Magnetic field processing to enhance critical current densities of MgB2 superconductors

S X. Dou
University of Wollongong, shi@uow.edu.au

Wai Kong Yeoh
University of Wollongong

Olga V. Shcherbakova
University of Wollongong, olga@uow.edu.au

Josip Horvat
University of Wollongong, jhorvat@uow.edu.au

Jung Ho Kim
University of Wollongong, jhk@uow.edu.au

See next page for additional authors
Magnetic field processing to enhance critical current densities of Mg B 2 superconductors

Citation: Applied Physics Letters 89, 202504 (2006); doi: 10.1063/1.2388126
View online: http://dx.doi.org/10.1063/1.2388126
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/89/20?ver=pdfcov
Published by the AIP Publishing
Magnetic field processing to enhance critical current densities of MgB2 superconductors

S. X. Dou, a) W. K. Yeoh, O. Shcherbakova, J. Horvat, J. H. Kim, A. V. Pan, and D. Wexler
Institute for Superconducting and Electronic Materials, University of Wollongong, Northfields Ave., Wollongong, New South Wales 2522, Australia

Y. Li, W. X. Li, and Z. M. Ren
Department of Materials Science and Engineering, Shanghai University, Shanghai 200072, China

P. Munroe
Electron Microscope Unit, University of New South Wales, Sydney, New South Wales 2000, Australia

J. Z. Cui
Faculty of Engineering, Northeastern University, Shenyang 110004, China

(Received 24 January 2006; accepted 5 October 2006; published online 14 November 2006)

A magnetic field of up to 12 T was applied during the sintering process of pure MgB2 and carbon nanotube (CNT) doped MgB2 wires. The authors have demonstrated that magnetic field processing results in grain refinement, homogeneity, and enhancement in $J_c(H)$ and H_{c2}. The extent of improvement in J_c increases with increasing field. The J_c for a 10 T field processed CNT doped sample increases by a factor of 3 at 10 K and 8 T and at 20 K and 5 T, respectively. H_{c2} for the 10 T field processed CNT doped sample reached 9 T at 20 K, which exceeded the best value of SiC doped MgB2 at 20 K. Magnetic field processing reduces the resistivity in CNT doped MgB2, straightens the entangled CNTs, and improves the adherence between CNTs and the MgB2 matrix. © 2006 American Institute of Physics. [DOI: 10.1063/1.2388126]

MgB2 superconductor has made a significant impact on superconductivity research and development since its discovery. Chemical doping has been used to enhance the critical current density J_c and the upper critical field H_{c2}. Carbon and silicon carbide doping resulted in a significant increase of in-field J_c and H_{c2}, and these records still stand for MgB2. To further advance the development of MgB2 for applications we report a method of combining the magnetic field processing and carbon nanotube (CNT) doping. Magnetic field processing technology has proved to be a powerful tool to produce aligned carbon nanotubes (CNTs) in composites and macroscopic membranes and control the phase transformation and behavior of the melts during condensation processes, resulting in major improvements in material properties. Magnetic field processing has also been used to achieve the desired texture and improved J_c performance in high temperature superconductors. In processing of MgB2 bulk and wires the reaction in situ technique in combination with the powder-in-tube method has been used to produce the wires with the best field performance. In the in situ reaction process, Mg melts before the MgB2 formation by solid state reaction, provided that the heating rate is high enough. The presence of a liquid phase provides a window of opportunity for applying a magnetic field processing technique to achieve crystalline refinement, homogeneous distribution of additives and inclusions, and possible alignment of both matrix materials and additives.

In this work, a standard powder-in-tube method was used for Fe clad MgB2 wire. Powders of magnesium (99%) and amorphous boron (99%) were well mixed with 0 and 10 wt % of multiwall CNTs [outside diameter (o.d.) of 20 nm and length of 0.5–2 μm] and thoroughly ground. The Fe tube had an o.d. of 10 mm and a wall thickness of 1 mm and was 10 cm long with one end of the tube sealed. The mixed powder was packed into the tube, and the remaining end was blocked using an aluminum bar. The composite was drawn to a 1.4 mm diameter wire. Several short samples 2–3 cm in length were cut from the same wire. Some wires were rolled into tapes for study of anisotropy. These pieces were sealed in Fe tubes, then sintered in a tube furnace at 800–900 °C for 30 min in magnetic fields up to 12 T (H_m), with a high heating rate of 20 °C/min, and finally furnace cooled to room temperature. The processing field was applied parallel or perpendicular to the wire axis before the temperature was ramped up. The same processing conditions were used to treat the wire samples with field on and field off for comparison.

The magnetization of cores taken from the wires was measured at 5 and 20 K using a Quantum Design Physical Property Measurement System with a magnetic field sweep rate of 50 Oe/s and amplitude up to 9 T. Since there is a large sample size effect on the magnetic J_c for MgB2 fabricated by the reaction in situ process, all the samples for

<table>
<thead>
<tr>
<th>Sample</th>
<th>T_c (K)</th>
<th>$\rho_{300,K}$ (μΩ cm)</th>
<th>$\rho_{900,K}$ (μΩ cm)</th>
<th>RRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgB2 0 T</td>
<td>37.7</td>
<td>28.0</td>
<td>63.0</td>
<td>2.2</td>
</tr>
<tr>
<td>MgB2 5 T</td>
<td>37.7</td>
<td>23.5</td>
<td>58.0</td>
<td>2.4</td>
</tr>
<tr>
<td>CNT 0 T</td>
<td>35.6</td>
<td>50.8</td>
<td>81.0</td>
<td>1.6</td>
</tr>
<tr>
<td>CNT 10 T</td>
<td>36.7</td>
<td>34.3</td>
<td>63.0</td>
<td>1.9</td>
</tr>
<tr>
<td>CNT 0 T</td>
<td>35.4</td>
<td>61.6</td>
<td>96.6</td>
<td>1.6</td>
</tr>
<tr>
<td>CNT 12 T</td>
<td>36.1</td>
<td>43.5</td>
<td>75.6</td>
<td>1.7</td>
</tr>
</tbody>
</table>

a)Author to whom correspondence should be addressed; electronic mail: shi_dou@uow.edu.au

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 0003-6951/2006/89(20)/202504/3/$23.00 89, 202504-1 © 2006 American Institute of Physics
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 130.130.37.84 On: Wed, 08 Jan 2014 21:22:30

measurement were made to the same size for comparison. The magnetic J_c was derived from the height of the magnetization loop using the critical state model. Samples were measured with the field H applied perpendicular and parallel to the wire axis. The transport J_c was measured with the four-probe method, using a pulsed current source for critical currents down to about 70 A. In the high field region, which was characterized by critical currents lower than 1 A, a dc source was used to measure the transport J_c.

Table I lists the basic data for the undoped MgB$_2$ and 10 wt % CNT doped MgB$_2$ wires processed with and without magnetic field. The T_c for the undoped MgB$_2$ remained unchanged with field processing, while there is a small increase in the T_c for the two pairs of CNT doped samples which were processed without applied field and with 10 and 12 T fields, respectively. The resistivity was reduced by 20%–30% with field processing for both the undoped and CNT doped samples. Accordingly, there is an increase in the residual resistivity ratio (RRR) value for both samples. There is no noticeable change in lattice parameters for both the undoped and CNT doped samples with field processing. The interaction between magnetic field and materials will generate magnetization force, which can act as pulling force for magnetic and paramagnetic materials or repulsing force for diamagnetic materials. The magnetization force will also tend to rotate the crystals to align with the field direction if there is anisotropy in the overall magnetic susceptibility. As a result of these forces the magnetic processing has several beneficial effects, including improved interaction between components, reduced size of crystallites, homogenization, reduction of impurities, and alignment of parent or additive materials. The observed reduction in resistivity for both the undoped and CNT doped samples may be attributable to the improvement in convection and diffusion of components in the applied magnetic fields during Mg melting. There are no data on the magnetic property at high temperatures for Mg, B, and CNT. At room temperatures, B and MgB$_2$ were found to be diamagnetic, while CNT could be diamagnetic or paramagnetic depending on the helical structure, magnetic field, and orientation. As many metals, Mg could become paramagnetic in strong fields. It is evident that the magnetization force on B, CNT, and Mg will be different. It is the difference in magnetization force that will increase the migration among these components and hence improve the interaction between them, which, in turn, enhance the crystallinity and grain connectivity.

Figure 1 shows the transport $J_c(H)$ curves for the 10% CNT doped MgB$_2$ tape samples processed without field and with a 10 T field at 900 °C. A pronounced J_c enhancement was observed in the entire field region at both 10 and 20 K for the field processed sample. For the CNT doped sample, the resistivity $\rho_{40\,\text{K}}$ was reduced by 30% for the field processed sample, and there was a moderate increase in T_c due to the field processing (Table I). The XRD data indicate that there is no change in the lattice parameters upon field processing for both the undoped and CNT doped samples. Thus, the improvement in the resistivity may be attributable to the improved grain connectivity and the connectivity between CNTs and MgB$_2$ grains. The extent of the enhancement in J_c due to the field processing increases with increasing measurement field H. For example, the J_c for a 10 T field processed CNT doped sample increases by a factor of 3 at 10 K and 8 T and at 20 K and 5 T, respectively. It is particularly worth noting that the irreversibility field (H_{irr}) for the field processed sample reached 9 T, which exceeded the record value for the SiC doped MgB$_2$ at 20 K. The J_c for the CNT doped sample shows a small anisotropy when the measurement field H is applied perpendicular (H_{\perp}) and parallel to the processing field H_{\parallel} ($H_{\|}$). As the MgB$_2$ crystals are not aligned in the magnetic field, the anisotropy in the CNT doped MgB$_2$ may be attributable to some extent to CNT alignment in the field. Figure 2 shows the upper critical field H_{c2} and irreversibility field H_{irr} versus temperature T for the undoped and CNT doped samples processed with field and without field. The field processing showed no effect on H_{c2} and H_{irr} for the undoped sample but a small improvement for the CNT doped sample within the limited field up to 9 T.

As reported in previous work, the added CNTs were entangled in the MgB$_2$ matrix for the non-field-processed sample and appeared as mainly bare CNTs that were not well bonded to the MgB$_2$ matrix. In contrast, all the CNTs in the magnetic field processed sample are straightened and embedded in the MgB$_2$ matrix as shown in Fig. 3(a). Figure 3(b) shows a focused ion beam (FIB) assisted SEM for the CNT doped MgB$_2$ processed with a 5 T pulsed magnetic field ap-
MgB₂ growth in the area of CNT agglomerates. These whiskers are formed under magnetic field with CNTs as nucleation centers for the magnetic field. We can extend the concept of Mg could create some liquid environment for the rotating force to align CNTs in field. However, there is substantive evidence of the provision of a unique window of opportunity to control the microstructure and the behavior of various additives that have a response to magnetic field. We can extend the conventional materials processing variables of pressure, composition, and temperature, f(P, C, T), to include field (H) and magnetization (M) of the matrix and additives, f(P, C, T, H, M). We can manipulate various combinations of the parameters such as field strength, processing temperature and time, and the properties of additives to achieve an optimal enhancement in Jc(H). As the formation of MgB₂ in the reaction in situ technique is a rapid process, magnetic field processing can be used in large-scale production.

This work was supported by the Australian Research Council, Hyper Tech Research Inc, OH, U.S.A., and Alphatech International Ltd., N.Z. The authors thank Dr. X. L. Wang, Dr. A. Pan, Dr. T. Silver, and M. Tomsic for helpful comments. One of the authors (W.K.Y.) received an Australia-Asia Award funded by the Australian Government. Two of the authors (Z.M.R. and Y.L.) would like to thank the Natural Science Foundation of China for their support.