + (1− PH0)× (n2K2 + βK1)

= K2 × [PH0 × n1 + (1− PH0)n2] + PH0αK0 + (1− PH0)βK1

= nK2 + PH0αK0 + (1− PH0)βK1 (3.7)

E(C0) consists of three main parts. Firstly, the cost of all patients (excluding

treatment costs). Secondly, there is the weighted cost from rejecting H0 if H0 is

true (in situation 1), that is PH0αK0. Moreover, there is the weighted cost of lost

opportunity from accepting H0 if H0 is false (in situation 2), that is (1−PH0)βK1.

Then (3.3) can be rewritten in the form

E(total cost) = 2nK2 + naKa + nbKb + PH0αK0 + (1− PH0)βK1 (3.8)

3.8 Example of using the expected total cost

In this section, our main concern is to compare the expected total costs of the

HNL and ER designs. This is because in Section 3.6, we found that these designs
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gave similar power whereas the common designs gave significantly lower power.

This means that the HNL and ER designs are competitive.

Since the formulae for these expected total costs can be written as linear

expressions, we can use algebra to identify the situation where one design is

optimal or the situation where both designs are equally optimal.

Suppose that K0, K1, K2, Ka, Kb have the same values for the two designs.

From equation (3.8), the expected total cost of the HNL design is

E(total cost) = 2nHNLK2 + naHNLKa + nbHNLKb + PH0αHNLK0

+ (1− PH0)βHNLK1 (3.9)

(by using the formulae at page 77)

= 2n2HNLK2 + na2HNLKa + nb2HNLKb + βHNLK1

+ PH0 × [2K2(n1HNL − n2HNL) + αHNLK0 − βHNLK1

+Ka(na1HNL − na2HNL) +Kb(nb1HNL − nb2HNL)]

= A+BPH0 ; (3.10)

where A = 2n2HNLK2+na2HNLKa+nb2HNLKb+βHNLK1 and B = 2K2(n1HNL−

n2HNL) + αHNLK0 − βHNLK1 +Ka(na1HNL − na2HNL) +Kb(nb1HNL − nb2HNL).

Similarly, the expected total cost of the ER design is

E(total cost) = 2nERK2 + naERKa + nbERKb + PH0αERK0

+ (1− PH0)βERK1 (3.11)
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(again by using the formulae at page 77)

= 2n2ERK2 + na2ERKa + nb2ERKb + βERK1

+ PH0 × [2K2(n1ER − n2ER) + αERK0 − βERK1

+Ka(na1ER − na2ER) +Kb(nb1ER − nb2ER)]

= C +DPH0 ; (3.12)

where C = 2n2ERK2+na2ERKa+nb2ERKb+βERK1 and D = 2K2(n1ER−n2ER)+

αERK0 − βERK1 +Ka(na1ER − na2ER) +Kb(nb1ER − nb2ER).

Suppose that y = E(total cost) and x = PH0 .

We have yHNL = A+Bx and yER = C +Dx.

There are two main kinds of possibilities that will be considered.

1. If B = D, the two lines are parallel. In this case yHNL > yER if A > C and

yHNL < yER if A < C. Furthermore, these lines will be the same if A = C.

2. If B ̸= D, the two lines intersect when A + Bx = C + Dx. The point of

intersection is at x = C−A
B−D

.

For B ̸= D, let us consider the two cases:

(a) C−A
B−D

lies between 0 and 1, and

(b) C−A
B−D

does not lie between 0 and 1.

For the case that C−A
B−D

lies between 0 and 1, we consider

1. If A = C, the two lines will intersect at x = 0 and thereafter (for x > 0)

yHNL > yER if B > D, or yHNL < yER if B < D,

2. If A ̸= C, then there are two cases to consider.

(a) For A > C, yHNL > yER for x < C−A
B−D

and yHNL < yER for x > C−A
B−D

.

(b) For A < C, yHNL < yER for x < C−A
B−D

and yHNL > yER for x > C−A
B−D
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For the case where C−A
B−D

does not lie between 0 and 1, one method has greater y

than another method in all practical circumstances.

As a simple example, suppose K0 = 490, 000, K1 = 440, 000, K2 = 50 and

Ka = Kb = 100.

From the results in Table 3.9 - 3.10 in Section 3.6, we begin by calculating A,B,C

and D.

A = (2× 55.17× 50) + (8.96× 100) + (46.22× 100) + (0.05× 440, 000)

= 33, 035

B = 100× (114.52− 55.17) + (0.05× 490, 000)− (0.05× 440, 000)

+100× (57.33− 8.96) + 100× (57.19− 46.22)

= 14, 369

C = (2× 120× 50) + (60× 100) + (60× 100) + (0.02× 440, 000)

= 32, 800

D = (0.05× 490, 000)− (0.02× 440, 000)

= 15, 700

It can be seen that B ̸= D in this case. Then the value of x = PH0 at the point

at intersection is calculated.

PH0 =
C − A

B −D

= 0.18

Then we use PH0 = C−A
B−D

to find the value of y = E(total cost) at the point of
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intersection. From (3.10),

E(total cost) = A+B(
C − A

B −D
);

=
(BA−DA) + (BC −BA)

B −D
;

=
BC −DA

B −D

= 35, 571.98.

In this example, x = C−A
B−D

lies between 0 and 1, A ̸= C and A > C. Hence

yHNL > yER for x < C−A
B−D

and yHNL < yER for x > C−A
B−D

. Figure 3.1 provides
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Figure 3.1: E(total cost) of the ER and HNL designs as a function of PH0 .

an illustration of the expected total costs of the HNL and ER designs. It can be

seen that the expected total costs of the two designs have upward trends as PH0

increases. The two designs are equally optimal at x = C−A
B−D

= 0.18. Initially, for

x < C−A
B−D

= 0.18, the ER design is the optimal design. This is because A > C.
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Let us consider equations (3.10) and (3.12). A and C consist of two main parts:

CE2 + the cost of all patients (excluding treatment costs) in situation 2 and the

cost of lost opportunity when arm B is not selected as a better treatment.

In the first part (CE2 + the cost of all patients (excluding treatment costs)

in situation 2 ), this cost for the HNL design is cheaper than that for the ER

design. This is because the HNL design requires smaller values of n2, na2 and

nb2 than those in the ER design. In contrast, in the second part, the cost for the

ER design is cheaper than that for the HNL design because the ER design gives

higher power than the HNL design.

In this example, the value of K1 is considerable higher than those of K2, Ka

and Kb, so A is higher than C.

Now consider B and D in equations (3.10) and (3.12). It can be seen that B

and D consist of three parts. The first part is αK0. Since we control the value of

α, αER and αHNL are identical. Recall that it is supposed that the values of K0

in the two designs are identical. Hence, the cost of the trial in the first part of

B and D are the same. The second part is (CE1 − CE2)+ the difference in cost

of all patients (excluding treatment costs) between situations 1 and 2. In this

part, the cost of the ER design is zero. So, this cost for the HNL design is higher

than that for the ER design. In the ER design, the trial cannot finish early so

n1 = n2, na1 = na2 and nb1 = nb2. The third part is βK1. We see that the changes

in E(C0) depend only on the second and third parts. Again as the ER design

gives higher power than the HNL design. βHNLK1 is higher than βERK1 and the

value of K1 is substantial higher than those of K2, Ka and Kb, As a result, B is

lower than D. If PH0(x) increases, the influence of B or D on E(total cost) will

increase. E(total cost) is based on PH0 multiplied by B or D. This explains why,

when x > C−A
B−D

= 0.18, the HNL design is the optimal design.

In this example, when the values of lost opportunity (such as K0, K1) are
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considerably greater than K2, Ka and Kb, when PH0 is small, the design with

higher power is the optimal design. In contrast, after the point of intersection,

the design which uses less resources becomes the optimal design.

3.8.1 Discussion

For the parameters used in this Example, we can see that, from ethical and

economic perspectives, the HNL design is the best design, since the resources

required by this design are smallest compared to the other two designs. Addi-

tionally, in this design, the number of patients allocated to the inferior treatment

is small. Although the HNL design gives lower power than the ER design, its

power (94.56%) is certainly enough to detect the difference between two arms

effectively. In addition, the power obtained from the ER design (97.86%) is very

high. It may be desirable to reduce the sample sizes slightly. Conventionally, we

use a power of the test just around 90%. The common design is not as effective

a design even though it needs smaller resources than the ER design, because it

gives significantly lower power (85.74%) than the other two designs.
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Extension of the HNL design

4.1 Introduction

In this chapter, the HNL design will be extended to a design that is applicable

to a more realistic situation.

As mentioned in Chapter 1, this thesis focuses on treatment trials. According

to Kalish and Begg (1985), the aim of treatment trials is to provide a trial which

can compare the efficacy of treatments with precision and validity. In order

to achieve this objective, two main factors should be considered: (1) reducing

bias and (2) providing an efficient comparison. So far our research has been

focusing on the HNL design which only uses response adaptive randomization.

This randomization is based only upon the response of the previous patients.

The new patient will be favoured to receive the better demonstrating treatment

(Biswas and Bhattacharya, 2012). However, it does not recognise the possibility

that patients may have some characteristics (or covariates) that might influence

the effect of the treatments. Due to this, bias may occur. As discussed above,

a good clinical trial should minimize bias and provide an efficient comparison.

Hence, covariates should be considered in the randomization procedure.

We thus believed that this is a gap in the HNL design. This is because some

prognostic factors might cause the efficient estimation of a treatment effect, but

they might also result in the wrong conclusion. For example, a trial detects the

88
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difference between two treatments even though there is no difference between

these treatments. In fact, the difference is caused by relevant covariates. Thus,

this chapter aims to fill a gap in the HNL design by developing an extension

of the HNL design. This new design will consider the response of the previous

patients and the prognostic factors when allocating a treatment to a new patient.

The detail of this design will be described in Section 4.4. In this chapter, firstly,

Ning and Huang (2010) will be summarised because we will adopt some methods

from this paper to develop the extension of the HNL design. Secondly, A second

Ning program (hereafter referred to as “Ning2”) will be investigated. The Ning2,

which does the calculations for Ning and Huang (2010), was obtained from an

email of Huang (one of the authors in NH) by personal communication sent on 16

April 2013. We will also compare the results obtained from the modification of

Ning2 with the results shown in Ning and Huang (2010). The detail of the Ning2

and the modified program will be described in Section 4.3. Thirdly, Section 4.4

provides the explanation for why and how the extension of the HNL design is

developed. Then the results obtained from the extension of the HNL design will

be shown in Section 4.5. Finally, the conclusion will be provided in Section 4.6.

4.2 Ning and Huang (2010)

Ning and Huang (2010) proposed a new design that incorporates the advantages

of both the response adaptive (RA) randomization and a covariate-adaptive (CA)

randomization. This new design is called a response-adaptive, covariate-adjusted

(RACA) randomization design.

The benefit of a RA randomization is that more patients can be allocated to

the superior treatment. However, one disadvantage of this randomization is that

any differences caused by the covariates are not taken into account. In a clinical

trial, the covariates are characteristics of the patients such as gender and age that



90 Chapter 4. Extension of the HNL design

may affect a response variable. If the trial is conducted without thinking about

the covariates, we cannot know whether a detected difference results from the

treatments or from the characteristics of the patients.

The aim of covariate-adaptive (CA) randomization is to decide the treatment

allocation of a new patient that would achieve the balance of the principal co-

variates between the treatment groups (Rosenberger and Lachin, 2002).

4.2.1 The RACA design

In this section, we will describe how Ning and Huang (2010) (from now on referred

to as NH) constructed the RACA design.

RA randomization

In NH, the RA randomization was carried out by using a Bayesian beta-binomial

model for the response. Let Yim be the dichotomous response of the ith patient

for treatment m, m = 0, 1. Yim can be defined as

Yim =

 0 failure,

1 success.

If the covariates are ignored, then the Yim are independently and identically

distributed across i = 1, ..., nm. Let sm denote the probability of success for

treatment m, m = 0, 1.

Here, it should be noted that NH used p0 and p1 to represent the probability of

success for treatment 0 (A) and 1 (B) respectively. However, we changed them to

s0 and s1 to avoid confusion with pA and pB. Recall that pA and pB were defined

as the probability of assigning the current patient to arms A and B respectively.

It was assumed in NH that Yim has a Bernoulli distribution with parameter

sm, where the prior distribution of sm is a Beta distribution with parameters αm

and βm.
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In this procedure, all covariates were ignored in this assumption. This is

because NH did not consider the covariate when making a decision on the superior

treatment. Because of this, Bayesian theory can be employed.

Since the Beta distribution is a conjugate prior for sm in the Bernoulli distri-

bution and the prior distribution of sm is Beta (αm, βm), NH were able to obtain

the posterior distribution of sm. It is Beta (αm + nm1, βm + nm0), where nmj is

the number of patients giving response j in treatment arm m; see Mukhopadhyay

(2000, p. 482) and Hogg et al. (2013, p. 613) for proof. NH assumed that α0

= α1 = β0 = β1 = 1, expressing reasonably noninformative prior information for

the probability of success.

As the trial progressed, the posterior distributions of s0 and s1 were continu-

ously updated. Then the probability of allocating the current patient to arm A,

pA = Pr(s0 > s1 | data), was calculated. This formula was proposed by Thomp-

son (1933). NH used this probability as the criterion for selecting the superior

treatment.

For optimal allocation, Rosenberger et al. (2001a) and Rosenberger and Hu

(2004) argued that the probabilities of assigning the current patient to arm A

should be

pA,RA =

√
pA√

pA +
√
1− pA

. (4.1)

It should be noted that the sm obtained in this procedure was used only

for evaluating pA. It was not used to generate Yim. In each simulation, Yim was

generated by using sim obtained from the logistic regression that will be described

in the following section.

CA randomization

In this procedure, NH determined how to balance the covariates between two

treatments. In NH, three binary covariates were considered: patient age (younger
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than 60 years, or 60 years and older), cytogenetics (two prognostic categories:

favourable or unfavourable), and the number of previous chemotherapy treat-

ments (one, or more than one). This is because NH focused on a cancer trial (e.g.

acute myeloid leukemia), and the response of a patient may depend on these

covariates.

The impact of the patient on the covariate imbalance was determined when

the new patient was recruited. This patient was temporarily assigned to each

arm in turn. Then the degrees of covariate imbalance between arms A and B

were compared. The details of the method of measuring the degree of covariate

imbalance are described in the next section.

For a covariate-adaptive (CA) randomization, the probability of assigning the

current patient to treatment A is based on the idea of the biased coin design

proposed by Efron (1971). The arm is given a higher probability pfavour in the

randomization if it minimizes covariate imbalance. This probability is then

pA,CA =


pfavour if allocation to A minimizes the imbalance of covariates,

1− pfavour if allocation to B minimizes the imbalance of covariates,

0.5 if allocation to A or B provides the same imbalance of covariates.

(4.2)

pfavour can be in the range of more than 0.5 to 1. Pocock (1993) suggested that

for a trial that has a sample size less than 100 patients, pfavour may be set to 2/3.

Otherwise, Pocock (1993) recommended that pfavour may be set to 3/4.

However, for this research, the simulations in NH showed that using a pfavour

of 0.7 or 0.8 gave good performance.

The degree of covariate imbalance

In NH, there were two steps to determine the degree of imbalance of covariate

levels. Based on the assumption of equal covariate distributions across treatment

arms, the observed numbers of patients in level k of the jth covariate allocated
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to treatment B should be close to their expected values. For this reason, for each

covariate, the metric of the degree of imbalance of a covariate can be defined as

Djk = n1jk − (n0jk + n1jk)
n1

n0 + n1

, (4.3)

where J is the number of covariates; j = 1, ..., J ;

k is the level of the relevant covariate; k = 1, ..., Lj;

nm is the number of patients allocated to treatment m;

nmjk is the number of patients belonging to the kth level of the jth covariate in

arm m.

Table 4.1: The contingency table for Zj that shows where the expected value in
(4.3) comes from.

k
Treatment Total
A B

0 n0j0 n1j0 n0j0 + n1j0

1 n0j1 n1j1 n0j1 + n1j1

Total n0 n1 n0 + n1

Table 4.1 illustrates the contingency table for Zj that shows where the ex-

pected value in (4.3) comes from. Under the null hypothesis of no association

between the level of the covariate and the treatment arm, the expected frequency

in the (2,2) cell is (n0j1 + n1j1)n1/(n0 + n1).

It should be noted here that when a covariate has only 2 levels (Lj = 2),

Dj0 +Dj1 = 0 for each j = 1, 2, 3. From (4.3) :

Dj0 = n1j0 − (n0j0 + n1j0)
n1

n0 + n1

,

and

Dj1 = n1j1 − (n0j1 + n1j1)
n1

n0 + n1

.

Dj0 +Dj1 = (n1j0 + n1j1)− [(n0j0 + n0j1) + (n1j0 + n1j1)]
n1

n0 + n1
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It can be seen from Table (4.1) that n0j0 + n0j1 = n0 and n1j0 + n1j1 = n1.

Hence,

Dj0 +Dj1 = n1 − (n0 + n1)
n1

n0 + n1

= 0.

Consequently, we need to consider only one of Dj0 or Dj1 when Lj = 2.

At the end of the trial, all metrics are combined across all levels in order to

evaluate the level of overall imbalance between the treatment arms. That is,

D =
1

n

J∑
j=1

Lj∑
k=1

|Djk|. (4.4)

In NH, there were J = 3 covariates. For the CA and RACA designs, after n0

patients had been enrolled in the trial, each patient was temporarily assigned to

each arm in turn as described above. Then DA and DB were computed by using

formula (4.4) and compared. The current patient would be allocated with a higher

probability pfavour to the treatment that can minimize covariate imbalance.

However for the ER and RA designs, D was computed only at the end of the

trial.

RACA randomization

In order to incorporate the advantages of the CA and RA designs, the assignment

of a treatment to a new patient will be determined by both the results of the

previous patients and the consideration of the balance of covariates. NH suggested

that the probability that a new patient will be assigned to treatment A should

be

pA,RACA =
pA,RA.pA,CA

pA,RA.pA,CA + (1− pA,RA)(1− pA,CA)
. (4.5)

It should be noted that NH mentioned that pA,RACA was used as the criterion

for selecting the superior treatment. In contrast, in the Ning2, Ning used pA

as this criterion. During the modification of the Ning2, we tried in turn to
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use pA,RACA and pA as this criterion. Finally, we found that when using pA as

the criterion for selecting the superior treatment, the results obtained from the

program were similar to the published results. The details of the Ning2 will be

described in Section 4.3.

4.2.2 Simulation

In NH, for a given set of design parameters a total of 5,000 simulations were

conducted in order to assess the performance of the RACA design. The properties

of this design were compared with those of the ER, RA and CA designs.

Data Generation

NH considered a trial that compared two treatments (A and B) for a dichotomous

response (success or failure). In this trial, there was a staggered entry of patients.

As mentioned earlier, three binary covariates were considered.

Let Z1 be the patient’s age group. Z1 can be defined as

Z1 =

 0 if the patient’s age is less than 60 years,

1 otherwise.

Let Z2 be the patient’s cytogenetics category. Z2 can be defined as

Z2 =

 0 if the prognosis is favorable for the patient,

1 if the prognosis is not favorable for the patient.

Let Z3 be the number of previous chemotherapy treatments. Z3 can be defined

as

Z3 =

 0 if the patient has been given one chemotherapy treatment,

1 more than one.

For each patient, these covariates were independently drawn from Bernoulli dis-

tributions with probabilities 0.7, 0.5 and 0.7 respectively.
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Model

In NH, due to the binary responses, for each patient, the probability of success

was generated from the logistic regression model given by

logitP (Yi = 1) = β0 + βTT + β1Z1 + β2Z2 + β3Z3, (4.6)

where T is a treatment indicator variable (T = 0, 1), Yi is the outcome of the ith

patient, β0 is the intercept, βT is the treatment coefficient, β1 is the coefficient for

age, β2 is the coefficient for cytogenetics, and β3 is the coefficient for the number

of previous chemotherapy treatments.

Thus,

P (Yi = 1) =
1

1 + exp{−(β0 + βTT + β1Z1 + β2Z2 + β3Z3)}
. (4.7)

Although in NH the new design was called a response-adaptive, covariate-adjusted

randomization design and used logistic regression to model the probability of suc-

cess for each patient as in Rosenberger et al. (2001b), this new design was different

from the covariate-adjusted response-adaptive design mentioned in Rosenberger

et al. (2001b). According to Rosenberger et al. (2001b), the logistic regression

model was given by including the treatment-covariate interactions term. In ad-

dition, the probability of assigning a new patient to treatment A was based on

the estimated covariate odds ratio, defined as the ratio of odds when assigning a

new patient to treatment A and when assigning a new patient to treatment B.

However NH did not consider the treatment-covariate interactions term in the

logistic regression model. This is because considering the interactions term in the

regression model is promising only when the sample size is large. Rosenberger

et al. (2001b) used a sample size of 200 and n0 = 85. On the other hand, NH used

sample sizes of 60 and 100 and n0 = 10 and 20 respectively. Unlike Rosenberger

et al. (2001b), in NH the probability of assigning a new patient to treatment A
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was based on both the posterior probability evaluated while the trial progressed,

and the degree of covariate imbalance.

Rosenberger and Sverdlov (2008) (hereafter referred to as RS) investigated

covariate-adjusted response adaptive (CARA) randomization designs to compare

two treatments (A and B) when there is a binary response and covariates. Specif-

ically, they considered a binary and two continuous covariates: gender, age and

cholesterol level. The CARA designs were compared to the stratified permuted

block design (SPBD), the complete randomization (the ER) designs and the CA

designs by considering design characteristics: the probability of Type I error, the

statistical power, the total number of treatment failures, the probability of assign-

ing patients to treatment A, the probability of assigning patients to treatment A

within the male category of the covariate gender, the Kolmogorov-Smirnov dis-

tance between the empirical distributions of covariate age in treatment groups A

and B. In stratified permuted block designs (SPBDs), patients are divided into

subgroups based on those characteristics that might influence the response. The

subgroups are called strata. Randomization is carried out within each stratum by

using permuted blocks in order to achieve balance across treatment groups. The

aim of a SPBD is to balance on treatment arms by considering the combinations

of the covariates.

In RS, the power was defined as the probability of detecting the difference be-

tween treatment effects. The seven design characteristics were considered because

balance can be measured by the probability of assigning patients to treatment

A and the probability of assigning male patients to treatment A. The statisti-

cal power can be used to evaluate the efficiency of designs. Moreover, the total

number of treatment failures can indicate the ethical property of the design.

It was found that the CARA designs gave similar power to the SPBDs, the CA

designs and the ER designs, while CARA designs caused fewer treatment failure
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than the other designs. Moreover the CARA designs can balance the distributions

of the continuous covariates better than the ER designs. Additionally, suppose

that arm B is better than arm A. Only the CARA designs had the probability

of assigning patients to treatment A less than 0.5. Although, RS considered

cholesterol level, they did not give any results for it.

In conclusion, among the SPBDs, the ER designs, the CA designs and the

CARA designs, the CARA designs can combine features of a good design covering

efficiency and ethics and including balance of both covariates and treatments.

4.3 The Ning2

In this section, we begin by examining the Ning2. As mentioned in Section 4.2.1,

we obtained this program from an email of Huang (one of the authors in NH) by

personal communication sent on 16 April 2013. We then found that we needed

to modify the program. The modification is for two main reasons: (1) some

differences between NH and the Ning2; (2) the effectiveness of the Ning2.

4.3.1 Differences

As mentioned above, there are some difference between NH and the Ning2. First

of all, in NH, three dichotomous covariates were considered. However, this pro-

gram was written to consider only one covariate. We therefore modified it to

extend this program from considering one covariate to considering three covari-

ates.

Secondly, in the Ning2, the values of β0, β1 and β2 were calculated from

the information that is entered into the program. However, in NH, the authors

specified these values before carrying out the trial. Hence, these values should be

entered directly.

In the modified program, we read these values by specifically asking for the
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values of β0, β1 and β2.

Finally, as mentioned in Section 4.2.1, the Ning2 used pA as the criterion for

choosing the superior treatment. At the end of the trial, n patients were recruited

to the trial. It can be observed from the program that pA was computed by using

the information of only (n − 1) patients. On the other hand, NH stated that,

at the end of the trial, the comparison for selecting the superior treatment was

conducted. We thought that we should use the information from all patients

instead of ignoring the information obtained from the last patient. Hence, we

evaluated pA by using the information from all patients.

Note that, in NH, all designs were performed without including an early stop.

4.3.2 Results

We made very minor modifications to the Ning2 program to improve its compu-

tational efficiency.

In this section, we will compare the results obtained from the modified pro-

gram with the published results of NH. NH compared the quality of four designs

by comparing five design characteristics: the probability of Type I error, the

power of the test, the average number of patients allocated to each arm, the aver-

age number of patients who gain a successful outcome from the treatments, and

the degree of imbalance of covariate.

As in HNL, in NH, two situations will be considered.

1. In situation 1, there was no prior knowledge of how arms A and B differ.

2. In situation 2, it was supposed that treatment B is superior to treatment

A.

In situation 1, the hypotheses were

H0 : µa − µb = 0

H1 : µa − µb ̸= 0.
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In situation 2, the hypotheses were

H0 : µa ≥ µb;

H1 : µa < µb.

Hence, in NH, the probability of Type I error was estimated from the pro-

portion of the time that H0 was rejected in situation 1, whereas the power of

the test was estimated from the proportion of the time that H0 was rejected in

situation 2. In other words, the probability of Type I error was estimated from

the proportion of the time that arms A or B is selected as a superior treatment

in situation 1, whereas the power of the test was estimated from the proportion

of the time that B is selected as a superior treatment in situation 2.

We note here that the average number of patients who gain a successful out-

come from the treatments (ANPS) is the expected number of patients who get

Yim = 1.

It should be also noted that ANPS is introduced by us. Actually, NH called

this design characteristic the average number of patients who achieved treatment

success. In order to make it clear, we changed from the average number of

patients who achieved treatment success to the average number of patients who

gain a successful outcome from the treatments.

Tables 4.2 and 4.3 compare the results for the ER, RA, RACA and CA designs

obtained from the modified program with the published results of NH, in Scenario

1, when using pU = 0.95, Nmax = 60, and n0 = 10 and when using pU = 0.975,

Nmax = 100, and n0 = 20 respectively. The results displayed in Tables 4.2 and 4.3

illustrate that the probability of Type I error and the average number of patients

allocated to each arm obtained from the modified program were similar to those

in the published results. However, the ANPS, the standard deviations of the

number of patients who gain successful outcome from the treatments (SDNPS)

and the degree of covariate imbalance obtained from the modified program were
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Table 4.2: Comparison of the results for the ER, RA, RACA and CA designs
obtained from the modified program with the published results of NH, in Scenario
1 (where the efficacies of arms A and B are equal), when using pU = 0.95, Nmax

= 60, and n0 = 10.

Design Source Arm Average (sd) P(selected) α
ANPS Degree of
(sd) imbalance

Scenario 1:(β0 ,βT , β1, β2, β3) =(0, 0, 1.3, 0.6, 0.4)

ER

A
A 29.97 (3.88) 0.043

0.092
47.72

0.14
B 30.03 (3.88) 0.049 (3.17)

B
A 29.98 (3.85) 0.049

0.097
34.78

0.29
B 30.02 (3.85) 0.048 (3.81)

C
A 30.06 (3.87) 0.044

0.087
47.73

0.15
B 29.95 (3.87) 0.043 (3.15)

CA

A
A 30.05 (5.88) 0.036

0.075
47.70

0.04
B 29.95 (5.88) 0.039 (3.07)

B
A 29.97(4.44) 0.047

0.087
34.77

0.07
B 30.03 (4.44) 0.040 (3.81)

C
A 30.07 (5.76) 0.035

0.070
47.74

0.04
B 29.93 (5.76) 0.035 (3.11)

RA

A
A 30.38 (9.64) 0.070

0.126
47.67

0.14
B 29.62 (9.64) 0.056 (3.17)

B
A 29.95 (9.46) 0.065

0.128
34.84

0.28
B 30.05 (9.46) 0.063 (3.85)

C
A 29.88 (9.66) 0.062

0.126
47.70

0.14
B 30.12 (9.66) 0.064 (3.13)

RACA

A
A 29.90 (9.55 ) 0.052

0.111
47.66

0.04
B 30.10 (9.55) 0.059 (3.13)

B
A 30.12 (7.41) 0.045

0.087
34.79

0.08
B 29.88 (7.41) 0.047 (3.76)

C
A 29.85 (9.31) 0.050

0.107
47.66

0.04
B 30.16 (9.31) 0.057 (3.14)

Let source A represent the results of the modified program with seed 1234; source
B represent the published results of NH; and source C represent the results of the
modified program with seed 5678.
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Table 4.3: Comparison of the results for the ER, RA, RACA and CA designs
obtained from the modified program with the published results of NH, in Scenario
1 (where the efficacies of arms A and B are equal), when using pU = 0.975, Nmax

= 100, and n0 = 20.

Design Source Arm Average (sd) P(selected) α
ANPS Degree of
(sd) imbalance

Scenario 1:(β0 ,βT , β1, β2, β3) =(0, 0, 1.3, 0.6, 0.4)

ER

A
A 50.04 (5.02) 0.025

0.047
79.51

0.11
B 49.96 (5.02) 0.022 (4.00)

B
A 49.98 (5.04) 0.025

0.050
57.88

0.23
B 50.14 (5.04) 0.025 (4.83)

C
A 49.89 (4.95) 0.025

0.050
79.38

0.11
B 50.11 (4.95) 0.025 (4.05)

CA

A
A 50.09(7.30) 0.018

0.038
79.50

0.02
B 49.91 (7.30) 0.020 (4.03)

B
A 49.99 (5.80) 0.020

0.041
57.90

0.04
B 50.01 (5.80) 0.021 (4.87)

C
A 49.87 (7.41) 0.017

0.036
79.44

0.02
B 50.13 (7.41) 0.019 (4.04)

RA

A
A 49.76 (14.87) 0.033

0.067
79.54

0.11
B 50.24 (14.87) 0.035 (4.01)

B
A 50.19 (14.78) 0.030

0.065
58.00

0.22
B 49.81 (14.78) 0.035 (4.99)

C
A 49.68 (15.14) 0.037

0.074
79.46

0.11
B 50.33 (15.14) 0.037 (4.09)

RACA

A
A 50.14 (13.79 ) 0.026

0.052
79.50

0.02
B 49.86 (13.79) 0.026 (3.98)

B
A 50.07 (11.25) 0.024

0.050
57.87

0.05
B 49.93 (11.25) 0.026 (4.95)

C
A 49.81 (13.99) 0.028

0.057
79.46

0.02
B 50.19 (13.99) 0.029 (4.02)

Let source A represent the results of the modified program with seed 1234; source
B represent the published results of NH; and source C represent the results of the
modified program with seed 5678.
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different from those in the published results. For the RACA and CA designs, the

standard deviations of the numbers of patients assigned to each arm obtained

from the modified program were different from those in the published results.

Additionally, the RA design gave the largest Type I error rates. As expected,

we obtained the smallest Type I error rates and the lowest degree of imbalance

from the CA design. The RA and ER designs gave similar degree of covariate

imbalance which is largest. NH worked out the probability of a success for the

ER design from equation (4.7) in Section 4.2.2, which is not affected by which

allocation method is used. Hence, we can work out the expected probability of

success simply by knowing the probability distributions of the three covariates

Z1, Z2 and Z3. In NH, these covariates were independently drawn from Bernoulli

distributions with probabilities 0.7, 0.5 and 0.7 respectively.

Let P (Yi = 1) = g(Z1, Z2, Z3).

Then,

E(P (Yi = 1)) = ΣZ1ΣZ2ΣZ3g(Z1, Z2, Z3)PZ1,Z2,Z3(Z1, Z2, Z3)

Since Z1, Z2 and Z3 are independent, PZ1,Z2,Z3(Z1, Z2, Z3) = P (Z1) × P (Z2) ×

P (Z3).

Under Scenario 1, (β0 ,βT , β1, β2, β3) =(0, 0, 1.3, 0.6, 0.4), the expected

probability of a success is 0.7948601. This means that, for 60 patients, we would

expect 60×0.7948601 = 47.69 successes, which agrees very well with our simulated

result of 47.72 (for a seed of 1234). Similarly, the SDNPS could be computed from√
60× 0.7948601× (1− 0.7948601) = 3.127851, which corresponds very well to

our simulated result of 3.17 (for a seed of 1234). As NH get a quite different

result, we suspect that there may be an error in their program or the reported

results.

We investigated the effect of altering the values of pU and thus altering the
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Table 4.4: Comparison of the results for the ER, RA, RACA and CA designs
obtained from the modified program with seed 1234, in Scenario 1 (where the
efficacies of arms A and B are equal), when using different values of pU , Nmax =
60, and n0 = 10. The values of pU have been selected to give a probability of
Type I error of approximately 0.10.

Design Arm pU Average (sd) P(selected) α
ANPS Degree of
(sd) imbalance

Scenario 1:(β0 ,βT , β1, β2, β3) =(0, 0, 1.3, 0.6, 0.4)

ER
A

0.945
29.97 (3.88) 0.050

0.107
47.72

0.14
B 30.03 (3.88) 0.057 (3.17)

CA
A

0.935
30.05 (5.88 ) 0.049

0.100
47.70

0.04
B 29.95 (5.88) 0.051 (3.07)

RA
A

0.960
30.38 (9.64 ) 0.059

0.107
47.63

0.14
B 29.62 (9.64 ) 0.048 (3.17)

RACA
A

0.955
29.90 (9.55 ) 0.047

0.100
47.66

0.04
B 30.10 (9.55 ) 0.053 (3.13)

probability that a treatment is selected as ‘better’. Table 4.4 shows the results

for the ER, RA, RACA and CA designs obtained from the modified program

with seed 1234, in Scenario 1, when using different values of pU , Nmax = 60, and

n0 = 10. The values of pU have been selected to give a probability of Type I

error of approximately 0.10. In addition, Table 4.5 displays the corresponding

results for Scenario 1 when using different values of pU , Nmax = 100, and n0 =

20. The values of pU have been selected to give a probability of Type I error of

approximately 0.05.

We initially used cut-off values of pU = 0.95 and 0.975, and we obtained Type

I error rates as displayed in Tables 4.4 and 4.5. Then various simulations were

carried out to find a pU giving the probability of Type I error around 0.10 and

0.05 respectively. The results shown in Tables 4.4 and 4.5 illustrate that the

RA design required the largest values of pU whereas the CA design needed the

smallest values of pU .

Tables 4.6 and 4.7 compare the results for the ER, RA, RACA and CA designs
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Table 4.5: Comparison of the results for the ER, RA, RACA and CA designs
obtained from the modified program with seed 1234, in Scenario 1 (where the
efficacies of arms A and B are equal), when using different values of pU , Nmax =
100, and n0 = 20. The values of pU have been selected to give a probability of
Type I error of approximately 0.05.

Design Arm pU Average (sd) P(selected) α
ANPS Degree of
(sd) imbalance

Scenario 1:(β0 ,βT , β1, β2, β3) =(0, 0, 1.3, 0.6, 0.4)

ER
A

0.975
50.04 (5.02) 0.025

0.047
79.51

0.11
B 49.96 (5.02) 0.022 (4.00)

CA
A

0.966
50.09 (7.30 ) 0.025

0.052
79.50

0.02
B 49.91 (7.30) 0.027 (4.03)

RA
A

0.980
49.76 (14.87 ) 0.028

0.056
79.54

0.11
B 50.24 (14.87) 0.028 (4.01)

RACA
A

0.975
50.14 (13.79 ) 0.026

0.052
79.50

0.02
B 49.86 (13.79) 0.026 (3.98)

obtained from the modified program with the published results of NH, in Scenario

2, when using different values of pU , Nmax = 60 and 100 and n0 = 10 and 20

respectively. In addition, Tables 4.8 and 4.9 show the corresponding results under

Scenario 3, when using different values of pU , Nmax = 60 and 100, and n0 = 10

and 20 respectively.

The results shown in Tables 4.6 - 4.9 illustrate that the average number of

patients allocated to each arm obtained from the modified program are similar

to those in the published results except for the RA designs shown in Tables

4.7 - 4.9 and except for the RACA design shown in Table 4.9. On the other

hand, the power, the ANPS, the SDNPS and the degree of covariate imbalance

obtained from the modified program are different from those in the published

results. In particular, the degree of covariate imbalance in the published results

are consistently twice as great as that obtained from the modified program.

We did not know exactly the values of pU used by NH. Moreover, the values

of pU strongly influenced the power. This may explain why the power obtained
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Table 4.6: Comparison of the results for the ER, RA, RACA and CA designs
obtained from the modified program with the published results of NH, in Scenario
2 (arm B is better than arm A), when using different values of pU , Nmax = 60,
and n0 = 10.

Design Source Arm pU Average (sd) P(selected) 1− β
ANPS Degree of
(sd) imbalance

Scenario 2:(β0 ,βT , β1, β2, β3) =(0, 1, 1.3, 0.6, 0.4); α = 0.10

ER

A
A

0.945
30.01 (3.85) 0.00

0.34
51.06

0.14
B 29.99 (3.85) 0.34 (2.78)

B
A 29.87 (3.80) 0.00

0.49
40.54

0.29
B 30.13 (3.80) 0.49 (3.62)

C
A

0.945
29.93 (3.87) 0.00

0.33
51.08

0.14
B 30.06 (3.87) 0.33 (2.73)

CA

A
A

0.935
30.02 (5.77) 0.00

0.36
51.05

0.04
B 29.98 (5.77) 0.36 (2.78)

B
A 29.83 (4.48) 0.00

0.50
40.52

0.09
B 30.17 (4.48) 0.50 (3.68)

C
A

0.935
30.02(5.76) 0.00

0.36
51.04

0.04
B 29.98 (5.76) 0.36 (2.81)

RA

A
A

0.960
21.76 (8.92) 0.00

0.33
52.06

0.13
B 38.24 (8.92) 0.33 (2.64)

B
A 19.62 (8.29) 0.00

0.42
42.56

0.26
B 40.37 (8.29) 0.42 (3.78)

C
A

0.960
21.62(8.76) 0.01

0.32
51.99

0.13
B 38.38 (8.76) 0.32 (2.69)

RACA

A
A

0.955
22.73 (9.00) 0.00

0.34
51.91

0.04
B 37.27 (9.00) 0.34 (2.68)

B
A 21.70 (7.20) 0.00

0.50
42.12

0.07
B 38.29 (7.20) 0.50 (3.66)

C
A

0.955
22.87 (8.99) 0.00

0.34
51.84

0.04
B 37.13 (8.99) 0.34 (2.70)

Let source A represent the results of the modified program with seed 1234; source
B represent the published results of NH; and source C represent the results of the
modified program with seed 5678.
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Table 4.7: Comparison of the results for the ER, RA, RACA and CA designs
obtained from the modified program with the published results of NH, in Scenario
2 (arm B is better than arm A), when using different values of pU , Nmax = 100,
and n0 = 20.

Design Source Arm pU Average (sd) P(selected) 1− β
ANPS Degree of
(sd) imbalance

Scenario 2:(β0 ,βT , β1, β2, β3) =(0, 1, 1.3, 0.6, 0.4); α = 0.05

ER

A
A

0.975
50.06 (4.92) 0.00

0.34
85.01

0.11
B 49.94 (4.92) 0.34 (3.56)

B
A 49.90 (5.03) 0.00

0.54
67.48

0.22
B 50.10 (5.03) 0.54 (4.70)

C
A

0.975
49.90 (5.00) 0.00

0.34
85.10

0.11
B 50.01 (5.00) 0.34 (3.57)

CA

A
A

0.966
50.00 (7.54) 0.00

0.39
85.17

0.02
B 50.00 (7.54) 0.39 (3.56)

B
A 49.99 (5.80) 0.00

0.58
67.41

0.04
B 50.01 (5.80) 0.58 (4.68)

C
A

0.966
50.10 (7.51) 0.00

0.39
85.15

0.02
B 49.90 (7.51) 0.39 (3.62)

RA

A
A

0.980
32.38 (13.00) 0.00

0.35
87.09

0.10
B 67.62 (13.00) 0.35 (3.41)

B
A 28.46 (11.44) 0.00

0.47
71.66

0.20
B 71.54 (11.44) 0.47 (4.89)

C
A

0.980
32.74 (13.13) 0.00

0.34
87.07

0.10
B 67.26 (13.13) 0.34 (3.46)

RACA

A
A

0.975
35.16 (12.69) 0.00

0.35
86.74

0.03
B 64.84 (12.69) 0.35 (3.44)

B
A 32.38 (10.41) 0.00

0.53
70.85

0.06
B 67.62 (10.41) 0.53 (4.78)

C
A

0.975
34.59 (12.53) 0.00

0.37
86.96

0.03
B 65.41 (12.53) 0.37 (3.43)

Let source A represent the results of the modified program with seed 1234; source
B represent the published results of NH; and source C represent the results of the
modified program with seed 5678.
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Table 4.8: Comparison of the results for the ER, RA, RACA and CA designs
obtained from the modified program with the published results of NH, in Scenario
3 (arm B is better than arm A and the treatment effects are higher than in scenario
2), when using different values of pU , Nmax = 60, and n0 = 10.

Design Source Arm pU Average (sd) P(selected) 1− β
ANPS Degree of
(sd) imbalance

Scenario 3:(β0 ,βT , β1, β2, β3) =(0, 2, 1.3, 0.6, 0.4); α = 0.10

ER

A
A

0.945
30.06 (3.90) 0.00

0.65
52.79

0.14
B 29.94 (3.90) 0.65 (2.48)

B
A 29.93 (3.90) 0.00

0.90
44.16

0.29
B 30.07 (3.90) 0.90 (3.50)

C
A

0.945
29.96 (3.93) 0.00

0.65
52.73

0.14
B 30.04 (3.93) 0.65 (2.53)

CA

A
A

0.935
30.12 (5.86) 0.00

0.68
52.76

0.04
B 29.89 (5.86) 0.68 (2.60)

B
A 29.97 (4.44) 0.00

0.92
44.26

0.08
B 30.03 (4.44) 0.92 (3.43)

C
A

0.935
30.12 (5.82) 0.00

0.68
52.69

0.04
B 29.89 (5.82) 0.68 (2.62)

RA

A
A

0.960
17.09 (7.50) 0.00

0.64
54.90

0.13
B 42.92 (7.50) 0.64 (2.05)

B
A 13.22 (6.00) 0.00

0.83
46.77

0.08
B 46.77 (6.00) 0.83 (3.07)

C
A

0.960
17.13 (7.32) 0.00

0.63
54.94

0.13
B 42.87 (7.32) 0.63 (2.05)

RACA

A
A

0.955
18.62 (8.02) 0.00

0.66
54.62

0.05
B 41.38 (8.02) 0.66 (2.18)

B
A 15.56 (6.25) 0.00

0.89
48.80

0.13
B 44.44 (6.25) 0.89 (3.10)

C
A

0.955
18.89 (7.95) 0.00

0.65
54.64

0.05
B 41.11 (7.95) 0.65 (2.17)

Let source A represent the results of the modified program with seed 1234; source
B represent the published results of NH; and source C represent the results of the
modified program with seed 5678.
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Table 4.9: Comparison of the results for the ER, RA, RACA and CA designs
obtained from the modified program with the published results of NH, in Scenario
3 (arm B is better than arm A and the treatment effects are higher than in scenario
2), when using different values of pU , Nmax = 100, and n0 = 20.

Design Source Arm pU Average (sd) P(selected) 1− β
ANPS Degree of
(sd) imbalance

Scenario 3:(β0 ,βT , β1, β2, β3) =(0, 2, 1.3, 0.6, 0.4); α = 0.05

ER

A
A

0.975
49.94 (4.99) 0.00

0.76
87.90

0.11
B 50.06 (4.99) 0.76 (3.28)

B
A 49.93 (4.96) 0.00

0.97
73.78

0.22
B 50.07 (4.96) 0.97 (4.30)

C
A

0.975
49.95 (4.95) 0.00

0.76
87.90

0.11
B 50.05 (4.95) 0.76 (3.27)

CA

A
A

0.966
49.94 (7.42) 0.00

0.80
87.88

0.02
B 50.06 (7.42) 0.80 (3.35)

B
A 49.94 (5.84) 0.00

0.97
72.75

0.04
B 50.06 (5.84) 0.97 (4.46)

C
A

0.966
49.95(7.32) 0.00

0.80
87.91

0.02
B 50.05 (7.32) 0.80 (3.40)

RA

A
A

0.980
23.69 (9.62) 0.00

0.73
92.32

0.10
B 76.30 (9.62) 0.73 (3.77)

B
A 18.06 (6.87) 0.00

0.92
83.79

0.17
B 81.94 (6.87) 0.92 (3.77)

C
A

0.980
23.87 (9.76 ) 0.00

0.72
92.28

0.09
B 76.13 (9.76) 0.72 (2.55)

RACA

A
A

0.975
26.23 (10.33) 0.00

0.77
91.87

0.03
B 73.77 (10.33) 0.77 (2.65)

B
A 20.85 (7.67) 0.00

0.96
82.91

0.08
B 79.15 (7.67) 0.96 (3.92)

C
A

0.975
26.52 (10.58 ) 0.00

0.77
91.88

0.04
B 73.48 (10.58) 0.77 (2.70)

Let source A represent the results of the modified program with seed 1234; source
B represent the published results of NH; and source C represent the results of the
modified program with seed 5678.
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from the modified program was different from that in the published results.

As mentioned in Section 4.3.1, there are some difference between NH and

the Ning2. Furthermore, this Ning2 was written to consider only one covariate

whereas in NH, three covariates were considered. Hence, we cannot ensure that

the method for computing the degree of covariate imbalance in the modified pro-

gram based on NH is the same as the method used in the Ning2. This may explain

why the degree of covariate imbalance obtained from the modified program was

different from that in the published results.

Finally, we are not convinced that the errors are caused by us because there

are other errors in the Ning2.

4.4 Extension of the HNL design

In this section, we will explain why and how we develop an extension of the HNL

design.

NH considered the RACA design for comparing two treatments (A and B)

with a binary response. We seek to extend this work by posing the question of

how to develop this design for a continuous response.

Moreover, NH’s new design was conducted without determining whether to

stop the trial early. The benefits of early termination of the trial are for ethical

and economic reasons. Hence, we thought that the trial should be carried out by

including the possibity of an early stop.

In addition, we found a gap in the HNL design, namely that this design was

constructed without considering any prognostic factors. During the planning of a

clinical trial, one factor that we need to think about is the validity of the design.

Chang (2008, p. 330) stated that, for internal validity, confounding variables

should be eliminated. HNL did not consider the characteristics of the patients

such as age and the number of previous chemotherapy treatments in the study.
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However, it is evident that these two characteristics are possible confounding

variables for the response of the patient (NH). Hence the HNL study is limited.

We thought that we cannot eliminate confounding variables in our study but we

should try to balance their affect across treatments. In order to cope with this

problem, we consider the confounding variables as covariates.

For the three reasons mentioned above, we develop an extension of the HNL

design for comparing two treatments with a continuous response. In this design,

the probability of assigning a current patient is based not only on the response

from the previous patients but on the degree of covariate imbalance as well. We

also include an interim analysis to determine whether to stop the trial early for

the efficacy. The detail of the extension of the HNL design will be described in

the following section.

4.4.1 RA randomization

Recall that in Section 1.6.1, Tx,i was defined as the progression-free survival time

of participant i in treatment x. If we ignore the covariates, then the Tx,i are

independently and identically distributed across i = 1, ..., nx. In HNL, conditional

upon belonging to the kth category of a short-term response, Tx,i is assumed to

have an exponential distribution with rate λx,k.

Following NH, in this section, all covariates are ignored in this assumption.

This is because they are not considered when deciding on the superior treatment

and stopping trial early. Due to this, we can employ Bayesian theory as in HNL.

In this section, we follow HNL; see the details in Section 1.6.1. We also

adopt this procedure from the estimation procedure of HNL; see the details in

Section 2.1.1. However, there is a difference in the probability of assigning a

patient to arm A. In HNL, a subsequent patient was allocated to treatment A

with probability pA. On the other hand, in this subsection, following Rosenberger

et al. (2001a) and Rosenberger and Hu (2004), the probability of assigning the
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current patient to arm A, pA,RA, is given by (4.1).

Following HNL, for the RA and RACA designs, if pA > pU (or pB < pL),

treatment A (or B) is chosen as the better treatment and the trial will be termi-

nated. These comparisons will be considered every week after the initial patients

are enrolled. Then we will conduct the comparisions once more at the end of

the trial. The study cannot be terminated early once the recruitment period

has finished. The principal aim of the evaluation of pA is to assign with higher

probability the current patient to the treatment showing more efficacy from the

accumulated information of the previous patients. In the follow up period, all

patients have been entered into the trial. Hence, it is not necessary to evaluate

pA. It would also be possible to update and evaluate pA after the last patient is

enrolled.

For the ER and CA designs, we use the same criteria as for the RA and

RACA designs. However, the determination will be performed only at the end of

the trials. Consequently, the ER and CA designs cannot stop early.

4.4.2 CA randomization

In a clinical trial, one aim of a good design is to reduce variability. In particular,

biases occur from the imbalance of important prognostic factors. In order to

overcome these biases, stratified randomization and the minimization method

have been addressed.

Many papers such as Pocock and Simon (1975) and Hagino et al. (2004) argued

that one drawback of stratified randomization is that it is not an appropriate

approach for the case that has many prognostic factors. In particular, the sample

is usually too small .

In contrast, the minimization approach is more flexible than the stratified

randomization in the situation mentioned above. The minimization method was

introduced by Taves (1974). In this method, for each treatment the number of
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previous patients belonging in the same levels of the covariates as a new patient

will be determined separately. Next these numbers are combined over all factors.

The new patient will be assigned to a treatment giving a lower degree of covari-

ate imbalance. Taves (1974) only determined the number of previous patients

belonging in each level of the covariates. However, he did not take into account

the new patient.

Barbachano et al. (2008) argued that one disadvantages of Taves’ method is

that we may encounter a problem of predictability. This problem can be defined

as being able to predict a treatment which will be received by a subsequent

patient by using the information of the previous patients when knowing his/her

characteristics. This problem may occur because, in Taves’ method, pfavour = 1.

Hence, the idea of the biased coin design proposed by Efron (1971) was used by

Pocock and Simon (1975). As mentioned in Section 4.2.1, using the idea of the

biased coin design, pfavour may range from more than 0.5 to 1. Therefore, it may

reduce the problem of predictability.

Hu et al. (2014) very recently reviewed techniques for controlling covariates

in clinical trial designs such as stratified and covariate-adaptive randomizations.

The benefits and disadvantages of these two randomizations were also compared

on page 112. A minimization approach was described and discussed. We have

used the minimization approach in Section 4.4.2.

Hu et al. (2014) recommended the use of the CA designs if balance on covari-

ates is of concern.

Frane (1998) determined the degree of imbalance of covariate levels by com-

paring the values of the chi-squared goodness-of-fit test statistics for each of the

categorical covariates.

For example, suppose that there are two covariates in the trial: smoking

and gender. We take into consideration the smoking habits and genders of the
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people already in the trial. Let us consider the case of a male smoker who is

assigned to arm A. The chi-squared test statistics for both covariates will have

been determined. For arm A, suppose that the chi-squared values for smoking

and gender are 3 and 2 respectively. The covariate with the higher chi-squared

statistic, 3, will be chosen.

Table 4.10 shows an example of how to obtain this statistics in the case of

a male smoker who is assigned to arm A. By using the chi-squared goodness-

of-fit test, χ2 =
∑ (Oi−Ei)

2

Ei
where the expected frequency (Ei) for smoking is

0.5×12 = 6. Hence, the chi-squared statistics shown in Table 4.10 were obtained.

Table 4.10: An example of how to obtain this statistic in the case of a male
smoker who is assigned to arm A

Covariate Number of patients
Chi-squared statistics

A B

Smoking yes 3 9 3
Gender male 6 2 2

Now let the same process be carried out for arm B. Suppose that if this patient

is assigned to arm B, the higher chi-squared statistic is 4. Because the patient

should be allocated to the treatment that minimizes the values of the chi-squared

test statistics, he should be assigned to arm A. Table 4.11 illustrates an example

of assigning a patient by using the Frane method when there are two covariates.

Table 4.11: An example of assigning a patient by using the Frane method when
there are two covariates

Arm
Chi-squared statistics
Smoking Gender higher

A 3 2 3
B 1 4 4

According to Frane (1998) and NH, the method used by them to determine
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the degree of imbalance of covariate levels for the categorical covariate is based

on the difference between the observed and expected numbers of patients. In

this research, we consider the three covariates as in NH. Since these covariates

are categorical, the degree of imbalance of covariate levels will be determined by

using the difference between the observed and expected numbers of patients as

well.

However, in both papers, the determination of imbalance of each covariate was

performed separately for each covariate. Obviously, in real life, the combination of

patients’ characteristics affects a response variable simultaneously. Consequently,

the covariates should be considered in conjunction with one another. If we have

two covariates, suppose that 20 patients receive treatment A, and 10 have (Z1 =

0, Z2 = 1) and 10 have (Z1 = 1, Z2 = 0). Also suppose that 20 patients receive

treatment B and 10 have (Z1 = 0, Z2 = 0) and 10 have (Z1 = 1, Z2 = 1). If we

measure the covariate imbalance by looking at each covariate separately such as

in NH, it can be concluded that there is no covariate imbalance. This is because,

in both treatments, the numbers of patients having Z1 = 0, Z1 = 1, Z2 = 0 and

Z2 = 1 are identical. In contrast, by looking at these covariates in pairs, in the

situation mentioned above, the covariate levels in the two treatments are not

balanced. If the sample of 20 patients in a particular arm is balanced, we should

have five each of (Z1 = 0, Z2 = 0), (Z1 = 0, Z2 = 1), (Z1 = 1, Z2 = 0) and

(Z1 = 1, Z2 = 1).

If there are J covariates, there are
(
J
2

)
pairs of covariates: (1,2),..., (J−1, J), so

we would have a sum
∑J−1

j1=1

∑J
j2=j1+1 |Dj1j2 | over pairs of covariates. The number

of combinations of levels for covariates j1 and j2 is Lj1 ×Lj2 . The quantity |Dj1j2 |

measures the degree of imbalance of covariates taking all levels of any covariates

into consideration. This will be defined later in this section.

Following NH, we have three covariates (Z1, Z2, Z3). Then when looking at
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them in pairs, we have
(
3
2

)
= 3 pairs, that is (Z1, Z2), (Z2, Z3) and (Z1, Z3). In

addition, in each covariate, there are two levels. Thus for each pair, we have

2× 2 = 4 levels. We create three (4× 2) contingency tables. An example of the

contingency table for (Z1, Z2) is in Table 4.12.

Table 4.12: The contingency table for (Z1, Z2)

(Z1 = i, Z2 = m)
Treatment Total
A B

Z1 = 0, Z2 = 0 n11

Z1 = 0, Z2 = 1 n12

Z1 = 1, Z2 = 0 n13

Z1 = 1, Z2 = 1 n14

Total nA nB nA + nB

The remaining tables for the other covariate pairs follow similarly.

It is possible to look at the covariates in triples. We suppose that there are

40 patients allocated to treatment A and 40 patients allocated to treatment B.

It is supposed also that the numbers of patients in each combination of levels of

covariates in the two arms are as in Table 4.13.

Table 4.13: An example of the numbers of patients in each combination of levels
of covariates in the two arms when there are triple covariates

Treatment
Z2 = 0 Z2 = 1

Z3 = 0 Z3 = 1 Z3 = 0 Z3 = 1

A
Z1 = 0 10 0 0 10
Z1 = 1 0 10 10 0

B
Z1 = 0 0 10 10 0
Z1 = 1 10 0 0 10

If the imbalance of covariates is determined by looking at each covariate sepa-

rately or at pairs of covariates, we would conclude that there is no covariate imbal-

ance. For example, using the method of measuring covariate imbalance proposed

by NH, it can be seen that the numbers of patients having Z1 = 0, Z1 = 1, Z2 = 0,
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Z2 = 1, Z3 = 0 and Z3 = 1 in the two arms are equal. In addition, when look-

ing at covariates in pairs, we have ten patients in each combination of levels of

covariate pairs for the sample of 40 patients in one arm. However, by consider-

ing the covariates in triples, the combinations of levels of covariates triples are

imbalanced. If the sample of 40 patients for one arm is balanced, the numbers

of patients having each of the combinations of levels of covariates triples for that

arm should be five.

So clearly the best methods for examining the imbalance of covariates will be

to look at the J-way table of covariates. However, for conciseness there will only

be a consideration of covariates in pairs.

Note that although Frane (1998) used the chi-squared goodness-of-fit test

to measure the degree of covariate imbalance, in this research we consider the

method of the chi-squared test for independence. We have two categorical vari-

ables; that is, treatment and pairs of level of covariates. Our aim is to investigate

whether the former variable is independent of the latter variable. In addition, we

see that the expected numbers in (4.3) are based on the formula in the chi-squared

test for independence. This may explain why the method of the chi-squared test

for independence is used to determine the degree of imbalance of covariate levels.

Let p denote the number of the covariate pair under consideration: p =

1, ...,
(
J
2

)
;

and let c denote the particular combination of levels for covariates j1 and j2:

c = 1, ..., Lj1 × Lj2 .

As in NH, in order to balance the effect of the covariate in the two treatments,

we consider the degree of covariate imbalance by using the assumption of equal

covariate distributions across treatment arms. Thus, we compute the differences

between the observed numbers of patients in the various levels of the covariate

pairs allocated to treatment B and their expected numbers if balance exists.
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The metric of the degree of imbalance of covariate is given by

Dpc = nBpc − EBpc, (4.8)

where nBpc is the observed numbers of patients in the cth combination of the

pth covariate pair allocated to treatment B; EBpc is the expected number of

patients in the cth combination of the pth covariate pair allocated to treatment

B; EBpc = (npc × nB)/(nA + nB); npc is the number of patients in level c of the

pth covariate pair; nA is the number of patients assigned to treatment A; nB is

the number of patients assigned to treatment B. The level of overall imbalance

between the treatment arms is then

D =
1

n

(J2)∑
p=1

Lj1
×Lj2∑
c=1

|Dpc|, (4.9)

where n is the numbers of patients used in the trial.

For the CA and RACA designs, after the initial patients (patients who are

assigned to the treatments by using equal randomization) are enrolled, the CA

randomization is commenced. When each new patient is recruited, he/she will

be tentatively assigned to both arms in turn to compare the degree of covariate

imbalance. Then we give a higher probability pfavour = 0.8 to the arm that can

minimize covariate imbalance. As in NH, by using probability pfavour = 0.8 or

0.7 in the simulation, the results obtained are satisfactory. Thus, following NH

the probability of covariate-adaptive (CA) randomization to treatment A is

pA,CA =


pfavour ifDA > DB,

1− pfavour ifDA < DB,

0.5 ifDA = DB.

(4.10)

For the ER and RA designs, (4.9) will be calculated only at the end of the

trials.
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In HNL, Nmax = 120, n0 = 1 and 30. Similarly, in this chapter, we use Nmax =

120. However, we only use n0 = 30. In HNL, they only focused on the RA design.

In contrast, this chapter considers not only the RA design but the ER, CA, and

RACA designs as well. One aim of the CA and RACA designs is to balance

principal covariates across all treatments. In order to determine the degree of

covariate imbalance when assigning the current patient to arms A or B, we need

to recruit a group of initial patients. It can be seen that having only one initial

patient is not enough to consider the degree of covariate imbalance.

4.4.3 RACA randomization

We adopt (4.5) of this thesis from NH; see the details in Section 4.2.1.

4.4.4 Simulation

The evaluation of the performance of the RACA design was conducted using 5,000

simulations for each set of design parameters. We also compared the quality of

this design with that of the ER, RA and CA designs. Again the design char-

acteristics mentioned in Section 3.3 were employed as criteria to assess the four

designs. Additionally, in the present analysis, the degree of covariate imbalance

was used as a criterion to compare the designs.

In this research, two situations are considered.

• In situation 1, there is no prior knowledge of how arms A and B differ.

• In situation 2, treatment B is supposed to be superior to treatment A.

Again, in these situations, the hypotheses will be

H0 : µa ≥ µb;

H1 : µa < µb.

It should be noted here that from now on in this chapter we focus only upon

this one-sided alternative hypothesis. This is different from NH. In NH, for the
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first situation, a two-sided hypothesis was considered. On the other hand, for the

second situation, NH considered this one-sided hypothesis. Unlike NH, in this

research, the Type I error will be estimated from the proportion of the time that

arm B is selected as a superior treatment in situation 1.

Note that although RS considered the same two situations as in this research,

they did not use the probabilities px,k. Hence, they were considering a simpler

situation.

Data Generation

In the data generation, we will simulate the category variable and the progression-

free survival time of each patient.

Firstly, in the data generation, for each patient, the category variable is gen-

erated. As described in Section 1.6.1, in this research, when patient i in arm

x belongs in the kth category of a short-term response, this is represented by

Sx,k,i = 1 and Sx,j,i = 0 for 1 ≤ j ≤ 4, j ̸= k. The vectors (Sx,1,i, ..., Sx,4,i) are

assumed to be i.i.d. across i = 1, ..., nx and to have a multinomial (1, px,1, ..., px,4)

distribution.

In order to avoid confusion with the px,k for estimation procedure, for px,k used

to generate, we will denote by πx,k the value that was given for this parameter

for each scenario (e.g. under Scenario 1, πx,1 = 0.2, πx,2 = 0.4, πx,3 = 0.1, πx,4 =

0.3). Thus (Sx,1,i, Sx,2,i, Sx,3,i, Sx,4,i) for all patients was drawn from a multinomial

(1, πx,1, πx,2, πx,3, πx,4) distribution.

Recall that HNL defined Tx,i as the progression-free survival time of partici-

pant i in arm x. Conditional on occupying the kth category of a short-term re-

sponse, Tx,i is assumed to have an exponential distribution with rate λx,k. There-

fore, Tx,i ∼
∑4

k=1 px,kExp(λx,k). After we calculate µx,k ≡ 1
λx,k

from (4.12), Tx,i is

simulated from an exponential λx,k distribution.

It should be noted that in a given set of simulations, πx,k is kept constant.
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Since in this data generation procedure, px,k = πx,k, px,k also is kept constant.

Hence, (Sx,1,i, ..., Sx,4,i) is i.i.d. across i = 1, ..., nx. In contrast, the px,k in the RA

randomization are drawn from Dir (γx,k + nx,k).

It should be noted also that in each simulation, Tx,i is generated by using

µx,k ≡ 1
λx,k

obtained from a Generalised Linear Model that will be described in

the next section. However, the µx,k in the RA randomization is drawn from IG

(αx,k +
∑nx,k

i=1 δ
(k)
x,i , βx,k +

∑nx,k

i=1 t
(k)
x,i ).

Model

In this model, the three binary covariates of NH will be considered. It is assumed

that Z1 ∼ Bernoulli(0.7) as in NH. Unlike NH, we assume that Z2 ∼ Bernoulli

and Z3 ∼ Bernoulli with conditional probabilities given in Tables 4.14 and 4.15

respectively. The distributions of Z2 and Z3 are conditional on the value of Z1.

In reality, it is rare to find independent covariates. Some covariates may depend

upon another. For example, if the patient’s age is more than 60 years, he/she

may have a higher probability of having been given more than one chemotherapy

treatment than only one treatment.

Table 4.14: The conditional probabilities for Z2

j i P (Z2 = i | Z1 = j)

0
0 0.60
1 0.40

1
0 0.35
1 0.65

T
(k)
x,i can be defined as the progression-free survival time of patient i if she/he

is in category k and arm x. Since T
(k)
x,i ∼ Exp(λx,k) and E(T

(k)
x,i ) = 1

λx,k
, we

can model µx,k ≡ 1
λx,k

by using a Generalised Linear Model. The link function

used is the log link. Although the canonical link function for the exponential

distribution is the reciprocal function, Myers et al. (2010, p. 215) argued that
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Table 4.15: The conditional probabilities for Z3

j i P (Z3 = i | Z1 = j)

0
0 0.5
1 0.5

1
0 0.4
1 0.6

using the reciprocal link may result in negative values of the response. In the

exponential distribution model, the response values are nonnegative. In order to

avoid this problem, in this research the log link was chosen as the link function.

Let µx,k ≡ 1
λx,k

denote the mean progression-free survival time of the kth category

in arm x. This can be based on the following model:

log[µx,k] = − log[λx,k] = β0k + βTkT + β1kZ1 + β2kZ2 + β3kZ3 (4.11)

where T is a binary treatment variable. We defined T to be an indicator variable

T =

 0 if patient is allocated to treatment A,

1 if patient is allocated to treatment B.

Then,

µx,k =
1

λx,k

= exp(β0k + βTkT + β1kZ1 + β2kZ2 + β3kZ3). (4.12)

The quantity k is a category variable: k = 1, 2, 3, 4, β0k is the intercept of

the kth category, βTk is the treatment coefficient of the kth category, β1k the

coefficient for age of the kth category, β2k the coefficient for cytogenetics of the

kth category, and β3k the coefficient for the number of previous chemotherapy

treatments of the kth category.

In reality, either arm may be superior. However, for simplicity in the sim-

ulations, arm B is assumed to be the superior treatment with longer mean

progression-free survival time if arms A and B are not identical. In Scenarios
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1 and 2, there is no treatment effect on the mean progression-free survival time

of the kth category in arm x, so βTk = 0.

Note that, in Scenario 2, although the mean progression-free survival times

of the kth category are identical in both arms, arm B is the superior treatment.

This is because, in this scenario, arm B is assumed to have higher partial PR and

CR probabilities (i.e. higher probabilities for categories 3 and 4).

Table 4.16: The values of β0k, βTk, β1k, β2k and β3k

Scenario k βTk β0k β1k β2k β3k

1
1 0 1.65 -0.20 -0.17 -0.20
2 0 3.80 -0.19 -0.23 -0.20
3 0 4.60 -0.15 -0.20 -0.10
4 0 4.90 -0.15 -0.10 -0.10

2
1 0 1.65 -0.20 -0.17 -0.20
2 0 3.80 -0.19 -0.23 -0.20
3 0 4.60 -0.15 -0.20 -0.10
4 0 4.90 -0.15 -0.10 -0.10

3
1 0.50 1.65 -0.20 -0.17 -0.20
2 0.35 3.80 -0.19 -0.23 -0.20
3 0.38 4.60 -0.15 -0.20 -0.10
4 0.38 4.90 -0.15 -0.10 -0.10

Table 4.16 shows the values of β0k, βTk, β1k, β2k and β3k. Additionally, Table

4.17 shows the values of µx,k in Scenarios 1 and 2 for all possible covariate combi-

nations when k = 1, 2, 3, 4 when the parameters in Table 4.16 are used. We are

trying to generate a variety of situations for possible values of the covariates. We

are also attempting to generate situations where the mean of the survival time is

similar to the values used by HNL; as a result, we have chosen the values shown

in Tables 4.16 and 4.17.

Tables 4.18 - 4.20 show the values of px,k and µx,k for all possible covariate

combinations when k = 1, 2, 3, 4, in Scenarios 1 - 3 respectively when the

parameters in Table 4.16 are used.
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Table 4.17: The values of µx,k in Scenarios 1 and 2 for all possible covariate
combinations when k = 1, 2, 3, 4 when the parameters in Table 4.16 are used.

k Z1 Z2 Z3 log(µx,k) µx,k HNL

1

0 0 0 1.65 5.21

4

1 1 1 1.08 2.94
1 0 0 1.45 4.26
0 1 0 1.48 4.39
0 0 1 1.45 4.26
1 1 0 1.28 3.60
0 1 1 1.28 3.60
1 0 1 1.25 3.49

2

0 0 0 3.80 44.70

30

1 1 1 3.18 24.05
1 0 0 3.61 36.97
0 1 0 3.57 35.52
0 0 1 3.60 36.60
1 1 0 3.38 29.37
0 1 1 3.37 29.08
1 0 1 3.41 30.27

3

0 0 0 4.60 99.48

75

1 1 1 4.15 63.43
1 0 0 4.45 85.63
0 1 0 4.40 81.45
0 0 1 4.50 90.02
1 1 0 4.25 70.11
0 1 1 4.3 73.70
1 0 1 4.35 77.48

4

0 0 0 4.90 134.29

110

1 1 1 4.55 94.63
1 0 0 4.75 115.58
0 1 0 4.80 121.51
0 0 1 4.80 121.51
1 1 0 4.65 104.58
0 1 1 4.70 109.95
1 0 1 4.65 104.58
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Table 4.18: The values of px,k and µx,k for all possible covariate combinations
when k = 1, 2, 3, 4, in Scenario 1 when the parameters in Table 4.16 are used.

Arm p1 p2 p3 p4 Z1 Z2 Z3 µ1 µ2 µ3 µ4

A 0.2 0.4 0.1 0.3

0 0 0 5.21 44.70 99.48 134.29
1 1 1 2.94 24.05 63.43 94.63
1 0 0 4.26 36.97 85.63 115.58
0 1 0 4.39 35.52 81.45 121.51
0 0 1 4.26 36.60 90.02 121.51
1 1 0 3.60 29.37 70.11 104.58
0 1 1 3.60 29.08 73.70 109.95
1 0 1 3.49 30.27 77.48 104.58

B 0.2 0.4 0.1 0.3

0 0 0 5.21 44.70 99.48 134.29
1 1 1 2.94 24.05 63.43 94.63
1 0 0 4.26 36.97 85.63 115.58
0 1 0 4.39 35.52 81.45 121.51
0 0 1 4.26 36.60 90.02 121.51
1 1 0 3.60 29.37 70.11 104.58
0 1 1 3.60 29.08 73.70 109.95
1 0 1 3.49 30.27 77.48 104.58

Table 4.19: The values of px,k and µx,k for all possible covariate combinations
when k = 1, 2, 3, 4, in Scenario 2 when the parameters in Table 4.16 are used.

Arm p1 p2 p3 p4 Z1 Z2 Z3 µ1 µ2 µ3 µ4

A 0.2 0.4 0.1 0.3

0 0 0 5.21 44.70 99.48 134.29
1 1 1 2.94 24.05 63.43 94.63
1 0 0 4.26 36.97 85.63 115.58
0 1 0 4.39 35.52 81.45 121.51
0 0 1 4.26 36.60 90.02 121.51
1 1 0 3.60 29.37 70.11 104.58
0 1 1 3.60 29.08 73.70 109.95
1 0 1 3.49 30.27 77.48 104.58

B 0.1 0.1 0.2 0.6

0 0 0 5.21 44.70 99.48 134.29
1 1 1 2.94 24.05 63.43 94.63
1 0 0 4.26 36.97 85.63 115.58
0 1 0 4.39 35.52 81.45 121.51
0 0 1 4.26 36.60 90.02 121.51
1 1 0 3.60 29.37 70.11 104.58
0 1 1 3.60 29.08 73.70 109.95
1 0 1 3.49 30.27 77.48 104.58
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4.5 Results

It should be noted that here we use the same abbreviations as in Section 3.3. In

each simulation, data were generated by using a given set of design parameters

shown in Tables 4.16 - 4.20.

Table 4.21 shows the results for the ER, RA, RACA and CA designs, in

Scenario 1, when using pU = 0.95, Nmax = 100, and n0 = 20. In addition, Tables

4.22 and 4.23 show the corresponding results, in Scenario 1, when using pU =

0.95, n0 = 30, and Nmax = 120 and 130 respectively. The results displayed in

Tables 4.21- 4.23 illustrate that, when using pU = 0.95, the RA design gave the

largest degree of covariate imbalance. As expected, we obtained the lowest degree

of imbalance from the CA design. The ANP increased as Nmax became larger. On

the other hand, the degree of covariate imbalance decreased as Nmax increased.

The reasons will be provided on page 133.

Table 4.24 shows the results for the ER, RA, RACA and CA designs in Sce-

nario 1 when using different values of pU , Nmax = 100, and n0 = 20. Tables 4.25

and 4.26 show the corresponding results, also in Scenario 1, when using different

values of pU , n0 = 30, and Nmax = 120 and 130 respectively.

Initially, we used a cut-off value of pU = 0.95, and we obtained Type I error

rates as shown in Tables 4.21-4.23. Then we performed simulations to find a pU

that gives a the probability of Type I error around 0.05. The results displayed

in Tables 4.24-4.26 show that the RACA and RA designs required larger values

of pU than the ER and CA designs. By using a cut-off value of pU = 0.95, the

ER design gave a similar probability of Type I error to that of the CA design.

Consequently, for these designs, we used the same value of pU . As expected, the

CA design gave the lowest degree of covariate imbalance. Although we obtained

a larger degree of covariate imbalance from the RACA design than from the CA

design, it was considerably smaller than the values from the ER and RA designs.
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Table 4.20: The values of px,k and µx,k for all possible covariate combinations
when k = 1, 2, 3, 4, in Scenario 3 when the parameters in Table 4.16 are used.

Arm p1 p2 p3 p4 Z1 Z2 Z3 µ1 µ2 µ3 µ4

A 0.2 0.4 0.1 0.3

0 0 0 5.21 44.70 99.48 134.29
1 1 1 2.94 24.05 63.43 94.63
1 0 0 4.26 36.97 85.63 115.58
0 1 0 4.39 35.52 81.45 121.51
0 0 1 4.26 36.60 90.02 121.51
1 1 0 3.60 29.37 70.11 104.58
0 1 1 3.60 29.08 73.70 109.95
1 0 1 3.49 30.27 77.48 104.58

B 0.1 0.1 0.2 0.6

0 0 0 8.58 63.43 145.47 196.37
1 1 1 4.85 34.12 92.76 138.38
1 0 0 7.03 52.46 125.21 169.02
0 1 0 7.24 50.40 119.10 177.68
0 0 1 7.03 51.94 131.63 177.68
1 1 0 5.93 41.68 102.51 152.93
0 1 1 5.93 41.26 107.77 160.77
1 0 1 5.75 42.95 113.30 152.93

Table 4.21: Comparison of the simulation results for the ER, RA, RACA and
CA designs, in Scenario 1 (where the efficacies of arms A and B are equal) when
using pU = 0.95, Nmax = 100, and n0 = 20.

Design Arm P(selected) α Average (sd) ANP
Degree of
imbalance

ER
A 0.016

0.020
50.055 (5.05)

100.00 0.200
B 0.020 49.945 (5.05)

RA
A 0.070

0.069
47.031 (13.21)

93.84 0.210
B 0.069 46.805 (13.14)

RACA
A 0.066

0.063
47.067 (13.60)

93.87 0.077
B 0.063 46.803 (13.68)

CA
A 0.018

0.021
50.178 (7.27)

100.00 0.057
B 0.021 49.822 (7.27)
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Table 4.22: Comparison of the simulation results for the ER, RA, RACA and
CA designs, in Scenario 1 (where the efficacies of arms A and B are equal) when
using pU = 0.95, Nmax = 120, and n0 = 30.

Design Arm P(selected) α Average (sd) ANP
Degree of
imbalance

ER
A 0.019

0.017
60.137 (5.45)

120.00 0.182
B 0.017 59.86 (5.45)

RA
A 0.069

0.071
56.423 (14.81)

113.02 0.189
B 0.071 56.595 (14.96)

RACA
A 0.069

0.063
56.606 (14.57)

113.53 0.062
B 0.063 56.927 (14.75)

CA
A 0.017

0.018
60.157(7.67)

120.00 0.048
B 0.018 59.843 (7.67)

Table 4.23: Comparison of the simulation results for the ER, RA, RACA and
CA designs, in Scenario 1 (where the efficacies of arms A and B are equal) when
using pU = 0.95, Nmax = 130, and n0 = 30.

Design Arm P(selected) α Average (sd) ANP
Degree of
imbalance

ER
A 0.022

0.020
64.939 (5.74)

130.00 0.174
B 0.020 65.061 (5.74)

RA
A 0.073

0.063
61.156 (16.26)

122.34 0.183
B 0.063 62.333 (16.39)

RACA
A 0.066

0.072
61.185 (16.34)

122.23 0.061
B 0.072 61.040 (16.16)

CA
A 0.022

0.021
64.956 (8.10)

130.00 0.044
B 0.021 65.044 (8.10)
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Table 4.24: Comparison of the simulation results for the ER, RA, RACA and CA
designs, in Scenario 1 when using different values of pU , Nmax = 100, and n0 =
20. The values of pU have been selected to give a probability of Type I error of
approximately 0.05.

Design Arm pU P(selected) α Average (sd) ANP
Degree of
imbalance

ER
A

0.900
0.052

0.055
50.055 (5.05)

100.00 0.200
B 0.055 49.945 (5.05)

RA
A

0.960
0.044

0.054
47.531 (12.95)

95.30 0.205
B 0.054 47.768 (12.83)

RACA
A

0.955
0.054

0.057
47.464 (13.00)

95.13 0.072
B 0.057 47.669 (12.95)

CA
A

0.900
0.053

0.057
50.178 (7.27)

100.00 0.057
B 0.057 49.822 (7.27)

Table 4.25: Comparison of the simulation results for the ER, RA, RACA and CA
designs, in Scenario 1 when using different values of pU , Nmax = 120, and n0 =
30. The values of pU have been selected to give a probability of Type I error of
approximately 0.05.

Design Arm pU P(selected) α Average (sd) ANP
Degree of
imbalance

ER
A

0.9000
0.057

0.052
60.137 (5.45)

120.00 0.182
B 0.052 59.863 (5.45)

RA
A

0.9600
0.051

0.052
57.536 (14.01)

115.05 0.185
B 0.052 57.515 (14.21)

RACA
A

0.9575
0.052

0.055
57.153 (14.02)

114.87 0.060
B 0.055 57.717(14.04)

CA
A

0.9000
0.047

0.054
60.157 (7.67)

120.00 0.048
B 0.054 59.843 (7.67)
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Table 4.26: Comparison of the simulation results for the ER, RA, RACA and CA
designs, in Scenario 1 when using different values of pU , Nmax = 130, and n0 =
30. The values of pU have been selected to give a probability of Type I error of
approximately 0.05.

Design Arm pU P(selected) α Average (sd) ANP
Degree of
imbalance

ER
A

0.905
0.054

0.054
64.939 (5.74)

130.00 0.174
B 0.054 65.061 (5.74)

RA
A

0.960
0.051

0.052
62.452 (15.27)

124.78 0.178
B 0.052 62.333 (15.22)

RACA
A

0.960
0.051

0.054
62.197 (15.23)

124.62 0.055
B 0.054 62.418 (15.36)

CA
A

0.905
0.056

0.048
64.956 (8.10)

130.00 0.044
B 0.048 65.044 (8.10)

For the RACA and CA designs, a subsequent patient would be assigned to the

treatment that would minimize the covariate imbalance. In contrast, for the

ER and RA designs, we did not consider this factor when assigning a patient

to a treatment. This may explain why the RACA and CA designs gave smaller

covariate imbalances than the ER and RA designs.

Another advantage of the RACA design is that it requires a smaller ANP than

the CA and ER designs. This benefit is similar to the property of the RA design.

This is because, for the RACA and RA designs, the trials could stop early if one

arm is demonstrably better than the other arm.

The results displayed in Tables 4.24 - 4.26 show that, for the RACA and RA

designs, the average numbers of patients assigned to arms A and B were smaller

than those for the CA design. In contrast, the standard deviations of the number

of patients assigned to arms A and B were nearly twice as great as those for the

CA design. We now provide some explanation of why this occurs.

To investigate the distribution of the number of patients assigned to arms A

and B for the RACA and CA designs, the parameters shown in Table 4.25 were



Chapter 4. Extension of the HNL design 131

used to produce several histograms.
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Figure 4.1: The histograms of the number of patients assigned to arms A and B
for the RACA design with Nmax = 120.

The histograms shown in Figure 4.1 illustrate that, for the RACA design,

there were two modes at 20 and 60 in the number of patients assigned to each

arm. This is because, for the RACA design, there were two results for the trials.

That is, some trials terminated early, while others stopped at the end of the

study.

The first modes occurred at about 20 patients. However, the main modes

occurred at about 60 patients. It can be seen that the primary modes were

of considerably greater density than the secondary modes. In Scenario 1, the

efficacies of the two arms are equal. Hence, there are small numbers of trials that

show sufficient evidence that one arm is superior to another before the end of

the trials. In contrast, the majority needs to progress until the end of the trials.

The primary modes were at 60 because Nmax was 120 and, as mentioned above,

in Scenario 1 the efficacies of the two arms are equal. Consequently, about 60

patients were assigned to arm A and the others were assigned to arm B. For the

reasons described above, it can be concluded from Figure 4.1 that, for the RACA
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Figure 4.2: The histograms of the number of patients assigned to arms A and B
for the CA design with Nmax = 120.

design, the average numbers of patients assigned to arms A and B were smaller

than 60. There is also a considerable variation in the number of patients assigned

to each arm.

On the other hand, the histograms in Figure 4.2 show that, for the CA design,

in both arms the histograms had just one mode at about 60. For the CA design,

no trials can be terminated early so we have only one kind of trial. As a result, for

the CA design, the average numbers of patients assigned to arms A and B were

around 60. In addition, there was a slight variation in the numbers of patients

assigned to each arm.

All the histograms above support the finding that, for the RACA design, the

average numbers of patients assigned to arms A and B were smaller than those

for the CA design. However, the standard deviations of the number of patients

assigned to arms A and B were substantially greater than those for the CA design.

From Tables 4.24 - 4.26 again, the ANP increased as Nmax was larger. On the

other hand, the degree of imbalance decreased as Nmax increased. For the ER

and CA designs, the full quota of patients was used in the trial, and clearly, the
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ANP would increase as Nmax increased.

In order to examine the relationship between the ANP and Nmax for the

RACA and RA designs, histograms were produced of the numbers of patients

assigned to arms A and B for the RACA design with Nmax = 100, as shown in

Table 4.24. These appear in Figure 4.3. Then we compared the histograms in

Figure 4.1 with the histograms in Figure 4.3 (Nmax = 100).
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Figure 4.3: The histograms of the number of patients assigned to arms A and B
for the RACA design with Nmax of 100.

The histograms in Figure 4.3 illustrate that, for the RACA design with Nmax

= 100, there are two modes at around 10 and 50 in the number of patients

assigned to each arm. Hence, when Nmax = 100, the two modes are less than

those when Nmax = 120. This may be a reason why the ANP increased as Nmax

increased for the RA and RACA designs.

When Nmax is larger, we can better balance the covariates in the two treat-

ments. Consequently, the degree of imbalance decreased as Nmax increased.

Tables 4.27 - 4.29 show the results for the ER, RA, RACA and CA designs, in

Scenario 2, when Nmax = 100, 120 and 130 and n0 = 20, 30 and 30 respectively.

In addition, Tables 4.30-4.32 show the corresponding results in Scenario 3, when
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Nmax = 100, 120 and 130 and n0 = 20, 30 and 30 respectively.

These results show that all designs gave similar powers of the test. We ob-

tained the highest degree of imbalance from the RA design. Again, the CA design

gave the lowest degree of imbalance. It is apparent that, for the RA and RACA

designs in Scenarios 2 and 3, the degrees of covariate imbalance were higher than

in Scenario 1. For the RA and RACA designs, a higher proportion of patients

were allocated to a better treatment. In Scenario 1, the efficacies of arms A and

B are equal, so the average numbers of patients assigned to arms A and B were

equal. However, in Scenarios 2 and 3, arm B is better than arm A. Hence, in

these scenarios the average numbers of patients going to arm A were substantially

smaller than those going to arm B. This may be a reason why, for the RA and

RACA designs in Scenarios 2 and 3, the degrees of imbalance were higher than

in Scenario 1.

Once again when we look at Scenarios 2 and 3, we see that for the RACA

and RA designs, the average numbers of patients assigned to arms A and B were

less than for the ER and CA designs. We also see that, for the RACA and RA

designs, the standard deviations of the number of patients assigned to arms A

and B were higher than for the ER and CA designs.

The RA and RACA designs required substantially smaller ANP and ALT than

the ER and CA designs. The AND was also less. This is because the first two

designs can end early if one treatment is obviously better than the other. For the

reason described earlier, the RA and RACA designs have higher PET than the

ER and CA designs. They also have higher PBA than the ER and CA designs.

As mentioned above, for the RA and RACA designs, one objective is to allocate

more patients to the superior treatment. This may explain why the RACA and

RA designs have higher PBA than the ER and CA designs.

As expected, for all designs, the power of the test, the ANP, the AND and the
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ALT increased as Nmax became larger. Also, the covariate imbalance decreased as

Nmax increased. For the RACA and RA designs, the PET rose as Nmax increased.

In contrast, for the CA and ER designs, the PET was 0 in all tables.

For the RACA and RA designs, the power of the test, the PET and the

degree of covariate imbalance increased as the treatment effect increased. On the

other hand, the ANP, the AND and the ALT decreased as the treatment effect

increased.

For all designs, the PBA was consistent across the six tables. Although for the

RACA and RA designs, one aim is to assign more patients to the better treatment,

the PBA did not increase as the treatment effect increased. This is because in

this chapter, we used n0 = 20 and 30, whereas in the previous chapter we used n0

= 1. Additionally, the ANP became smaller as the treatment effect increased. In

particular, the difference between the ANP and n0 became considerably smaller

as the treatment effect increased.

It should be noted here that, for the RA design, the PBA is higher than that

for the RACA design since, for the RA design, the assignment of a treatment

to the next patient is based only on the response from the previous patients.

However, for the RACA design, the decision to allocate a treatment to the next

patient depends not only on the response from the previous patients but on the

degree of covariate imbalance as well. This may explain why the PBA for the RA

design is higher than that for the RACA design.

From Tables 4.27 - 4.32, it can be seen that the RACA design has power

comparable to the other designs. It also uses the least ANP and ALT, and these

are much less than those of the ER and CA designs. In addition, it has a degree

of imbalance that is below that of the ER and RA designs. Moreover, the AND

obtained from this design is considerably smaller than that from the ER and CA

designs. The RACA design gave the highest PET. We see that, for the RACA
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design, more patients can be assigned to the superior treatment since the PBA

is high, especially when compared with the ER and CA designs.

As far as these properties are concerned, the RACA and RA designs are

slightly different. However, if the degree of covariate imbalance is of major con-

cern, the RACA design is superior to the RA design.

4.5.1 Hypothesis testing

Using Tables 4.27 - 4.32, we conducted hypothesis testing as described in Section

2.2.1, to test whether these design characteristics and the covariate imbalance for

the RACA design were different from those for the other designs.

For the degree of covariate imbalance, the decision that the difference in co-

variate imbalance is deemed to be practically significant will occur if the difference

between the covariate imbalance obtained from the two designs is greater than

0.05. As all degrees of covariate imbalance were less than 1, 0.05 was selected as

the minimum important difference for the degree of covariate imbalance.

It should be noted here that this value of 0.05 is less than the value of the min-

imum significant difference for the other mean design characteristics (the ANP,

the AND and the ALT). For the other mean design characteristics, we regularly

used four as the minimum important difference. Let

per denote a probability (e.g. the power) obtained from the ER design;

pra denote the corresponding probability obtained from the RA design;

praca denote the corresponding probability obtained from the RACA design;

pca denote the corresponding probability obtained from the CA design;

µer denote a mean (e.g the ANP) obtained from the ER design;

µra denote the corresponding mean obtained from the RA design;

µraca denote the corresponding mean obtained from the RACA design;

µca denote the corresponding mean obtained from the CA design;
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Note that all results of hypothesis testing are based on 5,000 simulations.

The results of hypothesis testing when comparing the design characteristics

and the degree of covariate imbalance obtained from the ER design and the RACA

design are as follows:

• In the simulation whose results appear in Table 4.27, 95% CIs for the

differences per − praca for the power, for the PET and for the PBA were

(−0.007, 0.029), (-0.683, -0.657) and (−0.129,−0.091) respectively. It could

be seen that the CI for the difference in power lay entirely inside the interval

(−0.05, 0.05). The CIs for the differences in PET and PBA, however, lay

completely outside the interval (−0.05, 0.05). Similarly, for the simulation

shown in Tables 4.28-4.32, the CIs for the difference in power (not shown

here) lay absolutely inside the interval (−0.05, 0.05), whereas the CIs for

the differences in PET (not shown here) and PBA (not shown here), lay

totally outside the interval (−0.05, 0.05).

It could be concluded that there was no difference between the powers,

whether or not these powers were obtained from the ER design or the

RACA design. In contrast, the PETs and the PBAs obtained from the two

designs were different.

• Again in the simulation whose results appear in Table 4.27, 95% CIs for

the differences µer −µraca for the ANP, for the AND, and for the ALT were

(34.465, 36.215), (6.064, 6.416) and (60.723, 63.377) respectively. All CIs lay

completely outside the interval (−4, 4). For the simulation shown in Tables

4.28-4.32, we also obtained similar results to those from Table 4.27.

We concluded that the ANPs, the ANDs, and the ALTs obtained from the

two designs were different.

• In the simulation whose results appear in Table 4.27, a 95% CI for the differ-
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ence µer−µraca for the degree of covariate imbalance was (0.032, 0.041). The

CI for the covariate imbalance lay entirely inside the interval (−0.05, 0.05).

In addition, for the simulation shown in Tables 4.28-4.32, there were similar

results to those from Table 4.27.

It could be concluded that there was no difference between the degrees of co-

variate imbalance, whether or not these covariate imbalances were obtained

from the ER design or the RACA design.

When comparing the design characteristics and the degree of covariate imbal-

ance obtained from the RA design and the RACA design, the results of hypothesis

testing are as follows:

• In the simulation whose results appear in Table 4.27, 95% CIs for the dif-

ferences pra − praca for the power, for the PET and for the PBA were

(−0.054,−0.018), (-0.049, -0.011) and (0.001,−0.091) respectively. Only

the lower bound of the CI for the difference in power is less than - 0.05.

The CIs for the differences in PET and PBA lay completely inside the in-

terval (−0.05, 0.05). For the simulation shown in Tables 4.28-4.32, there

were similar results to those from Table 4.27.

It could be concluded that there was no difference between the powers, the

PETs and the PBAs obtained from the two designs.

• In the simulation whose results appear in Table 4.27, 95% CIs for the

difference µra − µraca for the ANP, for the AND, and for the ALT were

(1.272, 3.747), (−0.241, 0.161) and (1.779, 5.541) respectively. The CIs for

the differences in ANP, and AND lay completely inside the interval (−4, 4).

Only the upper bound of the CI for the difference in ALT is greater than

4. Additionally, for the simulation shown in Tables 4.28-4.32, there were

similar results to that from Table 4.27.
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We concluded that the ANPs, the ANDs, and the ALTs obtained from the

two designs were similar.

• In the simulation whose results appear in Table 4.27, a 95% CI for the

difference µra−µraca for the degree of covariate imbalance was (0.096, 0.106).

The CI for the difference in covariate imbalance lay entirely outside the

interval (−0.05, 0.05). For the simulation shown in Tables 4.28-4.32, we got

similar results to those from Table 4.27.

We concluded that the covariate imbalances obtained from the two designs

were different.

Consider the results of hypothesis testing when comparing the design charac-

teristics obtained from the CA design and the RACA design. We found that, in

the simulation whose results appear in Table 4.27-4.32, 95% CIs for the differ-

ences pca−praca for the power (not shown here) lay completely inside the interval

(−0.05, 0.05). On the other hand, the CIs for the differences in PET and PBA

lay completely outside the interval (−0.05, 0.05).

Again for the simulation shown in Table 4.27-4.32, 95% CIs for the differences

µca−µraca for the ANP, for the AND, and for the ALT (not shown here) lay totally

outside the interval (−4, 4). Similarly, 95% CI for the difference µca − µraca for

the degree of covariate imbalance lay entirely outside the interval (−0.05, 0.05).

It could be concluded that the design characteristics and the degrees of co-

variate imbalance obtained from the CA design and RACA designs were different

except in the power.
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4.5.2 A comparison of expected costs

Refer to Section 3.4 for a description of expected cost. From Table 4.24, in the

event that H0 is true, the expected cost (3.1) mentioned in Section 3.4 can be

written as follows:

the ER design

E(cost) = 100.00K2 + 50.055Ka + 49.945Kb + 0.055K0,

the RA design

E(cost) = 95.30K2 + 47.531Ka + 47.768Kb + 0.054K0,

the RACA design

E(cost) = 95.13K2 + 47.464Ka + 47.669Kb + 0.057K0,

the CA design

E(cost) = 100.00K2 + 50.178Ka + 49.822Kb + 0.057K0.

The equations from the other tables follow similarly. For this example, it can be

seen that, if H0 was true, the ER cost exceeds the RA cost. Similarly, the CA

cost exceeds the RACA cost for positive K0, K2, Ka and Kb.

In other examples, where we obtain different coefficient of K0, this might not

be true.

From Table 4.27, in the event that H0 is false, the expected cost (3.2) men-

tioned in section 3.4 can be written as follows:
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the ER design

E(cost) = 100.00K2 + 49.944Ka + 50.056Kb + 0.271K1,

the RA design

E(cost) = 67.17K2 + 24.739Ka + 42.430Kb + 0.318K1,

the RACA design

E(cost) = 64.66K2 + 25.496Ka + 39.162Kb + 0.282K1,

the CA design

E(cost) = 100.00K2 + 50.080Ka + 49.920Kb + 0.280K1.

The equations from the other tables follow similarly. As mentioned in Section

3.4, if H0 is false, there are two principal parts of the expected cost: the constant

cost and the cost of lost opportunity from accepting H0 if H0 is false. Using

the RACA and RA designs can reduce the constant cost substantially compared

to the ER and CA designs. On the other hand, they have a higher cost of lost

opportunity from accepting H0 if H0 is false than the other two designs. If the

value of K1 is considerably larger than the values of K2, Ka and Kb, using the

ER and CA designs has a lower cost than using the adaptive design. Otherwise,

the RACA and RA designs have lower costs than the other two designs.

4.5.3 A comparison of expected total costs

The results so far show that although the RACA and CA designs give lower

power of test than the ER and CA designs, the difference is minor. Moreover, for

economical and ethical reasons, the RACA and RA designs have an advantage

over the ER and CA designs. Consequently, in this section, we intend to compare

the expected total costs of the RACA and RA designs.
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From equation (3.8), the expected total cost of the RACA design is

E(total cost) = A+BPH0 ; (4.13)

whereA = 2n2RACAK2+na2RACAKa+nb2RACAKb+βRACAK1 andB = 2K2(n1RACA−

n2RACA)+αRACAK0−βRACAK1+Ka(na1RACA−na2RACA)+Kb(nb1RACA−nb2RACA).

Similarly, the expected total cost of the RA design is

E(total cost) = C +DPH0 ; (4.14)

where C = 2n2RAK2 + na2RAKa + nb2RAKb + βRAK1 and D = 2K2(n1RA −

n2RA) + αRAK0 − βRAK1 +Ka(na1RA − na2RA) +Kb(nb1RA − nb2RA).

We use the same example as in Section 3.8. That is, supposeK0 = 490, 000, K1 =

440, 000, K2 = 50 and Ka = Kb = 100.

From the results in Table 4.26 and Table 4.32 in Section 4.5, firstly, A,B,C and

D are calculated.

A = (2× 65.61× 50) + (26.59× 100) + (39.02× 100) + (0.04× 440, 000)

= 30, 722

B = 100× (124.62− 65.61) + (0.05× 490, 000)− (0.04× 440, 000)

+100× (62.2− 26.59) + 100× (62.42− 39.02)

= 18, 702

C = (2× 66.01× 50) + (25.01× 100) + (41× 100) + (0.05× 440, 000)

= 35, 202

D = 100× (124.78− 66.01) + (0.05× 490, 000)− (0.05× 440, 000)

+100× (62.45− 25.01) + 100× (62.33− 41)

= 14, 254

Since B ̸= D in this case, then the value of x = PH0 at the point of intersection



Chapter 4. Extension of the HNL design 149

is calculated.

PH0 =
C − A

B −D

= 1.01

In this example, x = C−A
B−D

does not lie between 0 and 1. Hence, the RA

design has greater expected total cost than the RACA design for all values of

PH0 . Figure 4.4 shows an illustrative example of the expected total costs of the
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Figure 4.4: E(total cost) of the RACA and RA designs as a function of PH0 .

RACA and RA designs. It can be seen that the expected total costs of the RACA

design is less than that of the RA design for all values of PH0 . This is because the

RACA gives higher power than the RA design. Additionally, in this example, the

value of K1 is considerable higher than those of K2, Ka and Kb, so A and B are

lower than C and D.
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From this example, it is suggested that the RACA design is better than the RA

design because of the lower expected total cost and the lower degree of imbalance.

4.6 Conclusion

It can be clearly seen from statistical, ethical and economic perspectives that the

RACA design is the best design to use, since this design gives a power of the test

that is similar to those of the other designs. Moreover, the resources required by

this design are less than those required by the other three designs. Additionally,

in this design, the average number of patients allocated to an inferior treatment

is small. Even though the degrees of imbalance obtained from this design are

higher than those of the CA design, they are not worse than those of the ER and

RA designs.
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Conclusions

5.1 Summary

Clinical trials are research studies which involve both healthy people and patients.

The aim of these trials is to evaluate the efficacy of a new treatment or to compare

the efficacy of new treatments with the existing treatment. In this thesis, our main

concern is to compare the efficacy of a new treatment with a current standard

treatment.

An adaptive design is a clinical trial design that allows changes to a trial

by using accrued data. This data will be used to make a decision on how to

change a trial without affecting its validity and integrity. Adaptive designs have

been used throughout this thesis. We focused on adaptive randomisation and

interim analyses. In particular, we focused on response-adaptive randomisation

and covariate adaptive randomisation.

One aim of this thesis was to extend and generalise the adaptive designs of

Huang et al. (2009) (HNL). We began by examining the two aspects (1) the enrol-

ment regime and (2) the randomisation procedure, by considering the response-

adaptive randomisation and the degree of covariate imbalance. We also intended

to use a generalised linear model to introduce a scheme to the HNL design which

enables covariates to be considered. In this thesis, three covariates, Z1, Z2 and

Z3, were considered. The distributions of Z2 and Z3 were conditional on the value

151
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of Z1. In real life, it is difficult to find independent covariates. Some covariates

may depend on others.

Furthermore, in this thesis, the covariates were considered in conjunction with

one another. That is, the determination of imbalance of pairs of covariates was

performed. In reality, the combination of characteristics of patients jointly affects

a response variable.

Additionally, we addressed important criteria for evaluating and comparing a

design with competing designs. Then an application for using these criteria for

assessing and comparing the designs was provided.

Chapter 2 examined the adaptive method of HNL. One assessment was per-

formed by considering a different recruitment regime for this method. In this

enrolment regime, the accrual rate was changed from exactly one patient per

week to an average of one per week. In reality, it is rare to find that patients

come into the trial at a rate of exactly one per week. Thus an investigation into

whether this more realistic scenario affects the results obtained from simulation

was carried out. It was found that the differences between the statistical prop-

erties of the two enrolment regimes (i.e. exactly one new patient per week, and

an average of one new patient per week) should not be considered practically

significant. We concluded that the HNL practice is a sensible approach to use,

and continued to follow their practice of having exactly one arrival per week.

Chapter 3 addressed principal criteria for evaluating and comparing designs.

We focused on several criteria: the Operating Characteristic Curve, and various

design characteristics. We found that the OC curve is not an appropriate method

of comparing clinical trial designs due to an additional complication. That is that

the OC curve is not uniquely defined by µa − µb.

Eight design characteristics were considered in this chapter. We focused on

the power of the test, PBA, PET, ANP, AND, ALT, expectation cost and the
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expected total costs of the designs. In order to obtain design characteristics, two

situations were considered: we have no prior knowledge of how arms A and B dif-

fer, and we suppose that treatment B is superior to treatment A. The hypotheses

were

H0 : µa ≥ µb;

H1 : µa < µb.

By using the eight design characteristics, the major finding of this chapter was

that an adaptive design that uses the response-adaptive randomisation is better

than the equal randomization (ER) design. This is because, for economic and

ethical reasons, the adaptive design has an advantage over the ER design. The

economic reason is that the adaptive design requires considerably fewer resources

than the ER design. The ethical reason is that the adaptive design uses a smaller

ANP than the ER design. Additionally, we can obtain a smaller AND and a

larger PBA from the adaptive design than from those of the ER design. Hence,

using the adaptive design can reduce the number of patients who are involved in

the trial and receiving an inferior treatment. Although the adaptive design gave

lower power of the test than the ER, the difference was minor. The lower power

of the test obtained from the adaptive design can be traded off against the two

advantages of the adaptive design described above.

In conclusion, as far as economic and ethical reasons are concerned, the adap-

tive design is better than the ER design. If the main concern is statistical power,

the adaptive design is a competitive design. Overall, we have confirmed that the

adaptive design is a better design when trading off between the two reasons and

statistical power.

Chapter 4 extended the HNL design to an applicable design. That is, we

enabled it to work in a more realistic situation. The following improvements

were made:
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• we developed an appropriate randomisation procedure by considering the

response of the previous patients and the degree of covariate imbalance.

• we ensured that a subsequent patient will be more likely not only to receive

better treatment but also to minimize the degree of covariate imbalance.

By using this procedure, we can minimize bias from covariate imbalance and

provide more efficient comparison of treatment effect.

In order to enable covariates to be considered in the HNL design, a generalised

linear model was used. In this research, our response variable is T k
x,i which is the

progression-free survival time of participant i in arm x if this patient occupies

the kth category. Recall that µx,k ≡ 1
λx,k

is the mean progression-free survival

time of the kth category in arm x. We had T
(k)
x,i ∼ Exp(λx,k) and E(T

(k)
x,i ) =

1
λx,k

. Therefore, µx,k ≡ 1
λx,k

can be fitted as a model via the log link by using a

generalised linear model.

In this research, the values of µx,k was generated by µx,k = 1
λx,k

= exp(β0k +

βTkT + β1kZ1 + β2kZ2 + β3kZ3) where T is an indicator variable; T = 0, 1 if

patient is allocated to treatment A or B, the quantity k is a category variable:

k = 1, 2, 3, 4; Z1, Z2 and Z3 are three binary covariates; β0k is the intercept of the

kth category, βTk is the treatment coefficient of the kth category, and β1k, β2k,

β3k are the coefficient of Z1, Z2 and Z3 in the kth category .

Since we aimed to extend the HNL design to perform in a more realistic situ-

ation, we proceeded as follows. The distributions of Z2 and Z3 were conditional

on the value of Z1. In real life, for example, the number of previous chemotherapy

treatments may depend upon the age of the patients. Moreover, we considered the

covariates in conjunction with one another. In reality, the combination of char-

acteristics of patients affects a response variable simultaneously. For instance,

gender and smoking may jointly affect hypertension. Therefore, in this thesis,

the degree of imbalance of covariates was determined in pairs.
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In Chapter 3, we found which an adaptive design that uses the response-

adaptive randomisation (RA) is better than the ER design. Hence, in Chapter

4, we compared the RA with an adaptive design (RACA) that was proposed in

this chapter by employing the design characteristics mentioned in Chapter 3 and

the degree of covariate imbalance.

As far as these characteristics are concerned, the performances of RACA and

RA designs are slightly different. However, if the degree of covariate imbalance is

of principal concern, the RACA design is superior to the RA design. In conclusion,

the RACA design is the best design.

Overall, this thesis has increased the understanding of the properties of adap-

tive designs by including principal criteria for evaluating and comparing designs.

Additionally, the extended design takes better account of covariates. It is worth-

while to consider a randomisation procedure that combines the response of the

previous patients with the degree of covariate imbalance because this design can

decrease bias and provide more effective comparisons. Moreover, the proposed

design is more realistic, because it considers covariates simultaneously and allows

them to be dependent upon one another.

5.2 Discussion

Although the RACA designs and the CARA designs (Hu and Rosenberger, 2006)

have similar abbreviations, the procedures for randomizations in the two designs

are different. In the RACA designs, the probability of assigning a treatment to

a current patient is based on both the response and the degree of covariate im-

balance of the previous patients. In the CARA designs, the current patient is

allocated to a treatment by considering the history of previous patients’ treat-

ment assignments (responses and covariates) as well as the values of covariates

of the current patient. The important difference between the RACA and the
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CARA designs is that in the CARA designs, the logistic regression model was

used to determine the probability of assigning a new patient to the treatment.

This model was given by including the treatment-covariate interactions term.

The probability of assigning a new patient to treatment A was based on the es-

timated covariate odds ratio. However, in this thesis, a generalised linear model

is utilized for enabling covariates to be considered in the HNL designs. We did

not consider the treatment-covariate interactions term in the generalised linear

model. The probability of assigning a new patient to treatment A was based

on both the posterior probability evaluated while the trial progressed, and the

degree of covariate imbalance.

In this thesis, we generalised extensively the adaptive designs of HNL. The

developed design is applicable to more realistic situations.

In the HNL designs, the response adaptive randomisation is used. That is,

the probability of allocating a new patient to a treatment is based only upon

the response of the previous patients. However, this randomisation method does

not consider the possibility that important prognostic factors might influence the

effect of the treatments. This omission may cause bias. In order to minimize

bias and provide an efficient comparison of the treatments, the randomization

procedure was improved. The developed randomization procedure can increase

the benefits of the HNL design because a subsequent patient will be more likely

to receive the better treatment. The design will also minimize the degree of

covariate imbalance.

Due to this, we used a generalised linear model to enable covariates to be

considered in the HNL designs.

Conventionally, in designs, the covariates are assumed to be independent of

one another. This is because it is simpler to produce a design under this as-

sumption. However, it is rare to find such a situation in reality. In general, some
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covariate may depend on another. For instance, older people may have a higher

probability of having hypertension than younger people. Hence it is valuable to

consider the practical situation in which some covariates depend on others even

though it adds complications to the design process. In this thesis, the conditional

probability is utilized for generating the dependent covariates.

We developed a new approach for determining the degree of covariate im-

balance. In HNL, the degree of covariate imbalance was determined separately

for each covariate. In reality, a response variable is affected by a combination

of the characteristics of patients simultaneously. Due to this, we considered the

covariates in conjunction with one another. Hence, in the new approach, the

measurement of imbalance was carried out in pairs.

The two paragraphs given above, demonstrate that in this thesis, more real-

istic situations were considered when producing a design.

In addition, a more realistic enrolment regime was investigated. The arrival

rate was changed from exactly one patient per week to an average of one per week.

In reality, an accrual schedule of exactly one patient per week rarely happens. A

simulation study was then carried out to investigate whether this more realistic

scenario affects the results. It was found that the more realistic scenario has no

significant effect on the outcome, thereby providing a justification previously not

given for using the exact arrival pattern.

When designing a clinical trial, one important step is to evaluate and compare

a proposed design with other designs. By doing this, researchers can ensure that

the proposed design is effective. Hence, some important criteria for evaluating

and comparing designs were investigated and employed.

In this thesis, although for two competing designs the difference in mean

(µA −µB) was identical, the power of the test was found to be not automatically

the same. Hence, the power is not a function of (µA − µB). A consideration of
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the difference (µA−µB) is thus not sufficient to compare the power of competing

designs of the kind considered in this thesis.

It was found that from statistical, ethical and economic perspectives the

RACA design is the best design to use, since this design gives a power of the

test that is similar to those of the other designs. Additionally, the resources re-

quired by this design are less than those required by the ER, RA and CA designs.

Furthermore, in the RACA design, the average number of patients allocated to an

inferior treatment is small. Although the degrees of covariate imbalance obtained

from this design are higher than those of the CA design, they are not worse than

those of the ER and RA designs.

Hence, the RACA designs can combine features of a good design covering

efficiency and ethics and include balance of covariates.

In conclusion, it can be seen that our thesis is valuable. This is because

by statistical, ethical and economic perspectives, our proposed design is a good

design and is applicable to more realistic situations.

5.3 Future research

1. In this thesis, we mentioned two possible ways to enable covariates to be

considered in the RA design. We can fit models for µx,k ≡ 1
λx,k

, or for

px,k where px,k is the probability of a patient in arm x occupying the kth

category of a short-term response. However, in this thesis, we only focused

on fitting a model for µx,k ≡ 1
λx,k

. Hence, in future research, px,k could be

fitted and the different models affect the results obtained when simulation

is carried out could be investigated.

Since (Sx,1,i, ..., Sx,4,i) ∼Multi (1, px,1, ..., px,4) for k = 1, 2, 3, 4 and E(Sx,k) =

px,k, we can fit a model by using the Multinomial logit model. It was sug-

gested by Faraway (2006) that since
∑4

k=1 px,k = 1, one category should be
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chosen as a baseline. Hence, px,1 is given by

px,1 = 1−
4∑

k=2

px,k.

The link function used is the logit which is ηk = ln(
px,k
px,1

), k = 2, 3, 4. Faraway

(2006) suggested that by using this function, we can ensure that 0 ≤ px,k ≤

1.

Therefore, px,k is based on a model which is given by

ln(
px,k
px,1

) = β0k + βTkT + β1kZ1 + β2kZ2 + β3kZ3, (5.1)

where the variables on the right-hand side are as defined on page 154.

The model (5.1) can be rewritten as

px,k
px,1

= exp(ηk) = exp(β0k + βTkT + β1kZ1 + β2kZ2 + β3kZ3),

It follows that

px,k =
exp(ηk)

1 +
∑4

k=2 exp(ηk),
k = 2, 3, 4

and

px,1 =
1

1 +
∑4

k=2 exp(ηk)
.

This could be generalised to more than four categories.

2. Originally, in the CA procedure, Ning and Huang (2010) determined the

degree of imbalance of each covariate separately. Their program only al-

lowed for determining one covariate. On the other hand, we considered the

degree of imbalance of covariates in pairs. Hence, we needed to write a new

program which allowed the examination of pairs of covariates. It will be

useful if we have a general program that can be used whatever the number
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of covariates is. We then do not need to write a new program every time

the number of covariates is changed. Consequently, further research for this

program is required.

3. In this thesis, the method of the degree of covariates imbalance used is

for discrete covariates. However, two of the covariates considered (patient

age and the number of previous chemotherapy treatments) are continuous.

Thus, we needed to divide them into two categories. It might be more

appropriate if we can balance the continuous covariates directly.

Ciolio et al. (2011) considered some aspects of balancing continuous covari-

ates. However, they did not considered more than two covariates and they

always assumed that these covariates were independent. This is unlikely to

be a realistic assumption. In future research, continuous covariates should

be balanced directly.

4. In this thesis, after each patient was enrolled in the trial, we assumed that

he or she was followed until the end of the trial or the trial was terminated.

In real life, however, it always happens that some patients may drop out of

the trial. Hence, this situation might be considered and simulated in future

research.



Appendix A

Main R program used

This program was obtained by modifying Ning (2009) and the Ning2.

#set values of parameters pfavour 0.8

#senario2

ininum <- 30 #number of patients randomly allocated to treatments

ntotal <- 120 #total number of patients

nsimul <- 5000#total number of simulations of all patients

p1 <- 0.7 #P(X1=1)

p20 <- 0.4 #P(X2=1|X1=0)

p21 <- 0.65 #P(X2=1|X1=1)

p30 <- 0.5 #P(X3=1|X1=0)

p31 <- 0.6 #P(X3=1|X1=1)

pfavour <- 0.8

gamma<-c(0.5,0.5,0.5,0.5)

rectime<-rep(1:ntotal)

alpha<-c(11,11,11,11)

beta<-c(40,300,750,1100)

addtime<-40

#k=1

b01<-1.65

b11<--0.2

b21<--0.17

b31<--0.2

bt1<-0

#k=2

b02<-3.8

b12<--0.19
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b22<--0.23

b32<--0.2

bt2<-0

#k=3

b03<-4.6

b13<--0.15

b23<--0.2

b33<--0.1

bt3<-0

#k=4

b04<-4.9

b14<--0.15

b24<--0.1

b34<--0.1

bt4<-0

catnum<-4

underp1<-c(0.2, 0.4, 0.1, 0.3)

underp2<-c(0.1, 0.1, 0.2, 0.6)

Pu<-0.9575

#Pl<-0.1

#imbalance <- 0

library(lattice)

library(MASS)

library(mvtnorm)

library(coda)

library(pscl)

library(MCMCpack)

###########################################################################

comp<-function(a0,a1,b0,b1,pp1,pp2)

{

ppp1<-rdirichlet(10000,pp1)

ppp2<-rdirichlet(10000,pp2)

tempx<-rep(0,10000)

tempy<-rep(0,10000)

for(k in 1:length(a0))

{
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tempx<-tempx+ppp1[,k]*rigamma(10000,a0[k],b0[k])

tempy<-tempy+ppp2[,k]*rigamma(10000,a1[k],b1[k])}

result<-mean(ifelse(tempx<tempy,1,0))

return(result)

}

#########################################################################

fchose<-rep(0, nsimul)# treat is chosen as superior in the final simulation

chose<-rep(0, nsimul)# treat is chosen as superior before the final simulation

treatpro<-rep(0, nsimul)

nlength<-rep(0, nsimul)

imbalance<-rep(0,nsimul)

patientA_raca<-rep(0,nsimul)

patientB_raca<-rep(0,nsimul)

duration<-rep(0,nsimul)

early<-rep(0,nsimul)

death<-rep(0,nsimul)

maxtime<-rectime[length(rectime)]+addtime

for (isim in 1:nsimul)

{

#generate covariates

X1 <- rbinom(ntotal,1,p1)

X2 <- rep(0,ntotal)

X3 <- rep(0,ntotal)

treat <-NULL #rep(0,ininum)

indic <- (X1==1)

nX11 <- sum(indic)

nX10 <- ntotal - nX11

X2[indic] <- rbinom( nX11,1,p21)

X2[!indic] <- rbinom(nX10,1,p20)

X3[indic] <- rbinom( nX11,1,p31)

X3[!indic] <- rbinom(nX10,1,p30)

#table12 <- table(X1,X2)

#table13 <- table(X1,X3)

#prop.table(table12,1)

#prop.table(table13,1)

treatshort <- rbinom(ininum,1,0.5)

status1<-rmultinom(ininum, size = 1, prob=underp1)
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status2<-rmultinom(ininum, size = 1, prob=underp2)

st1<-rep(0,ininum)

st2<-rep(0,ininum)

for(kkk in 1:catnum)

{

st1<-st1+status1[kkk,]*kkk

st2<-st2+status2[kkk,]*kkk

}

st<-treatshort*st2+(1-treatshort)*st1

log<-rep(0,ininum)

elamda<-rep(0,ininum)

T<-rep(0,ininum)

for(jjj in 1:ininum)

{

if(st[jjj]==1){

log[jjj]<-b01+bt1*treatshort[jjj]+b11*X1[jjj]+b21*X2[jjj]+b31*X3[jjj]

elamda[jjj]<-1/exp(log[jjj])

} else if (st[jjj]==2){

log[jjj]<-b02+bt2*treatshort[jjj]+b12*X1[jjj]+b22*X2[jjj]+b32*X3[jjj]

elamda[jjj]<-1/exp(log[jjj])

} else if (st[jjj]==3){

log[jjj]<-b03+bt3*treatshort[jjj]+b13*X1[jjj]+b23*X2[jjj]+b33*X3[jjj]

elamda[jjj]<-1/exp(log[jjj])

} else if (st[jjj]==4){

log[jjj]<-b04+bt4*treatshort[jjj]+b14*X1[jjj]+b24*X2[jjj]+b34*X3[jjj]

elamda[jjj]<-1/exp(log[jjj])

}

T[jjj]<-rexp(1,rate=elamda[jjj])

}#loop of generating lamda

TT<-cbind(T,rectime[1:ininum]+T)

treat <- treatshort

#construct the initial incidence matrices after ininum patients

treat1 <- (treatshort==1)

X1short <- X1[1:ininum]

X1short0 <- X1short[!treat1]

X1short1 <- X1short[treat1]

X2short <- X2[1:ininum]
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X2short0 <- X2short[!treat1]

X2short1 <- X2short[treat1]

X3short <- X3[1:ininum]

X3short0 <- X3short[!treat1]

X3short1 <- X3short[treat1]

mat012 <- table(factor(X1short0, levels=c(0,1)),factor(X2short0,

levels=c(0,1)))

mat013 <- table(factor(X1short0, levels=c(0,1)),factor(X3short0,

levels=c(0,1)))

mat023 <- table(factor(X2short0, levels=c(0,1)),factor(X3short0,

levels=c(0,1)))

mat112 <- table(factor(X1short1, levels=c(0,1)),factor(X2short1,

levels=c(0,1)))

mat113 <- table(factor(X1short1, levels=c(0,1)),factor(X3short1,

levels=c(0,1)))

mat123 <- table(factor(X2short1, levels=c(0,1)),factor(X3short1,

levels=c(0,1)))

stop<-0

j<-ininum+1

upp1<-rep(0,catnum)

upp2<-rep(0,catnum)

t0<-rep(0,catnum)

t1<-rep(0,catnum)

n0<-rep(0,catnum)

n1<-rep(0,catnum)

while (j <= ntotal & stop == 0)

{

TTT<-ifelse(TT[,2]<=rectime[j], TT[,1], (rectime[j]+TT[,1]-TT[,2]))

for(cc in 1:catnum)

{

upp1[cc]<-gamma[cc]+sum(ifelse(treat==0 & st==cc ,1,0))

upp2[cc]<-gamma[cc]+sum(ifelse(treat==1 & st==cc ,1,0))

t0[cc]<-sum(TTT[treat==0 & st==cc])

t1[cc]<-sum(TTT[treat==1 & st==cc])

n0[cc]<-length(TT[(TT[,2]<=rectime[j] & treat==0 & st==cc),1])

n1[cc]<-length(TT[(TT[,2]<=rectime[j] & treat==1 & st==cc),1])

}

d<-n0[1]+n1[1]

ga1<-alpha+n0

ga2<-alpha+n1
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gb1<-beta+t0

gb2<-beta+t1

probtemp<-comp(ga1,ga2,gb1,gb2,upp1,upp2)

probra<-sqrt(probtemp)/(sqrt(probtemp)+sqrt(1-probtemp))

#What happens if we make the next treatment 0?

newmat012 <- mat012

newmat013 <- mat013

newmat023 <- mat023

newmat012[1+X1[j],1+X2[j]] <- newmat012[1+X1[j],1+X2[j]] + 1

newmat013[1+X1[j],1+X3[j]] <- newmat013[1+X1[j],1+X3[j]] + 1

newmat023[1+X2[j],1+X3[j]] <- newmat023[1+X2[j],1+X3[j]] + 1

#Table 4.12 page115

M12 <- matrix(as.vector(cbind(t(newmat012),t(mat112))),4,2)

M13 <- matrix(as.vector(cbind(t(newmat013),t(mat113))),4,2)

M23 <- matrix(as.vector(cbind(t(newmat023),t(mat123))),4,2)

#E12, E13 and E23 are the matrices of expected

#values of M12, M13 and M23 respectively

E12 <- outer(rowSums(M12),colSums(M12)[2],FUN = "*")/j

E13 <- outer(rowSums(M13),colSums(M13)[2],FUN = "*")/j

E23 <- outer(rowSums(M23),colSums(M23)[2],FUN = "*")/j

DA <- sum(abs(M12[,2]-E12), abs(M13[,2]-E13), abs(M23[,2]-E23))/j

# cat(" E12 :", E12 ,"\n")

#cat(" E13 :", E13 ,"\n")

#cat(" E23 :", E23 ,"\n")

#What happens if we make the next treatment 1?

newmat112 <- mat112

newmat113 <- mat113

newmat123 <- mat123

newmat112[1+X1[j],1+X2[j]] <- newmat112[1+X1[j],1+X2[j]] + 1

newmat113[1+X1[j],1+X3[j]] <- newmat113[1+X1[j],1+X3[j]] + 1

newmat123[1+X2[j],1+X3[j]] <- newmat123[1+X2[j],1+X3[j]] + 1

M12 <- matrix(as.vector(cbind(t(mat012),t(newmat112))),4,2)

M13 <- matrix(as.vector(cbind(t(mat013),t(newmat113))),4,2)

M23 <- matrix(as.vector(cbind(t(mat023),t(newmat123))),4,2)

E12 <- outer(rowSums(M12),colSums(M12)[2], FUN = "*")/j

E13 <- outer(rowSums(M13),colSums(M13)[2], FUN = "*")/j

E23 <- outer(rowSums(M23),colSums(M23)[2], FUN = "*")/j

DB <- sum(abs(M12[,2]-E12), abs(M13[,2]-E13), abs(M23[,2]-E23))/j

#cat(" E12 :", E12 ,"\n")

#cat(" E13 :", E13 ,"\n")

#cat(" E23 :", E23 ,"\n")
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#cat("DA =",DA," DB=",DB,"\n")

#select the next treatment

diff <- DA - DB

if(abs(diff) < 1.0e-5)

{probca <- 0.5} else

probca <- ifelse(diff>0,pfavour,(1-pfavour))

probraca<-(probca*probra)/(probca*probra+(1-probca)*(1-probra))

if(probtemp<=1-Pu)

{duration[isim]<-rectime[j]

early[isim]<-1

death[isim]<-d

stop<-1

chose[isim]<-2}# trt A is chosen to be superior trt

if(probtemp>=Pu)

{duration[isim]<-rectime[j]

early[isim]<-1

death[isim]<-d

stop<-1

chose[isim]<-1}# trt B is chosen to be superior trt

newtreat <- rbinom(1,1,probraca)

# cat("probca", probca,"\n")

#cat("probra", probra,"\n")

# cat("probraca", probraca,"\n")

treat<- c(treat,newtreat)

if (newtreat==0)

{adasta<-rmultinom(1, size = 1, prob = underp1)

adast<-sum(adasta*c(1:catnum))

if(adast==1){

adaplog<-b01+bt1*newtreat+b11*X1[j]+b21*X2[j]+b31*X3[j]

adaelamda<-1/exp(adaplog)

} else if (adast==2){

adaplog<-b02+bt2*newtreat+b12*X1[j]+b22*X2[j]+b32*X3[j]

adaelamda<-1/exp(adaplog)

} else if (adast==3){

adaplog<-b03+bt3*newtreat+b13*X1[j]+b23*X2[j]+b33*X3[j]

adaelamda<-1/exp(adaplog)

} else if (adast==4){

adaplog<-b04+bt4*newtreat+b14*X1[j]+b24*X2[j]+b34*X3[j]

adaelamda<-1/exp(adaplog)

}
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Tnew<-rexp(1,adaelamda)

mat012 <- newmat012

mat013 <- newmat013

mat023 <- newmat023

}# loop trt A

if (newtreat==1)

{adasta<-rmultinom(1, size = 1, prob = underp2)

adast<-sum(adasta*c(1:catnum))

if(adast==1){

adaplog<-b01+bt1*newtreat+b11*X1[j]+b21*X2[j]+b31*X3[j]

adaelamda<-1/exp(adaplog)

} else if (adast==2){

adaplog<-b02+bt2*newtreat+b12*X1[j]+b22*X2[j]+b32*X3[j]

adaelamda<-1/exp(adaplog)

} else if (adast==3){

adaplog<-b03+bt3*newtreat+b13*X1[j]+b23*X2[j]+b33*X3[j]

adaelamda<-1/exp(adaplog)

} else if (adast==4){

adaplog<-b04+bt4*newtreat+b14*X1[j]+b24*X2[j]+b34*X3[j]

adaelamda<-1/exp(adaplog)

}

Tnew<-rexp(1,adaelamda)

mat112 <- newmat112

mat113 <- newmat113

mat123 <- newmat123

}# loop trt B

st<-c(st,adast)

TT<-rbind(TT,c(Tnew, Tnew+rectime[j]))

j<-j+1

}#end of iterations through patients

if(j==ntotal+1 & stop==0)

{

TTT<-ifelse(TT[,2]<=maxtime, TT[,1], (maxtime+TT[,1]-TT[,2]))

#na<-sum(ifelse(treat==0,1,0))

# nb<-sum(ifelse(treat==1,1,0))

for(cc in 1:catnum)

{

upp1[cc]<-gamma[cc]+sum(ifelse(treat==0 & st==cc ,1,0))

upp2[cc]<-gamma[cc]+sum(ifelse(treat==1 & st==cc ,1,0))
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t0[cc]<-sum(TTT[treat==0 & st==cc])

t1[cc]<-sum(TTT[treat==1 & st==cc])

n0[cc]<-length(TT[(TT[,2]<=maxtime & treat==0 & st==cc),1])

n1[cc]<-length(TT[(TT[,2]<=maxtime & treat==1 & st==cc),1])

}

d_final<-n0[1]+n1[1]

ga1<-alpha+n0

ga2<-alpha+n1

gb1<-beta+t0

gb2<-beta+t1

#cat(" upp1", upp1,"\n")

#cat(" upp2", upp2,"\n")

# cat("ga1", ga1,"\n")

# cat("ga2", ga2,"\n")

# cat("gb1", gb1,"\n")

# cat("gb2", gb2,"\n")

probtemp<-comp(ga1,ga2,gb1,gb2,upp1,upp2)

# cat("probtemp", probtemp,"\n")

if(probtemp<=1-Pu)

{

fchose[isim]<-2}# trt A is chosen to be superior trt

if(probtemp>=Pu)

{

fchose[isim]<-1}# trt B is chosen to be superior trt

death[isim]<- d_final

duration[isim]<-maxtime

}

nlength[isim]<-length(treat)

#treatpro[isim]<-mean(treat)

imbalance[isim] <- ifelse(newtreat==1,DB,DA)

patientB_raca[isim]<-length(treat)*mean(treat)

patientA_raca[isim]<-length(treat)*(1-mean(treat))

}#loop of simulations

chose2<-mean(ifelse(chose==1,1,0))+mean(ifelse(fchose==1,1,0))

chose1<-mean(ifelse(chose==2,1,0))+mean(ifelse(fchose==2,1,0))

avduration<-mean(duration)

avdeath<-mean(death)

meanpatient<-mean(nlength)

earlytermination <- mean(early)
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sdduration<-sd(duration)

sddeath<-sd(death)

sdpatient<-sd(nlength)

number1<-mean(patientB_raca)

number0<-mean(patientA_raca)

sd1<-sd(patientB_raca)

sd0<-sd(patientA_raca)

power <-chose2

PBA<-(number1/meanpatient)*100

cat("Chance for arm A to be selected as the superior treatment=",

chose1,"\n")

cat("Chance for arm B to be selected as the superior treatment=",

chose2,"\n")

cat("# of patients in arm A=", number0,"\n")

cat("# of patients in arm B=", number1,"\n")

cat("sd of patients in arm A=", sd0,"\n")

cat("sd of patients in arm B=", sd1,"\n")

cat("# of patients in trial =", meanpatient,"\n")

cat("# of death =", avdeath,"\n")

cat("power of the test =", power,"\n")

cat("The probability of early termination =", earlytermination,"\n")

cat("The average length of trial =", avduration,"\n")

cat("The percentage of patients assigned to the better treatment =",

PBA,"\n")

cat("# of patients =", meanpatient,"\n")

cat("sd of patients =", sdpatient,"\n")

cat("sd of duration =", sdduration,"\n")

cat("sd of death =", sddeath,"\n")

cat("The average degree of imbalance measured at the end of the trial",

mean(imbalance ), "\n")

cat("The sd degree of imbalance measured at the end of the trial",

sd(imbalance ), "\n")
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