2017

Soil methane oxidation in both dry and wet temperate eucalypt forests shows a near-identical relationship with soil air-filled porosity

Benedikt J. Fest
University of Melbourne

Nina Hinko-Najera
University of Melbourne

Tim Wardlaw
Forestry Tasmania

David W. T Griffith
University of Wollongong, griffith@uow.edu.au

Stephen J. Livesley
University of Melbourne

See next page for additional authors

Publication Details

Soil methane oxidation in both dry and wet temperate eucalypt forests shows a near-identical relationship with soil air-filled porosity

Abstract
Well-drained, aerated soils are important sinks for atmospheric methane (CH\(_4\)) via the process of CH\(_4\) oxidation by methane-oxidising bacteria (MOB). This terrestrial CH\(_4\) sink may contribute towards climate change mitigation, but the impact of changing soil moisture and temperature regimes on CH\(_4\) uptake is not well understood in all ecosystems. Soils in temperate forest ecosystems are the greatest terrestrial CH\(_4\) sink globally. Under predicted climate change scenarios, temperate eucalypt forests in south-eastern Australia are predicted to experience rapid and extreme changes in rainfall patterns, temperatures and wild fires. To investigate the influence of environmental drivers on seasonal and inter-annual variation of soil-atmosphere CH\(_4\) exchange, we measured soil-atmosphere CH\(_4\) exchange at high-temporal resolution (< 2 h) in a dry temperate eucalypt forest in Victoria (Wombat State Forest, precipitation 870 mm yr\(^{-1}\)) and in a wet temperature eucalypt forest in Tasmania (Warra Long-Term Ecological Research site, 1700 mm yr\(^{-1}\)). Both forest soil systems were continuous CH\(_4\) sinks of −1.79 kg CH\(_4\) ha\(^{-1}\) yr\(^{-1}\) in Victoria and −3.83 kg CH\(_4\) ha\(^{-1}\) yr\(^{-1}\) in Tasmania. Soil CH\(_4\) uptake showed substantial temporal variation and was strongly controlled by soil moisture at both forest sites. Soil CH\(_4\) uptake increased when soil moisture decreased and this relationship explained up to 90 % of the temporal variability. Furthermore, the relationship between soil moisture and soil CH\(_4\) flux was near-identical at both forest sites when soil moisture was expressed as soil air-filled porosity (AFP). Soil temperature only had a minor influence on soil CH\(_4\) uptake. Soil nitrogen concentrations were generally low and fluctuations in nitrogen availability did not influence soil CH\(_4\) uptake at either forest site. Our data suggest that soil MOB activity in the two forests was similar and that differences in soil CH\(_4\) exchange between the two forests were related to differences in soil moisture and thereby soil gas diffusivity. The differences between forest sites and the variation in soil CH\(_4\) exchange over time could be explained by soil AFP as an indicator of soil moisture status.

Keywords
porosity, forests, air-filled, relationship, both, oxidation, methane, soil, dry, wet, temperate, near-identical, shows, eucalypt

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

Authors
Benedikt J. Fest, Nina Hinko-Najera, Tim Wardlaw, David W. T Griffith, Stephen J. Livesley, and Stefan K. Arndt

This journal article is available at Research Online: http://ro.uow.edu.au/smhpapers/4393
Soil methane oxidation in both dry and wet temperate eucalypt forests shows a near-identical relationship with soil air-filled porosity

Benedikt J. Fest1, Nina Hinko-Najera2, Tim Wardlaw3, David W. T. Griffith4, Stephen J. Livesley1, and Stefan K. Arndt1

1School of Ecosystem and Forest Sciences, The University of Melbourne, Richmond, 3121 Victoria, Australia
2School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, 3363 Victoria, Australia
3Forest Management Services Branch, Forestry Tasmania, Hobart, 7000 Tasmania, Australia
4School of Chemistry, University of Wollongong, Wollongong, 2522 New South Wales, Australia

Correspondence to: Benedikt J. Fest (bfest@unimelb.edu.au)

Received: 5 May 2016 – Published in Biogeosciences Discuss.: 28 June 2016
Revised: 16 November 2016 – Accepted: 17 November 2016 – Published: 27 January 2017

Abstract. Well-drained, aerated soils are important sinks for atmospheric methane (CH4) via the process of CH4 oxidation by methane-oxidising bacteria (MOB). This terrestrial CH4 sink may contribute towards climate change mitigation, but the impact of changing soil moisture and temperature regimes on CH4 uptake is not well understood in all ecosystems. Soils in temperate forest ecosystems are the greatest terrestrial CH4 sink globally. Under predicted climate change scenarios, temperate eucalypt forests in southeastern Australia are predicted to experience rapid and extreme changes in rainfall patterns, temperatures and wild fires. To investigate the influence of environmental drivers on seasonal and inter-annual variation of soil-atmosphere CH4 exchange, we measured soil-atmosphere CH4 exchange at high-temporal resolution (< 2 h) in a dry temperate eucalypt forest in Victoria (Wombat State Forest, precipitation 870 mm yr−1) and in a wet temperature eucalypt forest in Tasmania (Warra Long-Term Ecological Research site, 1700 mm yr−1). Both forest soil systems were continuous CH4 sinks of −1.79 kg CH4 ha−1 yr−1 in Victoria and −3.83 kg CH4 ha−1 yr−1 in Tasmania. Soil CH4 uptake showed substantial temporal variation and was strongly controlled by soil moisture at both forest sites. Soil CH4 uptake increased when soil moisture decreased and this relationship explained up to 90% of the temporal variability. Furthermore, the relationship between soil moisture and soil CH4 flux was near-identical at both forest sites when soil moisture was expressed as soil air-filled porosity (AFP). Soil temperature only had a minor influence on soil CH4 uptake. Soil nitrogen concentrations were generally low and fluctuations in nitrogen availability did not influence soil CH4 uptake at either forest site. Our data suggest that soil MOB activity in the two forests was similar and that differences in soil CH4 exchange between the two forests were related to differences in soil moisture and thereby soil gas diffusivity. The differences between forest sites and the variation in soil CH4 exchange over time could be explained by soil AFP as an indicator of soil moisture status.

1 Introduction

Methane (CH4) has a relatively low atmospheric concentration of approximately 1.8 ppm and is, after carbon dioxide (CO2, approx. 402 ppm), the second most abundant greenhouse gas in the atmosphere (IPCC, 2013). Although its atmospheric concentration is 2 orders of magnitude lower than that of CO2, CH4 accounts for approximately 18% of the currently observed global temperature increase (IPCC, 2013). In addition, CH4 contributes to 32% of the current radiative forcing created by the major greenhouse gases as it has a 25 times greater global warming potential compared to CO2 (IPCC, 2013).

Forest soils are the most important land-based sink for CH4 via the activity of methane-oxidising bacteria (MOB) in well-drained, aerobic soils. Soils in temperate forest ecosystems play an important role in global CH4 exchange between the land mass and the atmosphere and they constitute around
30–50 % of the soil-based CH4 sink worldwide (Ojima et al., 1993; Dutaur and Verchot, 2007).

Major environmental factors controlling and influencing CH4 uptake rates by forest soils are soil diffusivity, soil structure, soil moisture, soil temperature and soil nitrogen status (Ball et al., 1997; Smith et al., 2003; von Fischer and Hedin, 2007; Butterbach-Bahl et al., 2002; Del Grosso et al., 2000).

The main factor regulating the CH4 uptake capacity of soils is the diffusion rate of CH4 through the soil and hence the substrate availability of CH4 to the MOB across the soil profile. CH4 uptake rates have been shown to decrease with increasing soil moisture as a result of decreasing soil gas diffusion rates across different ecosystems (Castro et al., 1995; Khalil and Baggs, 2005; Ball et al., 1997). Therefore, CH4 uptake is thought to be most rapid in coarse-textured forest soils with a well-developed structure and an organic surface layer that does not inhibit gas diffusion (Boeckx et al., 1997; Del Grosso et al., 2000; Smith et al., 2000). Soil bulk density can also correlate with soil CH4 uptake across different ecosystems (Smith et al., 2003, 2000), which is not unexpected since soil air-filled porosity, which is directly linked to soil diffusivity, is a function of soil bulk density and volumetric water content.

Soil CH4 uptake at atmospheric levels generally shows limited temperature dependency and reported Q10 values are generally low with an average around 1.4 (Crill, 1991; Born et al., 1990; Smith et al., 2000). Another factor that influences the CH4 uptake capacity of soils is soil N status, especially the availability of ammonium (NH4+) (Butterbach-Bahl et al., 1998; Sitalua et al., 1995). Increasing soil N availability through organic and inorganic fertiliser additions and through biological N fixation can decrease CH4 uptake rates (Niklaus et al., 2006; Dick et al., 2006).

Temperate eucalypt (broadleaved evergreen) forests in south-eastern Australia cover around 26 million hectares (Montreal Process Implementation Group for Australia and south-eastern Australia cover around 26 million hectares (Montreal Process Implementation Group for Australia and National Forest Inventory Steering Committee, 2013) and provide a large range of ecosystem services. However, despite a growing interest in soil CH4 uptake in the last decade there have been very few studies investigating CH4 oxidation in soils of natural Australian forest and woodland ecosystems, with only a relatively small number of published studies on CH4 uptake in temperate forest systems (Livesley et al., 2009; Meyer et al., 1997; Fest, 2013; Fest et al., 2009, 2015a, b), tropical forest systems (Kiese et al., 2003) and savanna ecosystems (Livesley et al., 2011). Moreover, there is currently no model that accurately predicts the size of the terrestrial CH4 sink in Australia or determines how the strength of this sink will change over time. Data describing CH4 emission and oxidation from Australian soils is still patchy and often lacking for important landscapes such as tropical savannas, the semi-arid and arid zones and woody ecosystems (Dalal et al., 2008).

Compared to most European and North American temperate forest systems, forest soils in the Australian temperate region are generally highly weathered and very low in nutrients and atmospheric nitrogen deposition is very low. Furthermore most of the temperate forest area in Australia does not experience periods of snow cover or below zero soil temperatures. It is therefore questionable as to whether information gathered on spatial and temporal variability of soil CH4 exchange in Northern Hemisphere temperate forest soils are transferable to those in Australia. Furthermore, it is not clear if processes that explain soil CH4 uptake in deciduous forest systems or coniferous forest systems worldwide can be directly transferred to the eucalypt or acacia forest systems that dominate the forests and woodlands of Australia. Most estimates of soil CH4 exchange in Australian forest systems were based on infrequent (weekly–monthly) or campaign-based measurements (of 1–2 weeks), which may not fully reflect the temporal dynamics and range of environmental conditions.

This study investigates soil–atmosphere CH4 exchange using automated chamber systems measuring at a high-temporal resolution over 1–2 years in two temperate Eucalyptus obliqua-dominated forest sites with contrasting annual precipitation. The main objectives of this study were to assess the magnitude and temporal variation in CH4 exchange between the soil and atmosphere in temperate evergreen eucalypt forest systems and to investigate the primary biophysical processes that control the seasonality in soil CH4 flux.

2 Material and methods

2.1 Site description

The Tasmanian site is in the Warra Long-Term Ecological Research (LTER) site approximately 60 km west-southwest of Hobart, Tasmania, Australia (AU-WRR: 43°5′36.78″ S, 146°38′42.65″ E). The site is dominated by Eucalyptus obliqua (L’Her.) with an overstorey height of around 53 m and a basal area of 54 m² ha⁻¹. The understorey is mainly comprised of Acacia melanoxylon (R. Br.), Nothofagus cunninghamii (Hook.) Oerst. and Dicksonia antarctica (Labill.). The climate of AU-WRR is classified as temperate cool wet (Dunlop and Brown, 2008) with cold and wet winters and warm and wet summers. The average rainfall is approximately 1700 mm yr⁻¹ (Fig. 1a) with mean monthly maximum temperatures of 19.3 °C in January (summer) and mean minimum temperatures of 2.5 °C in July (winter). The soils at Warra are derived from Permian siltstone with a surface texture of silty loam to silty clay loam and are classified as Kurosolic Reddish Hydrosol (McIntosh, 2012). The average bulk density in the top 5 cm of mineral soil is 0.67 g cm⁻³ and soil porosity is 0.74 cm³ g⁻¹.

The Victorian forest site is in the Wombat State Forest, approximately 120 km west of Melbourne, Australia (AU-WOM: 37°25′20.83″ S, 144°5′38.63″ E). AU-WOM is dominated by Eucalyptus obliqua (L’Her.), Eucalyptus rubida (H.
Deane & Maiden) and *Eucalyptus radiata* (Sieber ex DC.) trees of approximately 20–25 m in height and 37 m2 ha$^{-1}$ of stem basal area. The climate is classified as Mediterranean to cool temperate, with warm and dry summers and wet and cool winters. The average rainfall is approximately 870 mm yr$^{-1}$ (Fig. 1b) with mean monthly maximum temperatures of 25.6 °C in January (summer) and mean minimum temperatures of 3.4 °C in July (winter). The soils of AU-WOM are derived from weathered sandstone and shale, with a surface texture of sandy clay loam, classified as an acidic-mottled, dystrophic, yellow Dermosol (Robinson et al., 2003). The average bulk density in the top 5 cm of mineral soil is 0.90 g cm$^{-3}$ and soil porosity is 0.65 cm3 cm$^{-3}$.

2.1.1 Experimental design AU-WRR

The temporal variation in soil–atmosphere exchange of CH$_4$ was monitored continuously from 10 October 2010 to 15 January 2012 using a fully automated gas chromatograph (GC) measurement system attached to 10 pneumatic open-and-close chambers as described in Livesley et al. (2009). This system was supported by a remote area power system consisting of a 5 kW diesel generator and 12 V battery bank. The 10 chambers were randomly distributed over an area of approximately 25 × 25 m. Chambers were attached to a square steel-frame base (e.g. 50 × 50 cm) which was inserted 5 cm into the soil and a plexiglass headspace of 15 cm depth (e.g. 37.5 L chamber volume). Chambers were attached to the frame using clamps and closed cell foam. For each chamber, six flux rate measurements were made during a 24 h period, one every 4 h. Further details of the automated trace gas measurement system, chamber design and gas chromatograph can be found in Butterbach-Bahl et al. (1997), Papen and Butterbach-Bahl (1999) and Livesley et al. (2009). Soil temperature (12-Bit Temp Smart Sensor, Onset Computer Cooperation, USA) and moisture (EC-5 Soil Moisture Smart Sensor, Onset Computer Cooperation, USA) was logged at 0–10 cm on a half-hourly basis (Hobo U30, Hobo Data Logger, Onset Computer Cooperation, USA) in the middle of the site. Chamber pneumatic lids opened automatically when rainfall, measured by a tipping bucket rain gauge, exceeded 1 mm in 5 min to avoid a potential reduction in soil moisture inside the chambers caused by the rainfall exclusion during the relatively long time of chamber closure (2 h).

2.1.2 Experimental design AU-WOM

Temporal variation in soil–atmosphere exchange of CH$_4$ was monitored continuously from 1 May 2010 to 30 April 2012 using a fully automated Fourier transform infrared (FTIR) spectrometer measurement system attached to six pneumatic open-and-close chambers (Griffith et al., 2012). This system was supported by a remote area power system consisting of a 4.5 kW diesel generator and 24 V battery bank. The automatic chambers used followed the same design as that described at the AU-WRR site. The opening and closing of the lids via pneumatic pistons was controlled with the measuring software on site (Spectronus Software, Ecotech PTY Ltd). Six chambers were distributed randomly over an area of around 25 × 25 m and were measured in sequence with each chamber initially having a measuring period of 15 min (1 May–21 October 2010) that was later extended to 20 min to increase detection precision for other simultaneously measured trace gases (22 October 2010–30 April 2012). Lids were open for both the first and the last 2 min of every 15/20 min measuring interval per chamber to flush the sample lines with ambient air, resulting in a chamber incubation period of 11/16 min. One CH$_4$ flux measurement per chamber was achieved every 1.5/2 h. The chambers were not fitted with a fan, but there was forced ventilation during the incubation period of each chamber through the use of an external pump which circulated the air in a closed loop through the
head-space of the chamber (closed dynamic set-up), attached airlines (0.3 L tubing volume) and the measuring cell (3.5 L cell volume) of a FTIR spectrometer set-up (Spectronus, Ecotech Pty. Ltd., Australia). The spectrometer (Bruker IR-cube with globar source and thermoelectrically cooled mercury cadmium telluride detector) measured concentrations of CH₄, CO₂, N₂O, carbon monoxide and water vapour in the air stream (Meyer et al., 2001; Griffith et al., 2012; Hammer et al., 2013). Measurements of the CH₄ concentration were made every minute during the 15/20 min chamber period. Further information about measuring principle, instrument set-up, maintenance and calibration can be found in Griffith et al. (2012). Soil temperature (thermocouple probe) and moisture (impedance probes, ML2X – Theta Probe Soil Moisture Sensor, Delta-T Devices Ltd., UK) was recorded continuously at 0–5 cm within each chamber. In addition, soil temperature (Averaging Soil Thermocouple Probe, TC-AV, Campbell Scientific Australia) and soil moisture (Water Content Reflectometer, CS616, Campbell Scientific Australia) were recorded on a half-hourly basis at 0–10 cm by an on-site eddy covariance system. Given the relatively short closure period of 11/16 min for each chamber during a 4 h period, we decided that automated chamber opening in response to rainfall events was not necessary.

2.2 Flux calculation

CH₄ flux rates were calculated for both automated measuring systems from the rate of increase/decrease of gas concentration in the chamber head space with time according to

\[F_{\mu L} = (V/A) \times (dC_{CH_4}/dt) \]

where \(V \) is the volume (L) of the chamber head space plus sample lines and the FTIR sample cell, \(A \) is the soil surface area covered by the chamber (m²) and \(t \) is time. The term \(dC_{CH_4}/dt \) (µL·L⁻¹·h⁻¹) was calculated from the initial linear CH₄ concentration change after chamber closure. In cases where the fitted linear regression model had an \(R^2 < 0.9 \), this flux measurement was excluded from further analysis. The determined flux rate (\(F_{\mu L} \)) was subsequently converted to µmol CH₄ m⁻² h⁻¹ (\(F_{\mu mol} \)) by accounting for temperature, pressure and volume using Eq. (2) based on the ideal gas law:

\[F_{\mu mol} = (F_{\mu L} \times P)/(R \times T) \]

where \(P \) is the atmospheric pressure in kPa at site according to altitude or direct measurement (Eddy tower), \(R \) is 8.3144 (the ideal gas constant in L·kPa⁻¹·K⁻¹) and \(T \) is the air temperature in kelvin (273.15 + °C). Fluxes in µmol CH₄ m⁻² h⁻¹ were then converted to µg CH₄·C m⁻² h⁻¹ based on the molecular atomic mass.

2.3 Additional measurements

From within each site, composite soil samples (three 0–5 cm samples) were collected, sieved (2 mm) and sub-sampled for 1M KCl extraction (1:4, soil:KCl) and gravimetric water content (GWC₃) determination (105 °C for 48 h) during additional seasonal measurement campaigns spread across the measurement time frame \((n = 13 \text{ in AU-WOM}, n = 10 \text{ in AU-WRR. } \text{KCl extracts were filtered (Whatman 42) and frozen prior to analysis for nitrate (NO}_3^- \text{) and ammonium (NH}_4^+ \text{) concentration using an autoanalyser (SFA, Technicon™).})

During initial site installation (and over the course of the measurement time frame), approximately 30 volumetric soil cores (0–5 cm, Ø 72 mm) were sampled at each site to determine soil volumetric water content (VWC) and soil bulk density (BD). The data were used to establish site dependent calibration curves between the on-site installed soil moisture sensors (HOBOMicro Station Data Logger H21 and EC-5 Soil Moisture Smart Sensor, Onset Computer Corporation, USA), hand-held impedance probes (ML2X – Theta probe and HH2 Moisture Meter, Delta-T Devices Ltd., UK) and VWC (Kaleita et al., 2005). The bulk density and volumetric water content data and their relationship to the on-site installed soil moisture sensor readings and hand-held impedance probes readings were further used to calculate soil porosity, air-filled porosity and percentage water-filled pore space (%WFPS) for each plot and measuring event according to Loveday and Commonwealth Bureau of Soils (1973) as follows:

\[\text{soil porosity} = 1 - \left(\frac{\text{soil bulk density}}{\text{particle density}} \right) \]

where a value of 2.65 was used for particle density (g cm⁻³) of rock, sand grains and other soil mineral particles;

\[\text{air} - \text{filled porosity} = \frac{\text{soil porosity}}{\text{volumetric water content}} \]

\[\%\text{WFPS} = \frac{(\text{volumetric water content} \times 100)}{\text{soil porosity}}. \]

At the end of the study, a composite soil sample from five soil cores was collected at 0–5 cm at each site, air dried, sieved (2 mm) and analysed for soil particle size analysis through dispersion, suspension, settling and sequential hydrometer readings (Ashworth et al., 2001). A sub-sample of each air-dried soil was analysed for pH (1.5, soil: water) and for total C and N content using an elemental analyser (LECO®).

2.4 Data presentation and statistical analyses

Flux and environmental sensor data presented (if not specifically related to individual chambers) in the figures here after are averages for respective chamber cycles where at least two-thirds of the chamber flux measurements had passed the above mentioned flux quality control (1.5/2 h cycle for the FTIR system and a 4 h cycle average for the GC system) at each site ±1 SE (where error bars are present). We also calculated the coefficient of variance per chamber cycle (CV%cycle) by dividing the standard deviation of each chamber cycle by its respective mean and multiplying the result.
by 100. Furthermore, soil temperature and soil moisture data were averaged accordingly for each chamber cycle to allow regression analysis. In a second step, to enable correlation analysis with daily rainfall and sporadic soil inorganic nitrogen measurements we calculated daily averages of the measured fluxes and environmental parameters, with the exception of rainfall where we calculated daily sums, for days where at least 80 % of chamber cycles were available. In addition, we calculated the coefficient of variation per day (CV_day) for the CH\(_4\) flux data. As outlined above, we excluded fluxes where the coefficient of determination of the regression of chamber concentration vs. time was less than 0.9, which lead to the exclusion of approximately 10 % of measured chamber fluxes. However, longer gaps in flux data, as shown in Figs. 1a and 2a, are either a result of power failures or the need to switch off the power generators on days of extreme fire danger. This led to data gaps in around 30 % of the individual datasets.

All statistical analyses were performed with SPSS 20 (IBM, USA). Linear regression procedures and multiple linear regression procedures were used to investigate temporal relationships between measured soil environmental parameters and soil CH\(_4\). We initially ran stepwise linear regression procedure as an exploratory tool to identify significant predictors and predictor combinations and retested these afterwards in simple or multiple linear regression models. We transformed data when necessary to reduce heteroscedasticity for linear regression analysis. We used a restricted maximum likelihood framework (REML: automatic linear modelling in SPSS) to arrive at the Akaike information criterion for three selected models that predict soil CH\(_4\) uptake (one model containing only soil temperature, one model containing only a measure of soil moisture (we choose air-filled porosity, AFP) and one model containing soil temperature and AFP as a predictors of soil CH\(_4\) flux.

Table 1. Parameters and coefficients of determination (Adj. \(R^2\)) of linear regression models explaining seasonal variability in mean chamber cycle methane flux (\(F_{\text{CH}_4}\)) at a mixed Eucalyptus obliqua forest stand, Wombat State Forest, Victoria (AU-WOM) and at a mixed E. obliqua and E. regnans forest stand, Warra LTER, Tasmania, Australia (AU-WRR). Standardised coefficients \(\beta\) are in parentheses. SD refers to standard deviation of parameter; level of significance \((\ast p \geq 0.001)\). Predictors: \(T_s\) (soil temperature), AFP (air-filled porosity) and soil VWC (volumetric water content). Presented constants are model intercepts and parameters represent the slopes for the predictor variables.

<table>
<thead>
<tr>
<th>Site</th>
<th>Dependent variable</th>
<th>Constant VWC (SD = 0.051)</th>
<th>(T_s) (SD = 1.98)</th>
<th>AFP (SD = 0.488)</th>
<th>Adj. (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU-WRR</td>
<td>(F_{\text{CH}_4}) (SD = 10.899)</td>
<td>(-92.307^) 195.378(0.925)</td>
<td>(-2.215*) (0.939) - -</td>
<td>(-195.378*) (0.925)</td>
<td>(-0.855^*)</td>
</tr>
<tr>
<td></td>
<td>(F_{\text{CH}_4}) (SD = 10.899)</td>
<td>(-19.543^) 191.664(0.907)</td>
<td>(-0.254^*) (0.046) - -</td>
<td>(-195.378*) (0.925)</td>
<td>(-0.857^*)</td>
</tr>
<tr>
<td></td>
<td>(F_{\text{CH}_4}) (SD = 10.899)</td>
<td>(-88.835^) 191.664(0.907)</td>
<td>(-0.254^*) (0.046) - -</td>
<td>(-195.378*) (0.925)</td>
<td>(-0.857^*)</td>
</tr>
<tr>
<td></td>
<td>(F_{\text{CH}_4}) (SD = 10.899)</td>
<td>(53.640^) 190.664(0.907)</td>
<td>(-0.1701^*) (0.458) - -</td>
<td>(-195.378*) (0.925)</td>
<td>(-0.857^*)</td>
</tr>
<tr>
<td>AU-WOM</td>
<td>(F_{\text{CH}_4}) (SD = 11.296)</td>
<td>(-75.068^) 195.768(0.957)</td>
<td>(-1.701^*) (0.458) - -</td>
<td>(-195.768*) (0.957)</td>
<td>(-0.915^*)</td>
</tr>
<tr>
<td></td>
<td>(F_{\text{CH}_4}) (SD = 12.720)</td>
<td>(-6.320^) 201.671(0.982)</td>
<td>(0.147^*) (0.047) (-) -</td>
<td>(-195.768*) (0.957)</td>
<td>(-0.900^*)</td>
</tr>
<tr>
<td></td>
<td>(F_{\text{CH}_4}) (SD = 10.607)</td>
<td>(-78.336^) 201.671(0.982)</td>
<td>(0.147^*) (0.047) (-) -</td>
<td>(-195.768*) (0.957)</td>
<td>(-0.900^*)</td>
</tr>
<tr>
<td></td>
<td>(F_{\text{CH}_4}) (SD = 11.296)</td>
<td>(53.943^) 190.664(0.907)</td>
<td>(-1.701^*) (0.458) - -</td>
<td>(-195.768*) (0.957)</td>
<td>(-0.915^*)</td>
</tr>
</tbody>
</table>

2.5 Annual site CH\(_4\) flux budgets

To calculate annual site CH\(_4\) flux budgets for both sites we first selected a 12-month period with the greatest data coverage for daily average flux for both sites (1 January 2011–1 January 2012) and filled existing flux data gaps as follows. For small data gaps of single days where no environmental sensor or flux data were available, we calculated values based on linear interpolation between the CH\(_4\) flux of the day before the gap and the day after the gap. For data gaps longer than 1 day, we used the linear regression model between soil VWC soil moisture and daily soil CH\(_4\) flux for each site (Table 1) to estimate the missing CH\(_4\) flux data.

3 Results

3.1 CH\(_4\) flux in relation to soil environmental variables

At the AU-WRR site, soil CH\(_4\) flux was always negative indicating CH\(_4\) uptake all year round (Fig. 2). The measurement cycle means ranged between \(-2\) µg CH\(_4\) m\(^{-2}\) h\(^{-1}\) (spring 2010) to \(-58.4\) µg CH\(_4\) m\(^{-2}\) h\(^{-1}\) (autumn 2011) with an arithmetic mean of \(-41.2 \pm 11.0\) SD µg CH\(_4\) m\(^{-2}\) h\(^{-1}\). In general, months with higher average soil moisture and higher total rainfall displayed lower CH\(_4\) uptake when compared to months with lower average soil moisture and lower total rainfall (Fig. 2). The coefficient of variance (CV) for the average CH\(_4\) flux based on 10 chambers in one measurement cycle ranged between 1.8 and 98.0 % with an average of 17.9 ± 11 % (SD) and was higher in periods of rapid changes in soil moisture levels reflecting changes in precipitation (Fig. 2).

At the AU-WOM site soil CH\(_4\) flux was always negative, indicating CH\(_4\) uptake all year round (Fig. 3). The measurement cycle means ranged between \(-1.3\) µg CH\(_4\) m\(^{-2}\) h\(^{-1}\)
Figure 2. Soil-based flux of CH$_4$ at a mixed Eucalyptus obliqua and E. regnans forest stand, Warra LTER, Tasmania, Australia (AU-WRR). Panel (a) shows CH$_4$ flux cycle means of 10 chambers measured within a 4 h time period. Panel (b) shows site air temperature averaged over the chamber cycle period (black diamonds), daily rainfall sums (blue bars) and coefficient of variance of the CH$_4$ flux cycle mean shown in (a) (grey diamonds). Panel (c) shows soil temperature in the top 0–10 cm averaged over each chamber cycle (grey squares) and corresponding soil volumetric water content (black/grey circles) at the site.

(recorded during a period of heavy rainfall in summer 2011) to -62.5 μg CH$_4$ m$^{-2}$ h$^{-1}$ (summer 2010) with an arithmetic mean of -25.5 ± 12.7 SD μg CH$_4$ m$^{-2}$ h$^{-1}$. Similar to the AU-WRR site, months with higher average soil moisture and higher total rainfall displayed lower CH$_4$ uptake when compared to months with lower average soil moisture and lower total rainfall (Fig. 3). The CV for the average CH$_4$ flux based on six chambers in one measurement cycle ranged between 6.7 and 143.0% with an average of 29.3 \pm 9.7% (SD) and was again higher in times of rapid soil moisture changes in response to changes in precipitation patterns (Fig. 3).

For AU-WRR the linear regression analysis showed that VWC accounted for approximately 85% of variability in soil CH$_4$ uptake across all seasons (Fig. 4a, Table 1) with soil CH$_4$ uptake decreasing when soil VWC increased or soil CH$_4$ uptake increasing when AFP increased (Fig. 4b, Table 1). Soil temperature (0–5 cm) alone was weakly related to CH$_4$ uptake with higher CH$_4$ uptake rates associated with higher soil temperatures. However, soil temperature alone was only able to account for approximately 16% of seasonal variability in CH$_4$ uptake (Fig. 4c, Table 1). In addition, after taking the effect of VWC into account, soil temperature only explained around 1.5% of the remaining variability in CH$_4$ uptake at AU-WRR (data not shown). A regression model containing VWC and soil temperature as input variables had only a marginally higher coefficient of determination when compared to the model only containing VWC (Table 1). Air-filled porosity or VWC showed some weak dependency of soil temperature at the site ($R^2 = 0.14$, $p < 0.001$).

For AU-WOM the linear regression analysis showed that VWC could account for around 91% of variability in soil CH$_4$ uptake across all seasons (Fig. 4a, Table 1) with soil CH$_4$ uptake decreasing when soil VWC increased, the opposite trend was observed for AFP (Fig. 4b, Table 1). Soil tem
Figure 3. Soil-based flux of CH\textsubscript{4} at a mixed Eucalyptus obliqua forest stand, Wombat State Forest, Victoria, Australia (AU-WOM). Panel (a) shows CH\textsubscript{4} flux cycle means of six chambers measured within a 2 h time period. Panel (b) shows site air temperature averaged over the chamber cycle period (black diamonds), daily rainfall sums (blue bars) and coefficient of variance of the CH\textsubscript{4} flux cycle mean shown in (a) (grey diamonds). Panel (c) shows soil temperature in the top 0–10 cm averaged over each chamber cycle (grey squares) and corresponding soil volumetric water content (black/grey circles) at the site.

Table 2. Parameters and coefficients of determination (Adj. \(R^2 \)) of selected linear models in combination with results of a restricted maximum likelihood analysis (REML) explaining seasonal variability in mean chamber cycle methane flux (\(F_{\text{CH}_4} \)) at a mixed Eucalyptus obliqua forest stand, Wombat State Forest, Victoria (AU-WOM) and at a mixed E. obliqua and E. regnans forest stand, Warra LTER, Tasmania, Australia (AU-WRR). Predictors: \(T_S \) (soil temperature) and AFP (air-filled porosity). REML results: Akaike information criterion (AIC); Estimate of importance for models containing both predictors are in parentheses.

<table>
<thead>
<tr>
<th>Site</th>
<th>Dependent variable</th>
<th>Constant (intercept)</th>
<th>AFP (slope)</th>
<th>(T_S) (slope)</th>
<th>AIC</th>
<th>Adj. (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU-WRR</td>
<td>(F_{\text{CH}_4})</td>
<td>53.640</td>
<td>195.378</td>
<td>–</td>
<td>5666</td>
<td>0.855</td>
</tr>
<tr>
<td></td>
<td>(F_{\text{CH}_4})</td>
<td>–19.543</td>
<td>–</td>
<td>–2.215</td>
<td>9657</td>
<td>0.158</td>
</tr>
<tr>
<td></td>
<td>(F_{\text{CH}_4})</td>
<td>55.587</td>
<td>193.284 (0.997)</td>
<td>–0.254 (0.003)</td>
<td>5629</td>
<td>0.857</td>
</tr>
<tr>
<td>AU-WOM</td>
<td>(F_{\text{CH}_4})</td>
<td>53.943</td>
<td>195.768</td>
<td>–</td>
<td>7648</td>
<td>0.915</td>
</tr>
<tr>
<td></td>
<td>(F_{\text{CH}_4})</td>
<td>–6.320</td>
<td>–</td>
<td>–1.701</td>
<td>13 088</td>
<td>0.209</td>
</tr>
<tr>
<td></td>
<td>(F_{\text{CH}_4})</td>
<td>54.766</td>
<td>201.671 (0.998)</td>
<td>0.147 (0.002)</td>
<td>7617</td>
<td>0.900</td>
</tr>
</tbody>
</table>
peratures (0–5 cm) alone was again weakly related to CH₄ uptake with higher CH₄ uptake rates associated with higher soil temperatures (Fig. 4c). At the AU-WOM site, only around 20 % of seasonal variability in CH₄ uptake (Table 1) was explained by soil temperature. In addition, similar to the results at AU-WRR, after taking the effect of VWC into account, soil temperature only explained around 5 % of the remaining variability in CH₄ uptake at AU-WOM (data not shown). Furthermore, a regression model containing VWC and soil temperature had a marginally lower coefficient of determination (Table 1) when compared to the model only containing VWC (Table 1). Air-filled porosity or VWC showed some weak dependency of soil temperature at the site (R² = 0.38, p < 0.001).

The AIC results of the REML analysis confirm the results of the linear regression approach (Table 2) showing that soil moisture (in this case expressed as AFP) is the strongest predictor of soil CH₄ flux in both forest systems. The analysis shows that the models including soil moisture and soil temperature perform marginally better based on AIC compared to models including only soil moisture to predict soil CH₄ flux. However, the importance rating of the predictors (soil moisture and soil temperature) clearly indicates that in both forest systems soil moisture dominates as it accounts for more than 99 % of the proportion of variance explained by the model compared to < 0.01 % proportion of the variance explained by soil temperature.

3.2 Mean daily and annual CH₄ flux in relation to environmental variables

3.2.1 Site AU-WRR

Daily site averages ranged between −0.12 and −1.35 mg CH₄ m⁻² d⁻¹ with an arithmetic mean of −0.98 ± 0.27 (SD) mg CH₄ m⁻² d⁻¹. The coefficient of determination for the regression analysis changed slightly when the regression analysis was calculated on daily means and VWC was able to account for up to 89 % in the observed variability in CH₄ flux (Table 3). The CV for the daily average site CH₄ flux ranged between 0.15 and 20.6 % with an average of 3.5 ± 3.33 % (SD) and was higher in periods of rapid changes in soil moisture levels. We calculated soil CH₄ flux averages for 3 days around the dates when soil
Table 3. Parameters and coefficients of determination (Adj. R^2) of linear regression models explaining seasonal variability in mean daily methane flux (F_{CH_4}) at a mixed Eucalyptus obliqua forest stand, Wombat State Forest, Victoria (AU-WOM) and at a mixed E. obliqua and E. regnans forest stand, Warra LTER, Tasmania, Australia (AU-WRR). Standardised coefficients β are in parentheses; SD refers to standard deviation of parameter; level of significance (≤ 0.001). Predictors: T_S (soil temperature), AFP (air-filled porosity) and soil VWC (volumetric water content). Present constants are model intercepts and parameters represent the slopes for the predictor variables.

<table>
<thead>
<tr>
<th>Site</th>
<th>Dependent variable</th>
<th>Constant</th>
<th>VWC (SD = 0.058)</th>
<th>T_S (SD = 2.02)</th>
<th>AFP (SD = 0.058)</th>
<th>Adj. R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU-WRR</td>
<td>F_{CH_4} (SD = 0.273)</td>
<td>-2.165*</td>
<td>4.433* (0.947)</td>
<td>-</td>
<td>-</td>
<td>0.896*</td>
</tr>
<tr>
<td></td>
<td>F_{CH_4} (SD = 0.273)</td>
<td>-0.459*</td>
<td>-0.052* (-0.388)</td>
<td>-</td>
<td>-</td>
<td>0.148*</td>
</tr>
<tr>
<td></td>
<td>F_{CH_4} (SD = 0.273)</td>
<td>-2.167*</td>
<td>4.435* (0.947)</td>
<td>0.0001 (0.001)</td>
<td>-</td>
<td>0.895*</td>
</tr>
<tr>
<td></td>
<td>F_{CH_4} (SD = 0.273)</td>
<td>1.164*</td>
<td>-0.433* (-0.947)</td>
<td>-</td>
<td>-</td>
<td>0.896*</td>
</tr>
<tr>
<td>AU-WOM</td>
<td>F_{CH_4} (SD = 0.275)</td>
<td>-1.819*</td>
<td>4.771* (0.962)</td>
<td>-</td>
<td>-</td>
<td>0.924*</td>
</tr>
<tr>
<td></td>
<td>F_{CH_4} (SD = 0.302)</td>
<td>-0.161*</td>
<td>-0.038* (-0.452)</td>
<td>-</td>
<td>-</td>
<td>0.203*</td>
</tr>
<tr>
<td></td>
<td>F_{CH_4} (SD = 0.275)</td>
<td>-1.915*</td>
<td>4.956* (0.999)</td>
<td>0.004* (0.053)</td>
<td>-</td>
<td>0.926*</td>
</tr>
<tr>
<td></td>
<td>F_{CH_4} (SD = 0.275)</td>
<td>1.152*</td>
<td>-4.771* (-0.962)</td>
<td>-</td>
<td>-</td>
<td>0.924*</td>
</tr>
</tbody>
</table>

Figure 5. Dynamics in soil CH_4 flux (a, b) soil nitrate levels (c, d) and soil ammonium levels (e, f) at a mixed Eucalyptus obliqua forest stand, Wombat State Forest, Victoria (AU-WOM) and a mixed E. obliqua and E. regnans forest stand, Warra LTER, Tasmania (AU-WRR), Australia; n.d means not detectable. Results of the linear regression analysis between CH_4 and NH$_4^+$ or NO$_3^-$ for both sites are not presented. They were AU-WOM: NO$_3^-$ / CH_4 (Adj. $R^2 = 0.06$, $p = 0.21$) NH$_4^+$ / CH_4 (Adj. $R^2 = 0.08$, $p = 0.83$); AU-WRR: NO$_3^-$ / CH_4 (Adj. $R^2 = -0.11$, $p = 0.80$) NH$_4^+$ / CH_4 (Adj. $R^2 = -0.11$, $p = 0.84$).

NH$_4^+$ and soil NO$_3^-$ samples were taken on-site to enable regression analysis; however, neither NH$_4^+$ nor NO$_3^-$ alone or together could explain any variability in soil CH_4 flux at the site and all relationships were non-significant (Fig. 5b, d, f).

3.2.2 Site AU-WOM

Daily site averages ranged between -0.11 and -1.36 mg CH_4 m$^{-2}$ d$^{-1}$ with an arithmetic mean of -0.62 ± 0.30 (SD) mg CH_4 m$^{-2}$ d$^{-1}$. The CV for the daily average site CH_4 flux ranged between 0.11 and 47.6% with an average of 5.6 ± 4.36% (SD) and was again higher in periods of rapid changes in soil moisture levels. As for the AU-WRR site the coefficient of determination for the regression analysis changed slightly when the regression analysis was calculated on daily means and VWC was able to account for up to 92% in the observed variability in CH_4 flux (Table 3). Similar to the AU-WRR site, 3-day CH_4 flux averages were not significantly correlated with soil NH$_4^+$ or NO$_3^-$ if entered alone or together as predictors to the linear regression model (Fig. 5a, c, e).
3.3 Annual site CH₄ flux budgets

The calculated annual CH₄ budget for the year 2011 of the AU-WRR site was $-3.83 \text{ kg CH}_4 \text{ ha}^{-1} \text{ yr}^{-1}$. The calculated annual CH₄ budget for the year 2011 of the AU-WOM site was $-1.79 \text{ kg CH}_4 \text{ ha}^{-1} \text{ yr}^{-1}$.

4 Discussion

One of the most novel results of our study is the strong linear relationship observed between soil moisture and CH₄ uptake. To our knowledge the strength of this relationship is unique for temperate forest systems measured using continuous automated chamber systems over a long period. It is also striking that this strong linear relationship was similar in the two temperate eucalypt forests (dry and wet) regardless of the differences in forest structure, soil type, annual precipitation and geographical distance. It is possible that the two different measurement systems (GC at AU-WRR and FTIR at AU-WOM) could produce different measures of CH₄ flux if operated at the same site because of technological and methodological differences. If that were true, there would only be a remote chance that the two linear relationships between CH₄ flux and AFP would overlap one another. As such, our finding that the relationships between CH₄ flux and AFP do converge into one common regression line (as shown in Fig. 4) is worth noting and suggests similar accuracy between the two measurement systems and similar function in soil CH₄ exchange processes at the two forest sites.

CH₄ flux data collected in the long-term in temperate deciduous forest systems in Europe (Butterbach-Bahl and Pappen, 2002) has shown that soil moisture can explain up to 58% of the seasonality in soil CH₄ uptake. Similarly, Kiese et al. (2003) reported that soil moisture could explain up to 53% of the seasonality in CH₄ exchange in a tropical rainforests in Queensland, Australia. Soil moisture influences soil gas diffusivity and is considered the most important factor controlling seasonality of CH₄ uptake in soils worldwide. (Dalal et al., 2008; Dalal and Allen, 2008; Smith et al., 2003, 2000; Ball et al., 1997) and the negative relationship between soil moisture and soil CH₄ uptake reported in this study has been previously reported for other ecosystems (Hartmann et al., 2011; Stiehl-Braun et al., 2011; Castro et al., 1994; Price et al., 2003). This agrees with the theory that soil CH₄ uptake is mainly limited by diffusion in most forest ecosystems (Price et al., 2004) when the sites of microbial CH₄ oxidation are distributed through the surface soil (Stiehl-Braun et al., 2011) and the concentration gradient between soil and atmosphere, which drives the flux, is effectively constant (von Fischer and Hedin, 2007). However, previous field studies have never been able to demonstrate so conclusively the strength of the relationship (>90% variation explained) between AFP and soil CH₄ uptake and for two separate forest systems. To our knowledge the only other study where similarly strong correlations between soil moisture and CH₄ uptake have been reported was for grassland soils under summer rainfall exclusion (Hartmann et al., 2011).

It is important to note that WFPS has commonly been used to model, or compare, soil CH₄ uptake in different ecosystems (Del Grosso et al., 2000). However, in our study this soil environmental variable was not as effective as AFP in explaining the observed CH₄ flux patterns at the two temperate forest sites. At an individual site level, the relationship between WFPS and CH₄ uptake had the same coefficient of determination as between AFP and CH₄ uptake; however, the slope of the relationship differed between the two forest sites (Fig. 4d). This suggests that WFPS is not the most suitable soil moisture metric to relate soil gas diffusivity to soil CH₄ flux when comparing sites or ecosystems. This is most likely due to the fact that WFPS is a proportional measure that relates VWC to the total soil porosity (Eq. 4); compared to AFP that is a direct expression of the air-filled pore volume in a given soil (Eq. 5).

This demonstrates that soil gas diffusivity is primarily related to the volumetric fractions of air (AFP), rather than the volumetric fraction of water in the soil since diffusion through air is much faster than through water (Farquharson and Baldock, 2008).

Our data also show a very weak influence by soil temperature on soil CH₄ uptake. This temperature effect appears to be mainly driven by the correlation between soil moisture and soil temperature, which is typical for the climate of the investigated forest systems. After the effect of soil moisture was accounted for, soil temperature was only able to account for less than 5% of the remaining variability in soil CH₄ flux at AU-WOM and less than 1.5% of the remaining variability in soil CH₄ flux at AU-WRR. Furthermore, the daily temperature variation in soil CH₄ uptake would have been masked in the analyses because all regression analyses were performed on either chamber cycle or daily uptake means. However, the overall weak but statistically significant temperature dependency of soil CH₄ uptake is unlikely to greatly influence seasonal CH₄ flux variability given that at both sites around 90% of seasonal variability in CH₄ uptake can be explained by soil moisture alone and that soil moisture and temperature are weakly correlated in the investigated forest systems. This was more pronounced at the AU-WOM site because temporal soil moisture variability was greater and we had 2 years of data compared to 1 year of data at the AU-WRR site. However, a model that includes soil temperature and soil moisture together performed marginally better based on the AIC as compared to a model that only used soil moisture status in predicting soil CH₄ flux at both of our sites, which is logical based on the fact that all soil microbial processes show a physiological temperature response; but it appears that for the MOB, temperature response is rather muted at our sites during our measurement time frame. Furthermore, our data also show that soil CH₄ uptake still continued at a very low WFPS of 10% (VWC = 0.07 g cm⁻³).
AFP = 0.59 cm3 cm$^{-3}$) with CH$_4$ uptake ranging between -62 to -80 mg CH$_4$ m$^{-2}$ h$^{-1}$ at this time. We can therefore hypothesise that MOB activity was not severely limited by moisture at the AU-WOM and the AU-WRR sites during the measurement period.

This study reports continuous measurement of soil–atmosphere CH$_4$ exchange in two temperate eucalypt forests in Australia measured at high-temporal resolution for > 12 months. Mean daily CH$_4$ flux values (AU-WRR = -1.35 to -0.12 mg CH$_4$ m$^{-2}$ d$^{-1}$; AU-WOM = -1.36 to -0.11 mg CH$_4$ m$^{-2}$ d$^{-1}$) were well within the reported range for other temperate forests in Europe (-2.47 to $+0.26$ mg CH$_4$ m$^{-2}$ d$^{-1}$; Smith et al., 2000) or worldwide (-10.68 to 0.02 mg CH$_4$ m$^{-2}$ d$^{-1}$; Dalal et al., 2008; Dalal and Allen, 2008).

The estimated annual CH$_4$ uptake of -1.79 kg CH$_4$ ha$^{-1}$ yr$^{-1}$ for AU-WOM and -3.83 kg CH$_4$ ha$^{-1}$ yr$^{-1}$ for AU-WRR are comparable to the range of -2.5 to -3.7 kg CH$_4$ ha$^{-1}$ yr$^{-1}$ reported for temperate beech and spruce forest sites in Germany where CH$_4$ fluxes were measured with a similar automated system over multiple years (Butterbach-Bahl and Papen, 2002). Globally, a range of -1.31 to -10.5 kg CH$_4$ ha$^{-1}$ yr$^{-1}$ has been reported for temperate forest systems based on short- and long-term automated and manual chamber measurement campaigns (Dalal et al., 2008; Dalal and Allen, 2008). The annual CH$_4$ uptake rate estimated for AU-WOM in our study was less than a third of the -5.8 kg CH$_4$ ha$^{-1}$ yr$^{-1}$ estimated by Meyer et al. (1997) for soils in the same forest system. This earlier CH$_4$ sink estimate was based on only five seasonal flux measurements but might also be attributed to the measurements being taken during three dry years (1993–1995) when average rainfall was 677 mm yr$^{-1}$ (Meyer et al., 1997). In comparison, the years when our study was undertaken (2010–2012), the average rainfall was 1063 mm yr$^{-1}$. This may partly explain the greater CH$_4$ uptake estimate of Meyer et al. (1997) as the lower soil moisture levels may well lead to greater CH$_4$ uptake rates.

5 Conclusion

Our field data suggest that the difference in magnitude of CH$_4$ flux at both sites was based solely on differences in AFP due to site differences in soil bulk density, soil porosity as a near-identical relationship between AFP and soil CH$_4$ uptake existed at both sites. This means that future research should investigate whether simple information about soil bulk density can be used to estimate CH$_4$ uptake across different eucalypt forest ecosystems in Australia, or in similar ecosystems globally. Our data further demonstrate that temporal variability in soil CH$_4$ uptake was predominantly controlled by temporal variability in soil AFP that is linked to soil gas diffusivity. This means that seasonality in CH$_4$ uptake can be predicted with very high accuracy where information about soil moisture dynamics is available or can be simulated with high certainty. However, since soil texture at both sites was relatively coarse and soils were both clay loams further studies need to establish if the AFP to CH$_4$ relationship holds true across different soil texture classes. Our results highlight the importance of long-term field measurements in establishing relationships between soil environmental drivers and soil CH$_4$ uptake and allowing the calibration of models used to calculate global CH$_4$ sink distribution and magnitude.

6 Data availability

The dataset can be accessed here: doi:10.4225/49/588574690c0ec (Fest, 2017).

Acknowledgements. The study was supported by funding from the Terrestrial Ecosystem Research Network (TERN) Australian Supersite Network, the TERN OzFlux Network, the Australian Research Council (ARC, grants LE0882936 and DP120101735) and the Victorian Department of Environment, Land, Water and Planning Integrated Forest Ecosystem Research program. We would like to thank Julio Najera and student volunteers for assistance with site and instrument maintenance.

Reviewed by: three anonymous referees

References

Butterbach-Bahl, K. and Papen, H.: Four years continuous record of CH$_4$-exchange between the atmosphere and untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany, Plant. Soil., 240, 77–90, 2002.

www.biogeosciences.net/14/467/2017/ Biogeosciences, 14, 467–479, 2017

Fest, B.: The impact of fire disturbance and simulated climate change conditions on soil methane exchange in eucalypt forests of south-eastern Australia, PhD, School of Ecosystem and Forest Sciences, The University of Melbourne, Melbourne, 185 pp., 2013.

B. J. Fest et al.: Soil methane oxidation relationship with soil air-filled porosity in two eucalypt forests

Gases from soil following prescribed burning in a southern eucalyptus forest. Final report to the National Greenhouse Gas Inventory Committee, CSIRO, Division of Atmospheric Research, Aspendale, Victoria, 1–66, 1997.

