Factors affecting the drainage of gas from coal and methods to improve drainage effectiveness

Dennis John Black
University of Wollongong

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Factors affecting the drainage of gas from coal and methods to improve drainage effectiveness

Dennis John Black

University of Wollongong

Recommended Citation
This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
FACTORS AFFECTING THE DRAINAGE OF GAS FROM COAL
AND METHODS TO IMPROVE DRAINAGE EFFECTIVENESS

A thesis submitted in fulfilment of the requirements for the award of the degree

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

DENNIS JOHN BLACK

School of Civil, Mining and Environmental Engineering

2011
AFFIRMATION

I, Dennis John Black, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Department of Civil, Mining and Environmental Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Dennis J. Black
The following publications are the result of this thesis project:

University of Wollongong, (eds: N I Aziz and J A Nemcik), Wollongong, 11-12 February, pp 203-209.

The following presentations are the result of this thesis project:

ACKNOWLEDGEMENTS

I would like to acknowledge and thank my thesis supervisor Assoc. Professor Naj Aziz, Department of Civil, Mining and Environmental Engineering, University of Wollongong for his generous support, guidance and friendship throughout this study.

I would also like to acknowledge and thank my wife Dr Sarah Toole and children, Angus and Emma, for their support during the considerable time involved in completing this PhD study.

I would also like to acknowledge and thank the Australian Coal Association Research Program (ACARP) for the financial support provided to me through the ACARP postgraduate scholarship C18004. I would like to acknowledge and thank Mr Roger Wischusen (ACARP), Dr Chris Harvey (Gujarat NRE) and Assoc. Professor Naj Aziz who monitored the progress of my study on behalf of ACARP project C18004.

The work completed during this study was recognised with an award from the Royal Society of New South Wales in 2010 which is appreciated.

I would also like to acknowledge and thank the following people and organisations who have provided assistance and support to this study:

- Mr Matthew Jurak and Ms Kate Lennox, former undergraduate students from the Department of Civil, Mining and Environmental Engineering and Mr Adrian Hutton, formerly of the School of Geosciences, University of Wollongong;
- Mr Robert Seeley, Mr Andrew Filipowski, Mr Murray Bull, Mr Sal Castelo, Mr Mike Armstrong, Mr Hugo Kaag, Mr David Benson and Mr David Ashelford (formerly of GeoGAS), from BHP Billiton Illawarra Coal;
- Mr Andrew Newland from Newtuk Consulting;
- Mr Paul Maddocks from Xstrata Coal NSW;
- Mr Peter Liston, Mr Ken Lewthwaite and Mr Wayne Green from Peabody Energy Australia; and
- Mr Bruce Robertson formerly from Anglo American Metallurgical Coal.

I would also like to acknowledge the keen eye of Mr Bob Kininmonth and express my thanks for assisting with the editing of this PhD thesis.
ABSTRACT

The relationship between gas production from underground-to-inseam (UIS) drainage boreholes and various coal seam properties and operational factors were examined. Gas production from 279 UIS gas drainage boreholes was collated and assessed relative to a variety of coal geological properties and operational factors. The reasons for poor coal seam gas drainage performance from particular zones were investigated and actions to improve gas drainage performance have been recommended. Investigation were focussed on gas drainage performance from the Bulli seam of the Sydney Basin, focussing on West Cliff Colliery, where gas production was highly variable and many zones found to be difficult to drain.

The degree of saturation (DoS) was found to have a significant impact on coal seam gas drainage, with decreased gas production from highly undersaturated zones with low permeability. Within West Cliff Colliery, in the areas where gas drainage was found to be particularly difficult, conventional UIS drainage was shown to be incapable of reducing the reservoir pressure below the critical desorption point prior to roadway development.

From analysis of operational factors, drainage time was found to have a significant impact on gas production and appeared to be closely related to DoS indicating that coal with lower DoS required increased drainage time. Borehole length and orientation were found to have some impact on gas production with maximum gas production achieved from boreholes between 500 and 1 000 m long oriented between 5 and 60° to the face cleat and between 0 and 40° to the maximum horizontal stress. Boreholes drilled up-dip, with an apparent dip between 0.0 and +3.0° achieved increased gas production and the relationship was strongest in highly undersaturated coal. In saturated coal the initial gas flow rate tends to be high and the increased gas flow velocity supports the borehole to self-clear water and fines. With increasing age, gas flow velocity reduces which appears to affect the ability of the borehole to self-clear, particularly in boreholes oriented down-dip. Undulations such as troughs existing along the length of the boreholes also allow water and fines to accumulate which impedes gas drainage. No evidence was found to support a relationship between applied suction pressure and gas production. However where high suction pressure is applied to boreholes increased
leakage may occur. A new method for enhancing coal seam gas production using cyclic injection of inert gas is proposed.

The nature of coal seam gas emission from both fast and slow desorption gas testing methods was investigated using results from 4185 gas tests collected from eight Australian underground coal mines, four located in Queensland and four in New South Wales.

The following equations were found to best represent the average relationship between each gas content component and the total measured gas content (Q_M):

- $Q_1 = 0.0064 \times Q_M^{2.0227}$
- $Q_2 = 0.0257 \times Q_M^{1.9692}$
- $Q_3 = 1.1631 \times Q_M^{0.7529}$

The following equations were proposed for use in estimating average and maximum Q_M based on Q_1 and initial desorption rate (IDR):

- $Q_{M(ave)} = 9.3729 \times Q_1^{0.3328}$
- $Q_{M(max)} = 2.5665 \times \ln(IDR) + 2.1686$
- $Q_{M(ave)} = 0.7413 \times \sqrt{IDR}$

- The relationship between Q_M and desorption rate index (DRI) was investigated and found to be different from the relationship presented in 1995, which is the basis for the DRI900 methodology used to determine outburst threshold limit values (TLV) applicable to non-Bulli seam mines. The impact of recent increases to outburst TLV at several Bulli seam mines and the relationship between Q_M and DRI identified during this study suggests that a TLV applicable to the Bulli seam may be directly transferrable to non-Bulli seam mines.

- From analysis of 3355 fast desorption test results the relationship between Q_M and DRI was found to be independent of gas composition and represented by the following equation:
 - $Q_M = 0.008 \times DRI$

The following relationships were identified from analysis of slow desorption data.

- A linear relationship exists between Q_2 and Q_M that is independent of changes in seam gas composition. The rate of gas desorption was shown to be faster from
samples with increased Q_M. Extending total desorption time beyond 200 days was shown to have little impact on Q_2 or the $Q_2:Q_M$ ratio.

- From analysis of Q_2 and the $Q_2:Q_M$ ratio, no relationship was found between vitrinite content, porosity and mineral matter content of each sample, suggesting the nature of desorbed gas emission was independent of coal petrography.

- Q_3 did not vary significantly in response to increasing Q_M whereas the $Q_3:Q_M$ ratio reduced. The results indicate coal samples with high Q_M, having increased DoS, desorb gas at a faster rate resulting in the $Q_3:Q_M$ ratio being less than from samples with low Q_M that desorb gas at a slower rate. The relationship between Q_3 and Q_M appeared to be independent of changes in seam gas composition. Extending the total desorption time beyond 200 days had little effect on residual gas content.

- From analysis of Q_3 and the $Q_3:Q_M$ ratio relative to the measured vitrinite content, porosity and mineral matter content of the coal samples, it was found that residual gas content was independent of coal petrography.

To reduce the risk of gas loss into solution from prolonged contact with the current conventional slow desorption testing apparatus; consideration should be given to the use of electronic gas testing apparatus for continual analysis of the desorbed gas from coal.
TABLE OF CONTENTS

AFFIRMATION .. II
ACKNOWLEDGEMENTS ... V
ABSTRACT .. VI
TABLE OF CONTENTS ... IX
LIST OF FIGURES ... XIV
LIST OF TABLES ... XXIV
LIST OF SYMBOLS AND ABBREVIATIONS .. XXV
CHAPTER ONE – GENERAL INTRODUCTION .. 1
 1.1 Coal Mining in Australia ... 1
 1.2 Coal Seam Gas Drainage and Utilisation ... 3
 1.3 Geology of the Illawarra Coal Measures ... 5
 1.4 Statement of the Problem .. 6
 1.5 Research Objectives .. 7
 1.6 Scope ... 8
 1.7 Thesis Outline ... 11
CHAPTER TWO – Gas Generation, Storage and Flow in Coal ... 13
 2.1 Introduction .. 13
 2.2 The Coalification Process ... 13
 2.2.1 Coal Rank .. 15
 2.2.2 Coal Type ... 16
 2.2.3 Coal Structure ... 17
 2.3 Generation of Coal Seam Gas ... 19
 2.3.1 Coal Seam Gas in the Bulli seam, southern Sydney Basin .. 20
 2.4 Gas Storage in Coal ... 24
 2.4.1 Gas Sorption Capacity ... 26
 2.4.2 Factors Impacting Gas Sorption Capacity .. 27
 2.4.2.1 Coal Rank .. 27
 2.4.2.2 Coal Type .. 27
 2.4.2.3 Moisture Content .. 28
 2.4.2.4 Ash and Mineral Content .. 29
 2.4.2.5 Temperature and Pressure ... 30
 2.4.2.6 Sample Particle Size ... 30
 2.4.3 Impact of Gas Sorption on Coal Structure .. 31
 2.5 Gas Flow and Emission from Coal ... 32
 2.5.1 Factors Impacting on Gas Emission from Coal .. 34
CHAPTER THREE – DRAINAGE OF COAL SEAM GAS

3.1 INTRODUCTION

3.2 DRAINAGE OF COAL SEAM GAS FROM UNDERGROUND

3.3 DRAINAGE OF COAL SEAM GAS FROM SURFACE

3.4 MANAGEMENT OF BOREHOLE STABILITY

3.5 GAS DRAINAGE ENHANCEMENT

3.5.1 Under-Reaming

3.5.2 Open Hole Cavity Completion

3.5.3 Secondary Lateral Drilling

3.5.5 Hydraulic Fracturing
3.5.7 Enhanced Coalbed Methane (ECBM) ... 94
3.6 SUMMARY .. 98

CHAPTER FOUR – IMPACT OF COAL PROPERTIES ON GAS DRAINAGE 101
4.1 INTRODUCTION .. 101
4.2 DATA ACQUISITION .. 101
 4.2.1 Inseam Borehole Gas Production Data .. 102
 4.2.2 Coal Property Data .. 103
4.3 ANALYSIS OF INSEAM BOREHOLE GAS PRODUCTION 105
4.4 ANALYSIS OF COAL PROPERTIES .. 108
 4.4.1 Coal Rank ... 109
 4.4.1.1 Carbon Content .. 109
 4.4.1.2 Volatile Matter Content ... 112
 4.4.1.3 Vitrinite Reflectance .. 115
 4.4.2 Coal Type ... 117
 4.4.2.1 Inertinite Maceral Component .. 118
 4.4.2.2 Vitrinite Maceral Component .. 120
 4.4.2.3 Mineral Matter Component ... 123
 4.4.3 Ash Content... 125
 4.4.3.1 Seam Ash .. 126
 4.4.3.2 Coal Ash .. 129
 4.4.4 Permeability .. 132
 4.4.5 Inherent Moisture Content ... 133
 4.4.6 Seam Thickness .. 136
 4.4.7 Coal Seam Gas ... 138
 4.4.7.1 Gas Content .. 139
 4.4.7.2 Gas Composition .. 144
 4.4.7.3 Total Gas in Place ... 148
 4.4.8 Degree of Saturation ... 150
4.5 SUMMARY ... 159

CHAPTER FIVE – IMPACT OF OPERATIONAL FACTORS ON GAS DRAINAGE 161
5.1 INTRODUCTION .. 161
5.2 DATA ACQUISITION .. 161
5.3 ANALYSIS OF OPERATIONAL FACTORS .. 162
 5.3.1 Borehole Length .. 163
 5.3.2 Borehole Diameter ... 165
 5.3.3 Borehole Density .. 170
 5.3.4 Borehole Orientation .. 174
 5.3.4.1 Borehole Orientation Relative to Cleat .. 174
 5.3.4.2 Borehole Orientation Relative to Stress ... 177
 5.3.4.3 Borehole Orientation Relative to Seam Dip ... 181
 5.3.4.4 Borehole Orientation Relative to North .. 185
LIST OF FIGURES

Figure 1.1: Australia’s operating black and brown coal mines as at December 2008 (ABARE, 2010).............. 2
Figure 1.2: Extent of the Southern Coalfield of the Sydney Basin (after Faiz et al. 2007b)............................ 5
Figure 1.3: Stratigraphic section of the Sydney Basin (after Apex Energy NL, 2008)................................. 5
Figure 1.4: Gas drainage risk classification for WCC Area 5 (Armstrong and Kaag, 2006)............................ 7
Figure 1.5: Project flowchart (Stage 1) factors that impact on UIS gas drainage .. 9
Figure 1.6: Project flowchart (Stage 2) assessment of gas content test data .. 10
Figure 1.7: Structure of chapters in the thesis .. 11
Figure 2.1: Details of the processes, stages and products of coalification (UWYO, 2002a)............................ 14
Figure 2.2: Changes in coal composition with increasing rank (Aziz, 2006)... 15
Figure 2.3: Examples of coal maceral type as seen under reflected light microscopy (Esterle, 2007)............. 17
Figure 2.4: Illustration of coal cleat geometry in plan view (Laubach et al., 1998)................................. 18
Figure 2.5: Electron micrographs showing the coal matrix (Sereshki, 2005).. 19
Figure 2.6: Bulli seam gas content contours relative to the WCC mine workings.. 21
Figure 2.7: Bulli seam gas composition (CH4/(CH4+CO2)) relative to WCC mine workings..................... 22
Figure 2.8: Results of pure gas adsorption testing on Bulli seam coal from WCC............................... 26
Figure 2.9: Critical desorption point of a typical CH4 and CO2 rich Bulli seam coal sample.................... 34
Figure 2.10: Measured CO2 content relative to saturated storage capacity of Sydney Basin coal samples
(after Faiz et al., 2007a) .. 39
Figure 2.11: Bulli seam gas content relative to CO2 and CH4 isotherm indicating degree of saturation.... 40
Figure 2.12: Comparison of flow rate and cumulative gas production from inseam gas drainage boreholes
in CO2 and CH4 zones at WCC ... 40
Figure 2.13: Q1 lost gas determination (after SAA, 1999) ... 43
Figure 2.14: Desorbed gas volume measurement apparatus (after SAA, 1999).. 44
Figure 2.15: Outburst Risk Matrix (after Black et al., 2009)... 49
Figure 2.16: Prescribed Bulli seam Outburst Threshold Limits (Clarke, 1994) ... 50
Figure 2.17: Recommended Bulli seam Outburst Threshold Limits (Lama, 1995c)................................. 51
Figure 2.18: Annual Bulli seam Longwall Mine Production (after Cram, 1995-2010)................................. 52
Figure 2.19: Revised Tahmoor Colliery TLV (after Tahmoor Colliery, 2003).. 53
Figure 2.20: Revised WCC TLV (after West Cliff Colliery, 2007).. 53
Figure 2.21: QM relative to DRI for CO2 and CH4 rich coal from 386 panel, WCC (after Williams and
Weissman, 1995) .. 55
Figure 2.22: Impact of increased Bulli seam TLV on DRI used to determine non-Bulli seam TLV (after
Williams and Weissman, 1995)... 56
Figure 3.1: Conceptual underground mine layout indicating potential sources of coal seam gas emission
(Black and Aziz, 2009) .. 59
Figure 3.2: (a) Internal view of downhole motor (Brunner, 2005); (b) View of the angle of the bent sub
(Hungerford, 2008); (c) Impact of bent sub orientation on borehole trajectory (after Kravits
and Schwoebel, 1994) .. 68
Figure 3.3: Profile of an inseam directionally drilled borehole (after Brunner et al., 2008) 69
Figure 3.4: Effect of drill cuttings and annular pressure to increase drag forces leading to differential sticking of the drill string (Thomson, 2009) ... 72
Figure 3.5: Effect of overbalanced and underbalanced drilling conditions (Thomson, 2009) 73
Figure 3.6: Inseam drilling patterns available for coal seam gas drainage (after Thomson, 1998) 74
Figure 3.7: Reservoir model output comparing gas content reduction from vertical and SIS boreholes (after Thomson, 2007) ... 78
Figure 3.8: Illustration of coal seam gas drainage using vertical boreholes (Wight, 2005) 79
Figure 3.9: Categories of radius drilling (after Logan et al., 1987) .. 80
Figure 3.10: Impact of vertical and horizontal stress on borehole stability (after Brown et al., 1996) 82
Figure 3.11: Gas drainage enhancement methods ranked according to cost and application relative to coal seam permeability (after Loftin, 2009 and Johnson, 2010) 84
Figure 3.12: Cavity reaming tool in Closed and Open position (Harvest Tool Company, 2010) 85
Figure 3.13: Under-reamed vertical gas drainage borehole completion used in the Surat Basin (Arrow Energy, 2008) ... 86
Figure 3.14: Dual seam quad z-pinnate pattern developed by CDX Gas (Wight, 2005) 88
Figure 3.15: Fluids (gases, liquids and gels) used in hydraulic fracturing (after Palmer, 2008) 89
Figure 3.16: Zone of stress induced permeability damage surrounding an inflated hydraulic fracture (after Palmer, 1993) ... 91
Figure 3.17: Hydraulic fracturing schematic (USEPA, 2009) .. 92
Figure 3.18: Hydraulic fracturing schematic (Olsen et al., 2003) .. 92
Figure 3.19: Hydraulic fracturing schematic (Olsen et al., 2003) .. 93
Figure 3.20: Cyclic Inert Gas Injection to enhance coal seam gas drainage (after Black et al., 2010) 98
Figure 4.1: Plan of UIS boreholes where flow data was recorded .. 103
Figure 4.2: Location of coal samples used to acquire coal quality analysis 104
Figure 4.3: Sites used to acquire coal seam geological and geotechnical data 104
Figure 4.4: Total drill stub gas production relative to panel drill stub location 105
Figure 4.5: Average drill stub gas production rate relative to panel drill stub location 105
Figure 4.6: Total gas production relative to borehole location along panel .. 106
Figure 4.7: Span and median total gas production in each of the four cut-through zones 106
Figure 4.8: Histogram showing distribution of total borehole gas production 106
Figure 4.9: Histogram showing distribution of total borehole gas production rate (m3/m/day) 106
Figure 4.10: Gas emission rate curves from coal samples WE1189 and WE1198 107
Figure 4.11: Relationship between D50 and total gas production .. 108
Figure 4.12: Proportion of total gas removed at D50 relative to the total borehole gas production 108
Figure 4.13: Impact of drainage time on span and median D50 percentage of total gas production 108
Figure 4.14: Carbon content contours relative to mine workings and coal sample locations 110
Figure 4.15: Distribution of carbon content for all boreholes within the complete dataset 111
Figure 4.16: Distribution of carbon content for boreholes in each cut-through zone 111
Figure 4.17: Total gas production relative to carbon content .. 111
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.98</td>
<td>Total gas production relative to gas composition in each gas content zone</td>
<td>143</td>
</tr>
<tr>
<td>4.99</td>
<td>D50 gas production relative to gas composition in each gas content zone</td>
<td>143</td>
</tr>
<tr>
<td>4.100</td>
<td>Gas composition (CH$_4$/(CH$_4$+CO$_2$)) relative to mine workings and sample location</td>
<td>144</td>
</tr>
<tr>
<td>4.101</td>
<td>Distribution of gas composition for all boreholes within the complete dataset</td>
<td>145</td>
</tr>
<tr>
<td>4.102</td>
<td>Distribution of gas composition for boreholes in each cut-through zone</td>
<td>145</td>
</tr>
<tr>
<td>4.103</td>
<td>Total gas production relative to gas composition</td>
<td>145</td>
</tr>
<tr>
<td>4.104</td>
<td>D50 gas production relative to gas composition</td>
<td>145</td>
</tr>
<tr>
<td>4.105</td>
<td>Total gas production relative to gas composition in each cut-through zone</td>
<td>146</td>
</tr>
<tr>
<td>4.106</td>
<td>D50 gas production relative to gas composition in each cut-through zone</td>
<td>146</td>
</tr>
<tr>
<td>4.107</td>
<td>Total gas production data range within each gas composition zone</td>
<td>146</td>
</tr>
<tr>
<td>4.108</td>
<td>Total gas production relative to gas content in each gas composition zone</td>
<td>147</td>
</tr>
<tr>
<td>4.109</td>
<td>D50 gas production relative to gas content in each gas composition zone</td>
<td>147</td>
</tr>
<tr>
<td>4.110</td>
<td>GIP relative to each of the values for Area, Thickness and Gas content</td>
<td>148</td>
</tr>
<tr>
<td>4.111</td>
<td>Distribution of GIP for drill sites within the complete dataset</td>
<td>149</td>
</tr>
<tr>
<td>4.112</td>
<td>Distribution of GIP for drill sites within each cut-through zone</td>
<td>149</td>
</tr>
<tr>
<td>4.113</td>
<td>Gas production relative to GIP for drill sites within the complete dataset</td>
<td>149</td>
</tr>
<tr>
<td>4.114</td>
<td>Gas production relative to GIP for drill sites within each cut-through zone</td>
<td>149</td>
</tr>
<tr>
<td>4.115</td>
<td>Gas production relative to GIP for drill sites within each gas composition zone</td>
<td>150</td>
</tr>
<tr>
<td>4.116</td>
<td>Gas production relative to GIP for drill sites within each gas composition zone</td>
<td>150</td>
</tr>
<tr>
<td>4.117</td>
<td>Characteristic coalbed water and gas production curves (Garbutt, 2004)</td>
<td>151</td>
</tr>
<tr>
<td>4.118</td>
<td>Typical Bulli seam in situ gas condition relative to CO$_2$ and CH$_4$ isotherms</td>
<td>152</td>
</tr>
<tr>
<td>4.119</td>
<td>Location of coal samples collected for isotherm testing</td>
<td>154</td>
</tr>
<tr>
<td>4.120</td>
<td>CH$_4$ isotherm curves determined for coal samples within mining area</td>
<td>154</td>
</tr>
<tr>
<td>4.121</td>
<td>CO$_2$ isotherm curves determined for coal samples within mining area</td>
<td>154</td>
</tr>
<tr>
<td>4.122</td>
<td>Piezometer readings, pressure contours, mine workings and UIS boreholes – February 2007</td>
<td>155</td>
</tr>
<tr>
<td>4.123</td>
<td>Piezometer readings, pressure contours, mine workings and UIS boreholes – September 2007</td>
<td>155</td>
</tr>
<tr>
<td>4.124</td>
<td>Gas content relative to pure gas isotherms within three gas composition zones</td>
<td>157</td>
</tr>
<tr>
<td>4.125</td>
<td>Gas content relative to DoS at each drill site</td>
<td>157</td>
</tr>
<tr>
<td>4.126</td>
<td>Gas composition relative to DoS at each drill site</td>
<td>157</td>
</tr>
<tr>
<td>4.127</td>
<td>Total gas production relative to DoS at each drill site</td>
<td>158</td>
</tr>
<tr>
<td>4.128</td>
<td>D50 gas production relative to DoS at each drill site</td>
<td>158</td>
</tr>
<tr>
<td>4.129</td>
<td>Total gas production relative to DoS in each cut-through zone</td>
<td>158</td>
</tr>
<tr>
<td>4.130</td>
<td>D50 gas production relative to DoS in each cut-through zone</td>
<td>158</td>
</tr>
<tr>
<td>4.131</td>
<td>Total gas production per borehole in each drill site relative to DoS</td>
<td>159</td>
</tr>
<tr>
<td>5.1</td>
<td>Location of UIS boreholes relative to mine workings</td>
<td>162</td>
</tr>
<tr>
<td>5.2</td>
<td>Distribution of borehole length for all boreholes within the complete dataset</td>
<td>163</td>
</tr>
<tr>
<td>5.3</td>
<td>Distribution of borehole length for boreholes in each cut-through zone</td>
<td>163</td>
</tr>
<tr>
<td>5.4</td>
<td>Total gas production relative to borehole length</td>
<td>164</td>
</tr>
</tbody>
</table>
Figure 5.5: D50 gas production relative to borehole length ... 164
Figure 5.6: Total gas production relative to borehole length in each cut-through zone 164
Figure 5.7: D50 gas production relative to borehole length in each cut-through zone 164
Figure 5.8: Total gas production per unit borehole length relative to borehole length 165
Figure 5.9: D50 gas production per unit length relative to borehole length 165
Figure 5.10: Results of gas flow relative to borehole diameter testing by Battino and Hargraves (1982) and Clark et al. (1983) .. 166
Figure 5.11: Impact of borehole diameter on CH₄ gas flow velocity and pressure loss relative to changes in total gas flow rate .. 168
Figure 5.12: Impact of borehole diameter on CO₂ gas flow velocity and pressure loss relative to changes in total gas flow rate .. 168
Figure 5.13: Borehole breakout in a UIS borehole at WCC ... 169
Figure 5.14: Calliper logging of a UIS borehole at WCC (after Mills et al., 2006) 170
Figure 5.15: 519 26c/t drill pattern showing increased drilling density of the inbye zones 171
Figure 5.16: 519 11c/t drill pattern showing reduced drilling density of the outbye zones 171
Figure 5.17: Distribution of borehole density for drill sites within the complete dataset................. 172
Figure 5.18: Distribution of borehole density for drill sites within each cut-through zone 172
Figure 5.19: Total gas production relative to borehole density .. 172
Figure 5.20: D50 gas production relative to borehole density ... 172
Figure 5.21: Total gas production relative to borehole density in each cut-through zone 173
Figure 5.22: D50 gas production relative to borehole density in each cut-through zone 173
Figure 5.23: Macroscopic cleat network of a coal seam ... 174
Figure 5.24: Distribution of average orientation relative to cleat (100/280°) for boreholes in the complete dataset ... 175
Figure 5.25: Distribution of average orientation relative to cleat (100/280°) for boreholes in each cut-through zone ... 175
Figure 5.26: Total gas production relative to average borehole orientation to cleat (100/280°) 176
Figure 5.27: D50 gas production relative to average borehole orientation to cleat (100/280°) 176
Figure 5.28: Total gas production relative to average borehole orientation to cleat (100/280°) in each cut-through zone ... 177
Figure 5.29: D50 gas production relative to average borehole orientation to cleat (100/280°) in each cut-through zone ... 177
Figure 5.30: Borehole breakout in vertical boreholes aligned with minimum horizontal stress (Garbutt, 2004) ... 178
Figure 5.31: Stress measurement locations (after BHPBIC, 2006) .. 178
Figure 5.32: Distribution of average orientation relative to stress for boreholes in the complete dataset 179
Figure 5.33: Distribution of average orientation relative to stress for boreholes in each cut-through zone ... 179
Figure 5.34: Total gas production relative to average borehole orientation to stress (075/255°) 180
Figure 5.35: D50 gas production relative to average borehole orientation to stress (075/255°) 180
Figure 5.36: Total gas production relative to average borehole orientation to stress (075/255°) in each cut-through zone ... 180
Figure 5.37: D50 gas production relative to average borehole orientation to stress (075/255°) in each cut-through zone ... 180
Figure 5.38: Bulli seam floor contours at 5 m interval (after Armstrong and Kaag, 2008) 182
Figure 5.39: Section views of two UIS boreholes (after Black, 2007) .. 182
Figure 5.40: Distribution of average apparent dip for boreholes in the complete dataset 183
Figure 5.41: Distribution of average apparent dip for boreholes in each cut-through zone 183
Figure 5.42: Total gas production relative to apparent dip .. 183
Figure 5.43: D50 gas production relative to apparent dip .. 183
Figure 5.44: Total gas production relative to apparent dip in each cut-through zone 184
Figure 5.45: D50 gas production relative to apparent dip in each cut-through zone 184
Figure 5.46: Distribution of average orientation relative to north for boreholes in the complete dataset ... 185
Figure 5.47: Distribution of average orientation relative to north for boreholes in each cut-through zone ... 185
Figure 5.48: Total gas production relative to borehole orientation ... 186
Figure 5.49: D50 gas production relative to borehole orientation ... 186
Figure 5.50: Total gas production relative to borehole orientation in each cut-through zone 187
Figure 5.51: D50 gas production relative to borehole orientation in each cut-through zone 187
Figure 5.52: Distribution of drainage time for boreholes in the complete dataset 188
Figure 5.53: Distribution of drainage time for boreholes in each cut-through zone 188
Figure 5.54: Total gas production relative to drainage time ... 189
Figure 5.55: Total gas production relative to drainage time for boreholes in each cut-through zone ... 189
Figure 5.56: Total gas production relative to drainage time in each gas content zone 190
Figure 5.57: Total gas production relative to drainage time in each gas composition zone 190
Figure 5.58: UIS borehole gas flow and leakage response to applied suction (after Battino and Hargraves, 1982) ... 191
Figure 5.59: UIS borehole gas flow and air dilution response to applied suction (after Clark et al., 1983) .. 191
Figure 5.60: UIS borehole gas flow and leakage response to applied suction (after Lama, 1988a) ... 191
Figure 5.61: UIS borehole gas flow response to applied suction (after Marshall et al., 1982) 192
Figure 5.62: Distribution of median suction pressure applied to boreholes in the complete dataset 193
Figure 5.63: Distribution of median suction pressure applied to boreholes in each cut-through zone 193
Figure 5.64: Total gas production relative to median applied suction pressure 193
Figure 5.65: D50 gas production relative to median applied suction pressure 193
Figure 5.66: Total gas production relative to median applied suction pressure in each cut-through zone ... 194
Figure 5.67: D50 gas production relative to median applied suction pressure in each cut-through zone ... 194
Figure 5.68: Change in drainage gas composition during UIS borehole gas production 195
Figure 5.69: Reduction in effective area due to fines accumulation (Black and Self, 2007) 196
Figure 5.70 – Conceptual gas, water, coal fines separation unit ... 197
Figure 6.1: Location of core samples tested using the fast desorption method .. 201
Figure 6.2: Distribution of Q1 relative to QM .. 204
Figure 6.3: Distribution of Q1:QM ratio relative to QM .. 204
Figure 6.4: Distribution of Q1 gas content relative to sample gas composition 205
Figure 6.5: Distribution of Q1:QM ratio relative to sample gas composition .. 205
Figure 6.6: Distribution of average Q1 gas content relative to QM and gas composition 206
Figure 6.7: Distribution of average Q1:QM ratio relative to QM and gas composition 206
Figure 6.8: Distribution of Q1 gas content relative to QM ... 206
Figure 6.9: Distribution of Q1:QM ratio relative to QM ... 206
Figure 6.10: Distribution of Q2 gas content relative to sample gas composition 207
Figure 6.11: Distribution of Q2:QM ratio relative to sample gas composition ... 207
Figure 6.12: Distribution of average Q2 gas content relative to QM and gas composition 208
Figure 6.13: Distribution of average Q2:QM ratio relative to QM and gas composition 208
Figure 6.14: Distribution of Q3 gas content relative to QM ... 209
Figure 6.15: Distribution of Q3:QM ratio relative to QM .. 209
Figure 6.16: Distribution of Q3 gas content relative to sample gas composition 209
Figure 6.17: Distribution of Q3:QM ratio relative to sample gas composition ... 209
Figure 6.18: Distribution of average Q3 gas content relative to QM and gas composition 210
Figure 6.19: Distribution of average Q3:QM ratio relative to QM and gas composition 210
Figure 6.20: Gas content component values plotted relative to QM (0-18 m³/t), including linear trendlines 210
Figure 6.21: Gas content component values plotted relative to QM including linear trendlines 0-7 m³/t and 7-18 m³/t ... 211
Figure 6.22: Gas content component values plotted relative to QM including linear trendlines 0-7 m³/t and 7-14 m³/t ... 211
Figure 6.23: Gas content component values plotted relative to QM including power formula trendlines representing the average of each component .. 212
Figure 6.24: CO₂ rich gas content component values plotted relative to QM, showing linear trendlines 0-7 m³/t and 7-14 m³/t ... 213
Figure 6.25: CH₄ rich gas content component values plotted relative to QM, showing linear trendlines 0-7 m³/t and 7-14 m³/t ... 213
Figure 6.26: CO₂ rich gas content component values plotted relative to QM, showing power relationship 0-18 m³/t ... 213
Figure 6.27: CH₄ rich gas content component values plotted relative to QM, showing power relationship 0-18 m³/t ... 213
Figure 6.28: Impact of gas composition on average gas content component values relative to QM, based on linear average relationship .. 214
Figure 6.29: Impact of gas composition on average gas content component values relative to QM, based on power formula relationship .. 214
Figure 6.30: QM-Q1 data for the complete dataset, including trendline representing average QM relative to Q1.. 215
Figure 6.31: Impact of gas composition on the average QM to Q1 gas content relationship.................. 216
Figure 6.32: Impact of core sample origin on the average QM to Q1 gas content relationship................ 216
Figure 6.33: Average IDR and IDR30 relative to gas content and gas composition.............................. 217
Figure 6.34: QM relative to IDR, including maximum QM envelope... 217
Figure 6.35: QM-IDR data from CO2 rich coal, including QM(max) envelope 218
Figure 6.36: QM-IDR data from CH4 rich coal, including QM(max) envelope 218
Figure 6.37: QM relative to square root of IDR .. 219
Figure 6.38: QM relative to DRI ... 220
Figure 6.39: Average DRI relative to gas content and gas composition .. 221
Figure 6.40: QM-DRI relationship within CO2 and CH4 rich seam gas conditions 221
Figure 6.41: QM relative to DRI for CH4 and CO2 rich Bulli seam coal samples (after Williams and Weissman, 1995)... 222
Figure 6.42: QM relative to DRI for CH4 and CO2 rich Bulli and non-Bulli seam coal samples 223
Figure 6.43: QM-DRI relationship for determining TLV’s applicable to non-Bulli seam mines 224
Figure 6.44: Location of core samples tested using slow desorption method 225
Figure 6.45: PVC core sample gas desorption canister and slow desorption testing apparatus 226
Figure 6.46: Hewlett Packard quad micro gas chromatograph.. 228
Figure 6.47: Slow desorption gas emission results representing samples WE1203 and WE1185 228
Figure 6.48: Q1 gas content relative to QM .. 231
Figure 6.49: Q1 gas content relative to gas composition ... 231
Figure 6.50: Q2 gas content relative to QM .. 232
Figure 6.51: Q2 gas content relative to gas composition ... 232
Figure 6.52: Q2:QM ratio relative to QM .. 232
Figure 6.53: Q2:QM ratio relative to gas composition ... 232
Figure 6.54: Gas emission from valid samples having CH4 concentration less than 50% 232
Figure 6.55: Gas emission from valid samples having CH4 concentration greater than 50% 232
Figure 6.56: Q2 gas content relative to QM .. 233
Figure 6.57: Q2 gas content relative to time to desorb 65%QM(d) .. 233
Figure 6.58: Q2 gas content relative to vitrinite content, porosity and mineral matter content 234
Figure 6.59: Q2:QM ratio relative to vitrinite content, porosity and mineral matter content 234
Figure 6.60: Gas emission from valid samples having vitrinite content less than 30% 234
Figure 6.61: Gas emission from valid samples having vitrinite content greater than 30% 234
Figure 6.62: Q1 gas content relative to QM .. 235
Figure 6.63: Q1 gas content relative to gas composition ... 235
Figure 6.64: Q1:QM ratio relative to QM ... 236
Figure 6.65: Q1:QM ratio relative to gas composition .. 236
Figure 6.66: Q1 gas content relative to total desorption time ... 236
Figure 6.67: Q1 gas content relative to time to desorb 65%QM(d) ... 236
Figure 6.68: \(Q_3 \) gas content relative to vitrinite content, porosity and mineral matter content 237
Figure 6.69: \(Q_3:Q_M \) ratio relative to vitrinite content, porosity and mineral matter content 237
Figure 6.70: Slow desorption gas content component values relative to \(Q_M \) .. 238
Figure 6.71: Fast desorption gas content component values relative to \(Q_M \) 238
Figure 6.72: Average slow desorption \(Q_M \) component percentage assessed relative to \(Q_M \) 239
Figure 6.73: Average fast desorption \(Q_M \) component percentage assessed relative to \(Q_M \) 239
Figure 6.74: Average slow desorption \(Q_M \) and gas content component percentage assessed relative to gas composition .. 239
Figure 6.75: Average fast desorption \(Q_M \) and gas content component percentage assessed relative to gas composition .. 240
Figure 6.76: Gas composition during slow desorption testing – results of samples WE1206 and WE1246 .. 241
Figure 6.77: Variability in gas composition during slow desorption testing 242
Figure 6.78: Changes in gas composition during late stage desorption ... 242
Figure 6.79: Comparison of gas composition values from fast and slow desorption testing 244
Figure 6.80: Comparison of \(Q_M \) values from fast and slow desorption testing 244
Figure 6.81: Gas production mechanisms and change in produced gas composition during inseam borehole gas production (after Cui and Busten, 2006) ... 245
Figure 6.82: Composition of gas produced from UIS boreholes drilled along 519 and 520 panel 246
Figure 6.83: Composition of gas produced from individual UIS drainage boreholes 247
Figure 6.84: Location of UIS boreholes and core samples used to determine gas composition 247
Figure 6.85: Comparison of median gas composition of samples from UIS boreholes and coal core samples .. 249
Figure 6.86: Time-dependent composition change of a \(CO_2 \) rich gas in contact with a water column of (a) acidified water column, and (b) a linseed oil barrier (Danell et al., 2003) 251
Figure 6.87: Simplified schematic of electronic gas testing apparatus ... 252
LIST OF TABLES

Table 1.1: Range of coal property values representing West Cliff Colliery, Area 5 6
Table 1.2: Classification of coal macerals (after SAA, 1998).. 16
Table 4.1: Coal seam properties considered in analysis... 102
Table 4.2: Coal rank classification (after Ward, 1984).. 109
Table 4.3: Carbon content data source and summary information (after Clark, 1986-2007)....................... 110
Table 4.4: Volatile matter data source and summary information (after Clark, 1986-2007)...................... 112
Table 4.5: Vitrinite reflectance data source and summary information (after Clark, 1986-2007)................. 115
Table 4.6: Inertinite maceral data source and summary information (after Clark, 1986-2007).................. 118
Table 4.7: Vitrinite maceral data source and summary information (after Clark, 1986-2007)............... 120
Table 4.8: Mineral matter data source and summary information (after Clark, 1986-2007).................... 123
Table 4.9: Seam ash data source and summary information (after Clark, 1986-2007)............................... 127
Table 4.10: Coal ash data source and summary information (after Clark, 1986-2007).............................. 129
Table 4.11: Inherent moisture data source and summary information (after Clark, 1986-2007)................. 130
Table 4.12: Seam thickness data source and summary information (after Clark, 1986-2007)..................... 134
Table 4.13: Summary of statistical correlation between gas production and coal properties within each gas content zone.. 143
Table 4.14: Summary of statistical correlation between gas production and coal properties within each gas composition zone.. 147
Table 4.15: Langmuir volume and pressure constants representing CH₄ and CO₂ saturation.................... 154
Table 5.1: Operational factors considered in analysis.. 163
Table 5.2: Impact of diameter, length and flow rate on frictional pressure loss in a borehole carrying CH₄ gas... 168
Table 5.3: Impact of diameter, length and flow rate on frictional pressure loss in a borehole carrying CO₂ gas... 169
Table 6.1: Source of UIS gas testing data used in analysis .. 202
Table 6.2: Average gas analysis data grouped according to gas content and gas composition............... 203
Table 6.3: Slow desorption testing gas release schedule... 227
Table 6.4: Assessment of gas emission data listing samples considered to be valid.................................. 229
Table 6.5: Assessment of gas emission data listing samples considered to be invalid............................ 230
Table 6.6: Summary of gas composition (%CH₄) results recorded from different sample sources 248
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIRL</td>
<td>Australian Coal Industry Research Laboratories</td>
</tr>
<tr>
<td>BHPBIC</td>
<td>BHP Billiton Illawarra Coal</td>
</tr>
<tr>
<td>Φ</td>
<td>porosity (%)</td>
</tr>
<tr>
<td>CBM</td>
<td>coalbed methane</td>
</tr>
<tr>
<td>cc/g</td>
<td>cubic centimetres per gram</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>CO₂-e</td>
<td>carbon dioxide equivalent</td>
</tr>
<tr>
<td>D50</td>
<td>initial 50 days of gas production from UIS drainage boreholes</td>
</tr>
<tr>
<td>daf</td>
<td>dry and ash free</td>
</tr>
<tr>
<td>DRI</td>
<td>desorption rate index (ml)</td>
</tr>
<tr>
<td>DTV</td>
<td>defined threshold value</td>
</tr>
<tr>
<td>ECBM</td>
<td>enhanced coalbed methane</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>Gt</td>
<td>gigatonnes (1x10⁹ tonnes)</td>
</tr>
<tr>
<td>IDR</td>
<td>initial gas desorption rate ((\frac{ml}{\sqrt{\text{min}}/kg}))</td>
</tr>
<tr>
<td>IDR30</td>
<td>gas desorbed from sample in initial 30 secs of testing (m³/t)</td>
</tr>
<tr>
<td>kPa</td>
<td>kilopascal</td>
</tr>
<tr>
<td>L/s</td>
<td>litres per second</td>
</tr>
<tr>
<td>L/min</td>
<td>litres per minute</td>
</tr>
<tr>
<td>LWD</td>
<td>logging-while-drilling</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>m/day</td>
<td>metres per day</td>
</tr>
<tr>
<td>m³</td>
<td>cubic metre</td>
</tr>
<tr>
<td>m³/m</td>
<td>cubic metre per metre</td>
</tr>
<tr>
<td>m³/t</td>
<td>cubic metre per tonne</td>
</tr>
<tr>
<td>m/s</td>
<td>metres per second</td>
</tr>
<tr>
<td>mD</td>
<td>milli Darcy</td>
</tr>
<tr>
<td>MPa</td>
<td>megapascal</td>
</tr>
<tr>
<td>MRD</td>
<td>medium radius drilling</td>
</tr>
<tr>
<td>Mt</td>
<td>megatonne (1x10⁶ tonnes)</td>
</tr>
<tr>
<td>Mtpa</td>
<td>million tonnes per annum</td>
</tr>
<tr>
<td>MWD</td>
<td>measure-while-drilling</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre (1x10⁻⁹ m)</td>
</tr>
<tr>
<td>NCM</td>
<td>non-coal matter</td>
</tr>
<tr>
<td>NTP</td>
<td>normal temperature and pressure (20°C and 101.325 kPa)</td>
</tr>
<tr>
<td>p</td>
<td>absolute gas pressure</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>P_{CDP}</td>
<td>critical desorption pressure</td>
</tr>
<tr>
<td>P_i</td>
<td>initial reservoir pressure</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>P_L</td>
<td>Langmuir pressure constant</td>
</tr>
<tr>
<td>P_0</td>
<td>atmospheric pressure (101.325 kPa)</td>
</tr>
<tr>
<td>Q_1</td>
<td>gas lost during coal core sample recovery (m3/t)</td>
</tr>
<tr>
<td>Q_2</td>
<td>gas released from coal core sample during desorption testing (m3/t)</td>
</tr>
<tr>
<td>Q_3</td>
<td>gas released from coal sample after crushing (m3/t)</td>
</tr>
<tr>
<td>Q_M</td>
<td>total measured gas content; sum of Q_1, Q_2 and Q_3 (m3/t)</td>
</tr>
<tr>
<td>STIS</td>
<td>surface to inseam</td>
</tr>
<tr>
<td>T</td>
<td>absolute strata temperature (°K)</td>
</tr>
<tr>
<td>TLV</td>
<td>outburst threshold limit value</td>
</tr>
<tr>
<td>ρ</td>
<td>rho - density (t/m3)</td>
</tr>
<tr>
<td>ROM</td>
<td>run-of-mine</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>μm</td>
<td>micrometre, or micron (1x10$^{-6}$ m)</td>
</tr>
<tr>
<td>UIS</td>
<td>underground to inseam</td>
</tr>
<tr>
<td>V_i</td>
<td>in situ gas content</td>
</tr>
<tr>
<td>V_L</td>
<td>Langmuir volume constant</td>
</tr>
<tr>
<td>V_{sat}</td>
<td>saturated gas content</td>
</tr>
<tr>
<td>WCC</td>
<td>West Cliff Colliery</td>
</tr>
</tbody>
</table>