P2X7 receptor activation causes phosphatidylserine exposure in canine erythrocytes

Megan Faulks
University of Wollongong

Tracey A. Kuit
University of Wollongong, tburnett@uow.edu.au

Reece Sophocleous
University of Wollongong, rs256@uowmail.edu.au

Belinda L. Curtis
Albion Park Veterinary Hospital

Stephen J. Curtis
Albion Park Veterinary Hospital

See next page for additional authors

Publication Details
P2X7 receptor activation causes phosphatidylserine exposure in canine erythrocytes

Abstract
AIM To determine if activation of the ATP-gated P2X7 receptor channel induces phosphatidylserine (PS) exposure in erythrocytes from multiple dog breeds. METHODS Peripheral blood was collected from 25 dogs representing 13 pedigrees and seven crossbreeds. ATP-induced PS exposure on canine erythrocytes in vitro was assessed using a flow cytometric Annexin V binding assay. RESULTS ATP induced PS exposure in erythrocytes from all dogs studied. ATP caused PS exposure in a concentration-dependent manner with an EC50 value of 395 μmol/L. The non-P2X7 agonists, ADP or AMP, did not cause PS exposure. The P2X7 antagonist, AZ10606120, but not the P2X1 antagonist, NF449, blocked ATP-induced PS exposure. CONCLUSION The results indicate that ATP induces PS exposure in erythrocytes from various dog breeds and that this process is mediated by P2X7 activation.

Keywords
causes, p2x7, phosphatidylserine, activation, receptor, canine, erythrocytes, exposure

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

Authors

This journal article is available at Research Online: http://ro.uow.edu.au/smhpapers/4554
P2X7 receptor activation causes phosphatidylserine exposure in canine erythrocytes

Megan Faulks, Tracey A Kuit, Reece A Sophocleous, Belinda L Curtis, Stephen J Curtis, Lisa M Jurak, Ronald Sluyter

AIM
To determine if activation of the ATP-gated P2X7 receptor channel induces phosphatidylserine (PS) exposure in erythrocytes from multiple dog breeds.

METHODS
Peripheral blood was collected from 25 dogs representing 13 pedigrees and seven crossbreeds. ATP-induced PS exposure on canine erythrocytes in vitro was assessed using a flow cytometric Annexin V binding assay.

RESULTS
ATP induced PS exposure in erythrocytes from all dogs.
studied. ATP caused PS exposure in a concentration-dependent manner with an EC₅₀ value of 395 µmol/L. The non-P2X7 agonists, ADP or AMP, did not cause PS exposure. The P2X7 antagonist, AZ10606120, but not the P2X1 antagonist, NF449, blocked ATP-induced PS exposure.

CONCLUSION
The results indicate that ATP induces PS exposure in erythrocytes from various dog breeds and that this process is mediated by P2X7 activation.

Key words: Adenosine triphosphate; Dog; P2X1 receptor; P2X7 receptor; Phospholipid; Purinergic receptor; Red blood cells

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Phosphatidylserine (PS) exposure in erythrocytes has potential roles in erythrocyte clearance and thrombus formation. Activation of the ATP-gated P2X7 receptor channel induces PS exposure in human erythrocytes, but whether this process occurs in erythrocytes from other mammals remained hitherto unknown. The current study shows that extracellular ATP causes PS exposure in dog erythrocytes from 13 pedigrees and seven crossbreeds. Notably, the current study shows that this process is mediated by P2X7 activation. These results suggest that P2X7-mediated PS exposure on erythrocytes may have important roles in red blood cell biology in dogs.

INTRODUCTION
Exposure of the plasma membrane lipid, phosphatidylserine (PS), to the outer leaflet is an important physiological and pathophysiological signal[1]. In erythrocytes, PS exposure serves emerging roles in the clearance of senescent, damaged and diseased erythrocytes from the circulation[2]. Moreover, PS exposure can serve as a substrate for thrombin formation and incorporation of erythrocytes into thrombi[3]. PS exposure also serves as a parameter for stored erythrocyte integrity[4] and may be important in the removal of such cells following transfusion[5]. Thus, it remains important to understand the mechanisms by which PS becomes exposed on the surface of erythrocytes.

The P2X7 receptor is a trimeric ligand-gated channel activated by extracellular ATP[6] at concentrations at least 10-fold greater than that required for other purinergic receptors[7]. Functional P2X7 has been reported in humans, dogs, rodents and other species[8]. P2X7 and other purinergic receptors, namely P2X1, P2Y1 and P2Y13, are present on the plasma membrane of erythrocytes[9]. P2X7 activation induces PS exposure in human erythrocytes[10,11], but it remains unknown if P2X7 activation mediates PS exposure in erythrocytes from other species. ATP can induce PS exposure in erythrocytes obtained from English springer spaniels[12], but whether this process occurs in other dog breeds and whether it is mediated by P2X7 activation remains to be determined. P2X7, however, is present in leukocytes from various dog breeds[13,14] suggesting that P2X7 activation may mediate PS exposure in canine erythrocytes.

Using a flow cytometric Annexin V binding assay, the current study aimed to determine if ATP induces PS exposure in erythrocytes from multiple dog breeds and whether this process is mediated by P2X7 activation.

MATERIALS AND METHODS

Materials
Nucleotides were from Sigma Chemical Co. (St. Louis, MO). AZ10606120 was from Tocris Bioscience (Ellisville, MO). NF499 was from Cayman Chemical (Ann Arbor, MI).

Blood samples
Peripheral blood was collected from either pedigree or crossbreed dogs into VACUETTE lithium heparin tubes (Greiner Bio-One, Frickenheisen, Germany). All samples were collected from privately owned dogs presenting at the Albion Park Veterinary Hospital (Albion Park, Australia), with informed consent of owners, and in accordance with and approval from the Animal and Human Ethics Committees of the University of Wollongong (Wollongong, Australia). The animal protocol was designed to minimize pain or discomfort to the animals, and conducted according to standard veterinary practices.

PS exposure assays
Erythrocytes from peripheral blood were isolated and resuspended in NaCl medium (147.5 mmol/L NaCl, 2.5 mmol/L KCl, 5 mmol/L glucose, 20 mmol/L HEPES, pH 7.4) at a final haematocrit of 2% as described[12]. Erythrocytes were then incubated in 96-well U-bottom plates (Greiner Bio-One) in the absence or presence of nucleotide (as indicated) for 24 h at 37°C ± 5% CO₂. In some experiments, erythrocytes were pre-incubated in the absence or presence of AZ10606120 or NF449 for 15 min at 37°C prior to ATP addition. Following nucleotide incubation, 20 µL of resuspended erythrocytes were washed once in 1 mL Annexin V Binding Buffer (BioLegend, San Jose, CA) (450 × g for 3 min) and labeled with fluorescein isothiocyanate (FITC)-conjugated Annexin V (BioLegend, San Diego, CA) according to the manufacturer’s instructions. Data was collected using a BD (San Jose, CA) LSR II or LSRFortessa flow cytometer.
and FACSDiva software. The percentage of Annexin V$^+$ cells (PS exposure) was determined using FlowJo software (Tree Star, Inc., Ashland, OR).

Statistical analysis

Data is presented as mean ± SD. Statistical comparisons were performed using Prism 5 for Mac OS X (GraphPad Software, San Diego, CA). Differences between two or more groups were compared using a paired student’s t-test or an ANOVA (using Tukey’s multiple comparison test), respectively. Concentrations curves were fitted using the log(agonist) vs normalized response (variable slope) method.

RESULTS

To determine if ATP could induce PS exposure in erythrocytes in dog breeds other than English springer spaniels, erythrocytes, from 25 dogs representing 13 pedigrees and seven crossbreeds, were incubated in the absence or presence of 1 mmol/L ATP. Erythrocytes were labeled with FITC-conjugated Annexin V and analyzed by flow cytometry. The bars represent group means (A and B). A: The symbols represent the percentage of Annexin V$^+$ erythrocytes, from each dog, following incubation in the absence (basal) or presence of ATP; $bP<0.0001$ ATP vs basal; B: The symbols represent the percentage of ATP-induced PS exposure in erythrocytes, from each dog, determined as the difference in the percentage of Annexin V$^+$ erythrocytes following incubation in the presence and absence of ATP. The broken line represents the mean ATP-induced PS exposure from all dogs. The symbols for Staffordshire bull terrier X represent a Staffordshire bull terrier and Australian kelpie cross, Staffordshire bull terrier and bull terrier cross, or a Staffordshire bull terrier cross. PS: Phosphatidylserine.

Figure 1 ATP induces phosphatidylserine exposure in erythrocytes from multiple dog breeds. Erythrocytes, from 17 pedigree and eight crossbreed (X) dogs, in NaCl medium were incubated for 24 h at 37 $^\circ$C in the absence or presence of 1 mmol/L ATP. Cells were labeled with FITC-conjugated Annexin V and analyzed by flow cytometry. The bars represent group means (A and B). A: The symbols represent the percentage of Annexin V$^+$ erythrocytes, from each dog, following incubation in the absence (basal) or presence of ATP; $bP<0.0001$ ATP vs basal; B: The symbols represent the percentage of ATP-induced PS exposure in erythrocytes, from each dog, determined as the difference in the percentage of Annexin V$^+$ erythrocytes following incubation in the presence and absence of ATP. The broken line represents the mean ATP-induced PS exposure from all dogs. The symbols for Staffordshire bull terrier X represent a Staffordshire bull terrier and Australian kelpie cross, Staffordshire bull terrier and bull terrier cross, or a Staffordshire bull terrier cross. PS: Phosphatidylserine.

Figure 2A ATP-induced PS exposure in canine erythrocytes is concentration-dependent. Erythrocytes, from 25 dogs representing 13 pedigrees and seven crossbreeds, were incubated in the absence or presence of increasing concentrations of ATP. Cells were labeled with FITC-conjugated Annexin V and analyzed by flow cytometry. The mean ATP-induced PS exposure, from all dogs, is represented by the broken line. ATP-induced PS exposure was measured over a concentration range of 0.1–1000 mmol/L ATP. ATP exposure is expressed as a percent of Annexin V$^+$ cells.

Figure 2B ATP induces PS exposure in canine erythrocytes in a concentration-dependent manner. Erythrocytes, from 25 dogs representing 13 pedigrees and seven crossbreeds, were incubated in the absence or presence of increasing concentrations of ATP. Cells were labeled with FITC-conjugated Annexin V and analyzed by flow cytometry. The mean ATP-induced PS exposure, from all dogs, is represented by the broken line. ATP exposure is expressed as a percent of Annexin V$^+$ cells. The EC50 value was determined using the log(agonist) vs normalized response (variable slope) method.

To determine if P2X7 activation mediates exposure of PS in canine erythrocytes, erythrocytes were incubated with increasing concentrations of ATP and subsequent PS exposure assessed as described above. ATP induced PS exposure in a concentration-dependent manner with a maximum response at 2 mmol/L ATP and with an EC50 value of 395 ± 45 µmol/L (Figure 2A).

To further establish if P2X7 activation mediates PS exposure in canine erythrocytes, erythrocytes were incubated with ATP, as well as ADP and AMP, which do not activate canine P2X7$^{[12,15]}$. Again ATP caused robust PS exposure in erythrocytes compared to erythrocytes incubated in the absence of nucleotide (Figure 2B). In contrast, ADP and AMP did not induce PS exposure in erythrocytes, with binding of Annexin V similar to that of erythrocytes incubated in the absence of nucleotide (Figure 2B).

Finally, canine erythrocytes were pre-incubated in the absence or presence of AZ10606120, which impairs canine P2X7$^{[12,15]}$, or NF449, which impairs human and rodent P2X1$^{[16,17]}$, prior to ATP incubation. Pre-incubation with AZ10606120 impaired ATP-induced PS exposure by 79%, while pre-incubation with NF449 had minimal effect on ATP-induced PS exposure (Figure 2C). Neither
in canine erythrocytes is predominately mediated by P2X7 activation. First, the EC50 value for ATP-induced PS exposure (395 µmol/L) is similar to that observed for native and recombinant canine P2X7-mediated cation fluxes in English springer spaniel erythrocytes [12,18] and transfected HEK-293 cells [15,19], respectively; second, the non-P2X7 agonists, ADP and AMP, did not cause PS exposure; last, the P2X7 antagonist, AZ10606120, but not the P2X1 antagonist, NF449, impaired ATP-induced PS exposure. It should be noted that blockade with AZ10606120 was not complete indicating that either other purinergic receptors have an additional role in this process, or that AZ10606120 has limited efficacy in the conditions tested and that P2X7 remains solely responsible for ATP-induced PS exposure in canine erythrocytes. The latter is supported by at least three points. First, the concentration response curve for ATP-induced PS exposure revealed a simple, not biphasic, sigmoidal curve suggesting involvement of only one purinergic receptor subtype. Second, ATP concentrations below 100 µmol/L, which are sufficient to activate other ATP-responsive purinergic receptors [7], failed to cause PS exposure. Last, ADP, which can activate P2X1, P2Y1 and AZ10606120 nor NF449 affected PS exposure in the absence of ATP (Figure 2C).

DISCUSSION

The current study demonstrated that ATP induces PS exposure in erythrocytes from 25 dogs representing 13 pedigrees and seven crossbreeds. On average, ATP caused PS exposure on 78% of erythrocytes from these dogs. This value is similar to that of ATP-induced PS exposure previously observed in erythrocytes from English springer spaniels (88%) [12]. Combined, these data indicate that ATP can induce PS exposure in erythrocytes from multiple dog breeds and suggests that this is likely to be a common phenomenon in all breeds of dogs. Moreover, these data confirm that ATP-induced PS exposure in canine erythrocytes is about six-fold greater than that observed for ATP-induced PS exposure in human erythrocytes [13], which corresponds to the increased expression and activity of P2X7 in canine erythrocytes compared to human erythrocytes [12,18].

Similar to human erythrocytes [10,11], the current study also demonstrates that ATP-induced PS exposure in canine erythrocytes is predominately mediated by P2X7 activation. First, the EC50 value for ATP-induced PS exposure (395 µmol/L) is similar to that observed for native and recombinant canine P2X7-mediated cation fluxes in English springer spaniel erythrocytes [12,18] and transfected HEK-293 cells [15,19], respectively; second, the non-P2X7 agonists, ADP and AMP, did not cause PS exposure; last, the P2X7 antagonist, AZ10606120, but not the P2X1 antagonist, NF449, impaired ATP-induced PS exposure. It should be noted that blockade with AZ10606120 was not complete indicating that either other purinergic receptors have an additional role in this process, or that AZ10606120 has limited efficacy in the conditions tested and that P2X7 remains solely responsible for ATP-induced PS exposure in canine erythrocytes. The latter is supported by at least three points. First, the concentration response curve for ATP-induced PS exposure revealed a simple, not biphasic, sigmoidal curve suggesting involvement of only one purinergic receptor subtype. Second, ATP concentrations below 100 µmol/L, which are sufficient to activate other ATP-responsive purinergic receptors [17], failed to cause PS exposure. Last, ADP, which can activate P2X1, P2Y1 and
P2X7-mediated PS exposure on dog erythrocytes is unlikely to be involved in the clearance of these cells during cell stress, damage or disease. Alternatively, but not mutually exclusive to this point, P2X7-mediated PS exposure in erythrocytes may facilitate thrombus formation to promote wound healing and immunity during tissue injury or infection, or to inadvertently cause vasocclusion in disorders such as malaria, sickle cell disease or diabetes. The robust PS exposure in canine erythrocytes following P2X7 activation will provide a valuable experimental model to understand further the role of this receptor in red blood cell biology.

Finally, whilst PS exposure is routinely reported in canine platelets and to some extent canine leukocytes, to the best of our knowledge PS exposure in canine erythrocytes is limited to our preliminary and current observations. Thus, these studies support a rationale for exploring the physiological and pathophysiological roles and consequences of PS exposure in erythrocytes within dogs.

ACKNOWLEDGMENTS
The authors are grateful to Vanessa Suyter (University of Wollongong) for technical assistance and pet owners for samples.

COMMENTS

Background
Exposure of phosphatidylserine (PS) in erythrocytes has roles in erythrocyte clearance and thrombus formation. Activation of P2X7 by extracellular adenosine triphosphate (ATP) induces PS exposure in human erythrocytes, but whether this process occurs in erythrocytes from dogs was unknown. Therefore this study aimed to determine if ATP can induce PS exposure in erythrocytes from dogs and if so, whether this process is mediated by activation of P2X7.

Research frontiers
The mechanisms by which PS exposure on dog erythrocytes and the function of P2X7 on these cells occurs remain poorly characterised. Moreover, there are limited reports of PS exposure on dog erythrocytes in any context.

Innovations and breakthroughs
This study demonstrated that extracellular ATP causes PS exposure in dog erythrocytes from multiple breeds and that this process is mediated by activation of P2X7.

Applications
This study suggests that P2X7-mediated PS exposure on erythrocytes may have important roles in red blood cell biology in dogs. This may have potential therapeutic or biomarker applications. Moreover, the relatively high amount of P2X7-mediated PS exposure on dog erythrocytes may provide a model to study this process, including its biological significance, in greater detail.

Terminology
PS is a phospholipid that is predominately localized to the inner layer of the lipid bilayer of the plasma membrane of healthy cells, but can become localized to the outer layer (exposed) following cellular activation. Annexin V is a PS-binding protein that can be conjugated to a fluorescent label and used to study cellular PS exposure by fluorescent techniques such as flow cytometry. The P2X7 receptor is a plasma membrane ligand-gated channel activated by extracellular ATP.

Peer-review
It is a well written interesting paper studying ATP-induced PS exposure, which has potential roles in erythrocyte clearance and thrombus formation, from various dog breeds and showing that this process is mediated by P2X7 activation.

REFERENCES
1 Bevers EM, Williamson PL. Getting to the Outer Leaflet: