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Abstract

Two-stage sampling usually leads to higher variances for estimators of means

and regression coefficients, because of intra-class homogeneity. This thesis

will develop and evaluate adaptive strategies for designing and analyzing two-

stage surveys, where sample data will be used to determine the appropriate

way of allowing for intraclass correlation.

The approach to analysis will be based on fitting a linear regression model

to estimate means and regression coefficients. One method for allowing for

clustering in fitting a linear regression model is to use a linear mixed model

with two levels. If the estimated intra-class correlation is close to zero, it may

be acceptable to ignore clustering and use a single level model. This thesis

will evaluate an adaptive approach for estimating the variances of estimated

regression coefficients. The strategy is based on testing the null hypothesis

that the random effect variance component is zero. If this hypothesis is

not rejected the estimated variances of estimated regression coefficients are

extracted from the one-level linear model. Otherwise, the estimated variance
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is based on the linear mixed model, or, alternatively the Huber-White robust

variance estimator is used.

Another adaptive strategy based on assessing the estimated design effect

due to clustering is also evaluated. This is based on testing the null hypoth-

esis that the random effect variance component is zero and at the same time

comparing the estimated design effect to a predetermined cutoff value. If the

null hypothesis is rejected and the estimated design effect is more than the

predetermined cutoff value the estimated variances of estimated regression

coefficients are extracted from the linear mixed model, or, alternatively the

Huber-White robust variance estimator is used. Otherwise, the estimated

variance is based on the one-level linear model. This approach is found to

be nearly identical in practice to the adaptive approach based on just testing

the null hypothesis that the random effect variance component is zero.

This adaptive strategy for estimation will be developed based on a two-

level linear model assuming normality. It will be evaluated by simulation us-

ing normal data, with equal and unequal numbers of observations per cluster,

and also using log-normal data, to assess the robustness of the approach to

non-normality. The simulations indicate that extreme designs with 5 or less

PSUs and many observations per cluster should be avoided. For these ex-

treme designs, most methods perform poorly, including the adaptive methods

and the linear mixed model, due to the difficulty of appropriately defining
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the degrees of freedom for this model. Apart from these extreme designs, the

adaptive strategy is found to perform acceptably well, resulting in simpler

analysis and slightly shorter confidence intervals.

The use of a pilot survey to estimate the intraclass correlation will also

be considered. The pilot estimate of this parameter can be used to estimate

the optimal within-PSU sample size for the main survey. The best design

based on a “cost-adjusted design effect” and the estimated variance of the

estimated regression coefficients will be considered.

An upper cutoff should be placed on the sample size to be selected from

each PSU, to allow for the possibility of an under-estimate of the intraclass

correlation from the pilot data. The optimal value of this cutoff is found to

be between 10 and 50 depending on the pilot sample sizes.

Some results are also obtained on appropriate sample sizes of PSUs and

units in the pilot study.
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Chapter 1

Introduction

1.1 Cluster and Multistage Surveys

Two-stage sampling designs are used in many surveys of social, health, eco-

nomic and demographic topics. Final population units are grouped into

primary sampling units (PSUs). The first stage of selection is a sample of

PSUs and the second stage is a sample of units within selected PSUs. For

example, PSUs and units could be schools and students, or households and

people, or geographic areas and households (see for example (see for example

Cochran, 1977; Kish, 1965)).

Two-stage sampling is typically used because

• There is no sampling frame of final units, but a frame of PSUs (e.g. a

list of suburbs) is available.

• Cost; for example it is much cheaper to draw a two-stage sample of

100 students from 10 schools than draw a simple random sample of
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1.1. CLUSTER AND MULTISTAGE SURVEYS

100 students, as those students might be dispersed over 100 schools

(Snijders, 2001).

• Within-group correlations may be of interest in their own right. For

instance, the correlation between values for students in the same school

might be of interest.

A complication of two-stage sampling is that values of a variable of in-

terest may tend to be more similar for units from the same PSU than for

units from different PSUs. The intraclass correlation (ICC), ρ, is a measure

of the association between the observations for members of the same PSU. It

also describes the PSU homogeneity (Hansen et al., 1953, Chapter 6). If the

intraclass correlation is non-zero, the clustered nature of the design should

be reflected in the analysis procedure. One way of doing this is by fitting a

multilevel model (MLM) (Goldstein, 2003, Chapter 1).

In practice the intraclass correlation is often quite small. For example, if

units within PSUs are no more homogenous than units over all PSUs, then

the intraclass correlation is zero. On the other hand, if units from the same

PSU have equal values then the intraclass correlation is 1. The intraclass

correlation may take a negative value, but in practice it is generally positive.

If each PSU in the population contains M units, the smallest possible value

of ρ is −1/(M − 1). This occurs when the population is finite with high
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CHAPTER 1. INTRODUCTION

heterogeneity within PSUs, and zero variance between PSU means (Hansen

et al., 1953, p.260, show this for repeated probability sampling from a fixed

finite population).

In this thesis we will focus on modeling two-stage survey data. In the

case of equal number of observations in each PSU, ρ is usually less than 0.1

when PSUs are geographic areas and final units are households in these areas

(Verma et al., 1980). When PSUs are households and final units are people

in households it is usually between 0 and 0.2 (Clark and Steel, 2002).

Variances of estimators obtained from two-stage samples are often higher

than those from a simple random sample of the same size. Kish (1965,

Chapter 5) defined the design effect as the ratio of the design variance (

the variance over repeated probability sampling from a finite population)

under the sampling technique used, to the variance assuming simple random

sampling with the same sample size.

If the number of PSUs is large, each PSU contains M units, and the

sample size in each PSU is equal to m, then the design effect for the sample

mean is given by

deff = 1 + (m− 1)ρ. (1.1)

When PSUs have unequal sample sizes, the deff is not expressible in terms

3
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of ρ. Some design effect approximations have been suggested, one of these is

deff = 1 + (m̄− 1)ρ, (1.2)

where m̄ stands for the average PSU sample size (Kish, 1965, p.162).

The optimal value of m can be chosen using simple cost models. Hansen

et al. (1953, p.272) and Kish (1965, p.268, Equation 8.3.5) defined a simple

cost model for two-stage sampling as

C = C0 + cC1 + nC2 (1.3)

where C is the total cost, c is number of PSUs in the sample, n is the total

sample size, C0 is the fixed cost, C1 is the cost of including a new PSU in the

sample, and C2 is the average cost of including an extra unit in the sample.

Hansen et al. (1953, p.286) showed that the optimal PSU sample size that

minimizes the variance of the sample mean subject to fixed total cost is

mopt =

√
C1

C2

1− ρ
ρ

(1.4)

In practice ρ would have to be estimated, sometimes from a pilot survey, in

which case the estimator of ρ could be quite imprecise (Ukoumunne, 2002).

In the balanced data case, that is when all PSUs have the same number of

sample observations, m, Equation (1.3) can be rewritten as C = C0 + cC1 +

mcC2, therefore c = (C − C0)/(C1 +mC2). Hence, the optimal value of c is

copt =
C − C0

C1 +moptC2

(1.5)
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CHAPTER 1. INTRODUCTION

1.2 Multilevel Analysis of Clustered Data

One way of allowing for correlations between values for units between PSUs is

to fit a multilevel model. Multilevel models are a generalization of regression

models. Let yij be a dependent variable of interest, and xij a vector of

covariates for unit j in PSU i. The two-level linear mixed model (LMM)

(Goldstein, 2003, Chapter 2) is given by

yij = β′xij + bi + eij, i = 1, 2, . . . , c, j = 1, 2, . . . ,mi, (1.6)

where c denotes the number of PSUs in the sample, mi denotes the number of

observations selected in PSU i, β is the vector of unknown regression coeffi-

cients, bi ∼ N(0, σ2
b ) is a PSU specific random effect, and eij is assumed to be

N(0, σ2
e). Therefore yij ∼ N(β′xij, σ

2
b +σ2

e), with variance σ2
y = σ2

b +σ2
e . Vari-

ances of regression coefficient estimates can be estimated by either standard

likelihood theory (West et al., 2007), or by using the robust Huber-White

estimator (Huber, 1967; White, 1982). Maximum likelihood or restricted

maximum likelihood methods can be used to estimate the model parame-

ters.

The sampler is assumed to know the values of the design variable; hence

the sampling design can be ignored (Sugden and Smith, 1984). Unequal se-

lection probabilities are often used in the sampling designs that lie behind

the sample selection, at least in some stages of the selection procedure. The

5



1.3. ADAPTIVE PROCEDURES FOR ANALYZING TWO-STAGE
SURVEY DATA

use of OLS estimators or other estimators that ignore the sampling design

can bring in large bias and therefore mislead the inference when these proba-

bilities are related to dependent variable values (Pfeffermann and Sverchkov,

1999). In this thesis, it is assumed that the sampling design is ignorable

(Sugden and Smith, 1984) so that a simple LMM can be applied to the sam-

ple. The issues associated with the effect of more complex sampling designs

on multilevel models are discussed by Pfeffermann et al. (1998).

1.3 Adaptive Procedures for Analyzing Two-

Stage Survey Data

There are number of possible approaches for estimating regression coeffi-

cients and their variances when the intraclass correlation (ρ) is thought to

be small or has been estimated as a small value. One approach is to fit a

linear mixed model regardless. Another is to fit a linear model assuming

independent observations, i.e. ρ=0. However, if the sample design is rela-

tively clustered, that is a large number of final units are selected from each

PSU, the estimated variances resulting from a linear mixed model can be

much larger than those obtained from a linear model assuming independent

observations, leading to wider confidence intervals. Moreover, a linear mixed

model is more complicated to fit and explain than a simple linear model, so

the latter is preferable provided it does not give misleading inference. This

6
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thesis will explore a third alternative: an adaptive strategy based on testing

the null hypothesis that the PSU-level variance component, σ2
b , is zero. If

the null hypothesis is not rejected we use the linear model for estimating

the variances of the estimated regression coefficients β̂. On the other hand,

if the null hypothesis is rejected we use the estimated variance for β̂ either

using the standard likelihood theory variance estimator for the LMM or the

Huber-White method.

This strategy is explained in Figure 1.1, where v̂arLM(β̂) is the estimator

Adaptive ProcedureTest H0 : σ2
b = 0

v̂arADM(β̂) =
v̂arADH(β̂) = v̂arLM(β̂)

v̂arADM(β̂) = v̂arLMM(β̂);
or v̂arADH(β̂) = v̂arHub(β̂)

Do not Reject

Reject

Figure 1.1: Flowchart explaining the adaptive procedure relying on testing
H0 : σ2

b = 0 using LMM-REML variance estimator or Huber-
White variance estimator as an alternative

of var(β̂) using the LM strategy, v̂arLMM(β̂) is the estimator of var(β̂) using

the LMM strategy, v̂arADM(β̂) is the adaptive estimator based on the LMM

variance estimator as an alternative and v̂arADH(β̂) is the adaptive estimator

based on the robust Huber-White variance estimator as an alternative.
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Another possible strategy is to use the LMM variance estimator or the

robust Huber-White variance estimator as an alternative when H0 : σ2
b = 0

is rejected and the estimated design effect of the estimated regression coeffi-

cient, d̂eff(β̂), is larger than some cutoff (d). This might be a good approach

because the linear model could still be a reasonable approximation even when

H0 is rejected, because of the small estimate of the intraclass correlation ρ.

Several cutoff points are considered later in this thesis. Figure 1.2 explains

this adaptive strategy.

Adaptive Procedure
Test H0 : σ2

b = 0

and calculate d̂eff(β̂)

v̂arADM(β̂) =
v̂arADH(β̂) = v̂arLM(β̂)

v̂arADM(β̂) = v̂arLMM(β̂);
or v̂arADH(β̂) = v̂arHub(β̂)

Otherwise

Reject H0 and d̂eff ≥ d

Figure 1.2: Flowchart showing the adaptive procedure based on testing H0 :

σ2
b = 0 and comparing d̂eff to a predetermined cutoff (d), using

LMM-REML variance estimator or Huber-White variance esti-
mator as an alternative

1.4 Adaptive Design based on a Pilot survey

A pilot survey is a small study designed to test survey procedures and possi-

bly obtain data to guide sample design, prior to conducting the full survey. It

8



CHAPTER 1. INTRODUCTION

also can help the researcher to address the inadequacy in the proposed design

and avoid problems in the large scale studies (Lancaster et al., 2004). For

example, Niser (2010) conducted a pilot survey to understand how the field

of “study abroad” of Higher Education Institutions in the six New England

states of the USA is organized. The contributions of 195 institutions were

examined. He used websites, publications and telephone interviews to collect

the information for his study. This study revealed that most of the institu-

tions offered study abroad programs. It also revealed that providers played

an important role in the broad programs offered to students from different

institutions.

The use of a pilot survey to estimate the intraclass correlation ρ is con-

sidered in this thesis, assuming the intercept-only model. An estimator of

ρ can be substituted in Equation (1.4) to give a within-PSU sample size for

the main survey. Because ρ appears in the denominator of (1.4), a small esti-

mated value of ρ might lead to a very large PSU sample size being calculated,

which could lead to very high variances from the main survey. Besides, the

estimate of ρ is often 0 in multilevel models, which happens often because of

small variance across PSU-level units (Muthén and Satorra, 1995). To deal

with these possibilities, m will be truncated if it is greater than a cutoff, A.

The value of m will also be truncated below to be greater than or equal to 2,

to ensure that we can estimate the intraclass correlation ρ. A range of values

9



1.4. ADAPTIVE DESIGN BASED ON A PILOT SURVEY

of the cutoff A will be evaluated by simulation. A range of values of the pilot

sample sizes of PSUs (cp) and units per PSU (mp) will also be evaluated.

Figure 1.3 illustrates the approach.

pilot survey, with cp PSUs
and mp units per PSU

Calculate ρ̂ from
pilot survey data

Calculate

mmain =

[√
1−ρ̂
ρ̂

C1

C2

]A
2

cmain = C−C0

C1+mmainC2

Conduct the main sur-
vey using cmain and mmain

Calculate statistics, such as
ȳ.. from the main survey data

Figure 1.3: Flowchart explaining an adaptive procedure based on a pilot sur-
vey
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1.5 Outline of Thesis

This thesis is divided into seven chapters.

In Chapter 2, a summary of literature relevant to the thesis will be given.

Topics will include linear mixed models, cluster and multistage sampling and

the limited literature available on adaptive analysis of survey data.

Chapter 3 will consider two adaptive strategies. Both of them rely on the

idea of testing the variance component σ2
b in model (1.6). In the first adaptive

strategy, if we reject H0 : σ2
b = 0, we use the LMM estimators of var(β̂).

On the other hand, if we accept H0, then we assume that σ2
b = 0 and we

fit the standard linear model with independent errors. The second adaptive

strategy is using the robust Huber-White estimator v̂arHub(β̂) is used instead

of v̂arLMM(β̂) when H0 is rejected. The two strategies are summarized in

Figure 1.1. The adaptive strategies will be evaluated in a simulation study

of normally distributed data from balanced and unbalanced designs.

The linear mixed model assumes that data are normally distributed.

Chapter 4 will evaluate whether the adaptive procedures evaluated in Chap-

ter 3 with simulated normal data are robust to this assumption. This will be

done by simulating log-normal data with varying degrees of skewness.

The adaptive procedures of Chapter 3 are based on using the linear model

whenever H0 : σ2
b = 0 is retained. It is possible that H0 : σ2

b = 0 is rejected

11



1.5. OUTLINE OF THESIS

but that ρ is still relatively small, so that a linear model may still be a reason-

able model. Chapter 5 will evaluate a strategy to deal with this possibility.

The LM estimators of var(β̂) will be used when H0 : σ2
b = 0 is not rejected

or d̂eff < d, where d is a cutoff value. If H0 is rejected and d̂eff ≥ d, the

LMM variance estimators or alternatively the Huber-White variance estima-

tors will be used. This approach is summarized in Figure 1.2. Several cutoff

values, d, will be evaluated using simulated normal data.

Chapter 6 will develop approaches for using a pilot survey to estimate ρ,

and hence to derive the best m and c for the main survey, as described in Sec-

tion 1.4. Approaches will be evaluated by simulating pilot data, calculating

copt and mopt based on the pilot data, and then simulating main survey data

using these values. The simulation will assume model (1.6) including the

assumption of normality. Conclusions will be drawn on appropriate values

for m and c for the pilot survey, and for a maximum value A for m in the

main survey.

Finally, in Chapter 7 we will state conclusions and suggest directions for

future research.

The Appendices contain derivations of some equations as well as some

extra tables and the simulation programs.

12



Chapter 2

Review of Relevant Literature

2.1 List of notations

Symbol Definition

yij jth observation in PSU i

Y complete set of observations in all PSUs

xi vector of covariates

X the n× p matrix of explanatory variables

p number of regressors

β vector of unknown regression coefficients

bi vector of random coefficients

eij error or residual term

c number of PSUs

mi number of observations in PSU i in the unbalanced design

m number of observations per PSU in the balanced design

n total number of observations in all PSUs

σ2
b random-effect variance component

σ2
e error term variance component

13



2.1. LIST OF NOTATIONS

V block diagonal variance-covariance matrix of the complete set
of observations in all PSUs, with diagonal elements Vi

Vi diagonal elements of V, Vi = σ2
bJmi + σ2

eImi

V̂i estimate of Vi

|V| the determinant of the variance-covariance matrix V

Jmi mi ×mi matrix where all entries are 1

Imi mi ×mi identity matrix

MSE mean square error within PSUs

MSA mean square among PSUs

ȳi. the sample mean for PSU i

ρ intraclass correlation (ICC)

mmain number of observations per PSU in the main survey of the
pilot survey

cmain number of sample PSUs in the main survey of the pilot survey

deff design effect

ne effective sample size

C total cost

C1 cost of including a new PSU in the sample

C2 average cost of including an extra element in the sample

Cf the total cost

ȳw REML estimate of β in the unbalanced data case,∑c
i=1

miȳi.
λ̂i

/∑c
i=1

mi
λ̂i

λi variance reciprocal of the mean for PSU i, λi = mi
σ2
e+miσ2

b
=

(var(ȳi.))
−1

λ̂i estimate of λi

Λ likelihood ratio test

B number of PSUs in the population
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CHAPTER 2. REVIEW OF RELEVANT LITERATURE

M population size for each PSU, in the case where all PSUs are
of the same size.

cp number of PSUs in the pilot survey

mp number of observation per PSU in the pilot survey

A maximum number of observations per PSU

mopt optimal PSU sample size

copt optimal number of PSUs in the sample

µ mean of the normal distribution in Chapter 4

σ2 variance of the normal distribution in Chapter 4

`R restricted log-likelihood function

`M log-likelihood function

2.2 The Two-Level Linear Mixed Model

2.2.1 The Model

Let X be the n × p design matrix, which is assumed to be of rank p, and

Y = (y′1, . . . ,y
′
c)
′ be the complete set of n =

∑c
i=1mi observations in the

c groups, where yi = (yi1, . . . , yimi)
′ is the observed vector for the ith PSU.

Model (1.6) can also be written as

Y ∼ N(Xβ,V), (2.1)

where V is a block diagonal matrix, V = diag(Vi, i = 1, . . . , c), and

Vi = σ2
bJmi + σ2

eImi , (2.2)

where Jmi is an mi × mi matrix with all entries equal to 1, and Imi is the

mi ×mi identity matrix. β is the vector of unknown regression coefficients.
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2.2. THE TWO-LEVEL LINEAR MIXED MODEL

A simple special case of model (1.6) is the intercept-only model, this

model includes just a grand mean parameter, it is defined by setting xij to 1

for all i, j:

yij = β + bi + eij, i = 1, 2, . . . , c, j = 1, 2, . . . ,mi, (2.3)

where c denotes number of the sample PSUs, mi denotes the number of

units selected in PSU i, bi ∼ N(0, σ2
b ) is a PSU specific random effect and

bis are independent and identically distributed (iid), and eij is assumed to

be N(0, σ2
e). The parameters σ2

b and σ2
e are the between- and within-PSUs

variance components. This model will be used in the simulation studies in

Chapters 3-6.

Observations for different units from the same PSU are correlated. It is

assumed that bi is uncorrelated with eij, and that bi and bi′ for i 6= i′ are

uncorrelated. Therefore,

V (yij) = V (bi) + V (eij) = σ2
b + σ2

e ,

Cov(yij, yij′) = V (bi) = σ2
b for j 6= j′, and (2.4)

Cov(yij, yi′j) = 0 for i 6= i′.

(Rao, 1997).

Assuming balanced data design, with i = 1, . . . , c and (j 6= j′) = 1, . . . ,m,
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Rao (1997) defined the intraclass correlation as

ρ =
Cov(yij, yij′)√
V (yij)V (yij′)

. (2.5)

Therefore, substituting (2.4) into (2.5), we obtain

ρ =
σ2
b

σ2
b + σ2

e

. (2.6)

Notice that under model (2.3), the intraclass correlation is always greater

than or equal to 0.

Given estimates σ̂2
b and σ̂2

e , an estimator for ρ is

ρ̂ =
σ̂2
b

σ̂2
b + σ̂2

e

. (2.7)

2.2.2 Likelihood Theory Estimation of Model Param-
eters

The variance components σ2
b and σ2

e are generally not known, and are usually

estimated by Restricted Maximum Likelihood (REML), giving estimates V̂i

of Vi.

REML was first introduced by Patterson and Thompson (1971) as a mod-

ification of Maximum Likelihood. The REML method is often presented as

a technique based on maximization of the likelihood of a set of linear combi-

nations of the elements of the response variable y, say k′y, where k is chosen

so that k′y is free of fixed effects. One of the attractive aspects of REML is

that it takes into account the degrees of freedom used up by the estimation
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2.2. THE TWO-LEVEL LINEAR MIXED MODEL

of the fixed effects (Diggle et al., 1994, Chapter 4). There is also no loss

of information about the variance components when the inference is derived

from k′y rather than y.

The restricted log-likelihood function is given by West et al. (2007, p.28)

by the Equation

`R = −1
2

[
(n− 1)log(2π) + log|V|+ log|X′V−1X|

+Y′V−1{I−X(X′V−1X)−1X′}V−1Y
]
,

(2.8)

where V = diag(Vi) and Vi are given by (2.2). Maximizing (2.8) with

respect to σ2
b and σ2

e gives the REML estimates of these parameters. The

REML estimate of β̂ is given by

β̂ = (X′V̂
−1

X)−1X′V̂
−1

Y

= (
∑c

i=1 x′iV̂
−1

i xi)
−1
∑c

i=1 x′iV̂
−1

i yi.
(2.9)

In the intercept-only model, the REML estimates are defined by the fol-

lowing system of equations:

n−c
σ̂2
e

+
∑c

i=1
λ̂i
mi
−

∑c
i=1

λ̂2i
mi∑c

i=1 λ̂i
= (n−c)MSE

σ̂4
e

+
∑c

i=1
λ̂2i
mi

(ȳi. − β̂)2∑c
i=1 λ̂i −

∑c
i=1 λ̂

2
i∑c

i=1 λ̂i
=

∑c
i=1 λ̂

2
i (ȳi. − β̂)2

β̂ =
∑c
i=1 λ̂iȳi.∑c
i=1 λ̂i

,

(2.10)

(Sahai and Ojeda, 2005, p.106), where ȳi. is the mean of PSU i and

MSE =
1

n− c

c∑
i=1

mi∑
j=1

(yij − ȳi.)2,

and

λi =
mi

σ2
e +miσ2

b

= (var(ȳi.))
−1,
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is the variance reciprocal of the mean of PSU i, and

λ̂i =
mi

σ̂2
e +miσ̂2

b

,

is the estimate of λi. Equations in (2.10) must be solved numerically with

respect to σ̂2
b and σ̂2

e . In the balanced data case (mi = m for all i), the REML

estimates have a simpler form. Let MSA = m
c−1

∑c
i=1(ȳi. − ȳ..)2, the system

of equations (2.10) becomes

σ̂2
e = min

(
MSE,

n− c
n− 1

MSE +
c− 1

n− 1
MSA

)
;

σ̂2
b =

1

m
max(MSA−MSE, 0);

β̂ = ȳ...

(Sahai and Ojeda, 2005, p.40).

2.2.3 Likelihood Theory Estimation of var(β̂)

In this section we discuss the variances of the estimated regression coefficients

and their estimators. The estimated variance of the REML β̂ is given by

v̂ar(β̂) =
(
X′V̂

−1
X
)−1

=
(∑c

i=1 x′iV̂
−1

i xi
)−1

,
(2.11)

where V̂i = σ̂2
bJmi + σ̂2

eImi . For the intercept-only model given by (2.3), in

the unbalanced data case, this simplifies to

v̂ar(β̂) =
{ c∑

i=1

mi

σ̂2
e +miσ̂2

b

}−1

= (
c∑
i=1

λ̂i)
−1, (2.12)
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Proof:

v̂ar(β̂) =
1

(
∑c

i=1 λ̂i)
2

[ c∑
i=1

v̂ar(λ̂iȳi.)
]

=
1

(
∑c

i=1 λ̂i)
2

[ c∑
i=1

λ̂2
i v̂ar(ȳi.)

]
=

1

(
∑c

i=1 λ̂i)
2

[ c∑
i=1

λ̂2
i

{ σ̂2
e +miσ̂

2
b

mi

}]
=

1

(
∑c

i=1 λ̂i)
2

[ c∑
i=1

{
λ̂2
i .

1

λ̂i

}]
=

1

(
∑c

i=1 λ̂i)
2

( c∑
i=1

λ̂i
)

=
1∑c
i=1 λ̂i

= (
c∑
i=1

λ̂i)
−1.

In the balanced data case, where mi = m, the variance estimator simplifies

further to

v̂ar(β̂) =
1

c

[
σ̂2
b +

σ̂2
e

m

]
. (2.13)

A confidence interval for β could be constructed using the Equation

(1− α)100%CI = β̂ ± t(df,1−α
2

)

√
v̂ar(β̂). (2.14)

However, it is not clear how the degrees of freedom in (2.14) should be defined

for mixed models. Faes et al. (2009) suggested the following approximate

confidence interval for the mixed models based on a scaled t-distribution:

(1− α)100%CI = β̂ ± δ−1t(ν,1−α
2

)

√
v̂ar(β̂), (2.15)
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where

δ =

√
ν

(ν − 2)V̂ (T )
;

ν =
c∑
i=1

mi

1 + (mi − 1)ρ̂
− 1;

V̂ (T ) = 1 +

(
β̂2

4(v̂ar(β̂))3
v̂ar[v̂ar(β̂)]

)
, (2.16)

with v̂ar(β̂) defined in (2.11) and T = β̂√
v̂ar(β̂)

. The scale factor, δ was chosen

so that the first two moments of δt agreed with the moments of tν−1. Faes

et al. (2009) did not specify how V (T ) or v̂ar[v̂ar(β̂)] should be estimated;

we will use a parametric bootstrap (see Subsection 3.4.3 for details). Other

approaches have been suggested, see for example Satterthwaite (1941) and

Kenward and Roger (1997). The method of Faes et al. (2009) has the ad-

vantage that it extends naturally to non-Gaussian model, unlike the other

approaches.

2.2.4 Bootstrap Approaches

Although in complex survey data there are many methods to estimate the

variance and calculate confidence intervals of nonlinear statistics such as

regression coefficients, these methods are often awkward or do not broaden

to complex designs or nonlinear estimators. Resampling methods such as

the bootstrap, the jackknife and balanced repeated replication naturally deal

with complex statistics and designs.
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Rao and Wu (1988) considered extensions of the iid bootstrap to complex

survey data of a nonlinear statistics. They applied the bootstrap method

to two-stage cluster sampling with equal probabilities at both stages and

without replacement to estimate the variances of the estimated regression

coefficients. They found that this method is extendable to general sam-

pling designs, such as stratified cluster sampling in which the clusters are

sampled with replacement, stratified simple random sampling without re-

placement, unequal probability sampling without replacement, and two-stage

cluster sampling with equal probabilities and without replacement.

Rao and Wu (1988) divided the population into B PSUs with Mi elements

each and assumed that the population size is unknown. A simple random

sample of c PSUs is selected without replacement, with mi elements from

the Mi elements in each population PSU chosen without replacement. To

estimate the variance of β̂, c PSUs from the c sample PSUs are selected with

replacement, then mi elements are drawn with replacement from from the

mi elements in each selected PSU.

Sitter (1992) extended existing bootstrap with replacement and with-

out replacement to more complex designs including stratified sampling and

two-stage cluster sampling. The proposed resampling method was based on

resampling a smaller number, c′ of the c sample PSUs selected from the

B population PSUs without replacement. This step is repeated indepen-
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dently h = c(1 − c′/c)/(c′(1 − c/B)) times. Then from the mi elements

in each resampled PSU i a number of within-PSU elements, 1 ≤ m′i < mi,

are resampled without replacement. This step is also repeated independently

[mi(1−m′i/mi)/m
′
i(1−mi/Mi)](B/hc

′) times. The variance of statistics such

as β̂ is estimated by repeating the procedure a large number of times.

2.2.5 Huber-White Estimator of var(β̂)

Liang and Zeger (1986) suggested the generalized estimation equation (GEE)

approach as an alternative to the ML and REML approaches for modeling

longitudinal and cross-sectional data. The GEE approach to linear modeling

of clustered data can use either ordinary least squares (OLS) or generalized

least squares (GLS).

The OLS estimator for β is defined by

β̂ols = (X′X)−1X′Y. (2.17)

The estimator β̂ols, when the observations from different PSUs are uncor-

related but the same PSU observations are correlated with common intraclass

correlation ρ, is unbiased (Scott and Holt, 1982) with variance equal to

var(β̂ols) = (X′X)−1X′VX(X′X)−1. (2.18)

In general, V is not known and it can be estimated by V̂, therefore the
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estimated variance for β̂ols is defined by

v̂ar(β̂ols) = (X′X)−1X′V̂X(X′X)−1. (2.19)

The estimator v̂ar(β̂) in (2.11) will be approximately unbiased provided

that the variance model (2.2) is correct. If this is not the case, v̂ar(β̂) will

be biased and inference will be incorrect. An alternative to ML or REML

estimates of var(β̂) is the robust variance estimate approach described by

Liang and Zeger (1986), in the context of modeling longitudinal data using

generalized estimating equations (GEE). This approach can be applied to

the analysis of data collected using PSUs, where observations within PSUs

might be correlated and the observations in different PSUs are independent.

This approach can be referred to as robust or Huber-White variance es-

timation (Huber, 1967; White, 1982). It will be used as an alternative ap-

proach to estimating var(β̂) in this thesis. The method yields asymptotically

consistent covariance matrix estimates even if the variances and covariances

assumed in model (1.6) are incorrect. It is still necessary to assume that

observations from different PSUs are independent.

In Equation (2.11) in Subsection 2.2.3, the variance of β̂ was estimated by

substituting REML estimates of σ2
b and σ2

e into Vi. An alternative estimator

of Vi is V̂
Hub

i = êiê
′
i, where êi = yi − x′iβ̂. V̂

Hub

i is approximately unbiased
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for Vi even if (2.2) does not apply.

E
(
V̂
Hub

i

)
= E(êiê

′
i)

≈ E[(yi − x′iβ)(yi − x′iβ)′]

= Vi.

(2.20)

Note that

var(β̂) = var
((∑c

i=1 x′iV̂
−1

i xi
)−1(∑c

i=1 x′iV̂
−1

i yi
))

≈
(∑c

i=1 x′iV̂
−1

i xi
)−1(∑c

i=1 x′iV̂
−1

i ViV̂
−1

i xi
)(∑c

i=1 x′iV̂
−1

i xi
)−1

.

(2.21)

One way to construct a robust estimator of var(β̂) is to substitute the

robust estimator V̂
Hub

i in (2.21) as follows (Liang and Zeger, 1986),

v̂arHub(β̂) =
(∑c

i=1 x′iV̂
−1

i xi

)−1(∑c
i=1 x′iV̂

−1

i V̂
Hub

i V̂
−1

i xi

)
(∑c

i=1 x′iV̂
−1

i xi

)−1

.
(2.22)

When there is only an intercept in the model (xij=1), (2.22) becomes

v̂arHub(β̂) =

∑c
i=1 λ̂

2
i (ȳi. − β̂)2

(
∑c

i=1 λ̂i)
2

. (2.23)

Proof : See Appendix A.

In the balanced data case, (i.e. mi = m), from Equation (2.23) and since

λ̂i is constant this estimator becomes

v̂arHub(β̂) =
1

c(c− 1)

c∑
i=1

(ȳi. − ȳ..)2. (2.24)

Exact confidence intervals can then be calculated using (2.15) with degrees

of freedom equal to c-1 (MacKinnon and White, 1985).

25



2.3. TESTING H0 : σ2
B = 0 IN THE LINEAR MIXED MODEL

2.3 Testing H0 : σ2
b = 0 in the Linear Mixed

Model

A hypothesis of particular interest in model (1.6) is whether σ2
b is zero. If the

null hypothesis H0 : σ2
b = 0 is retained, then there is no significant correlation

within PSUs. Two methods to test the hypothesis H0 : σ2
b = 0 will now be

described: the t-test and the restricted-likelihood ratio test.

2.3.1 t-Test

One approach to test H0 : σ2
b = 0 vs H1 : σ2

b > 0 is a t-test approach.

This approach is the default of the statistical software SPSS (SPSS, 2007).

Assuming the intercept-only model for the balanced design with mi = m,

the variance of σ̂2
b can be approximated by

var(σ̂2
b ) =

2

c− 1

(
σ2
b +

σ2
e

m

)2

+
2

m2(n− c)
σ4
e , (2.25)

(Rao, 1997) when the probability that σ̂2
b = 0 is small. (This would be a

poor approximation if σ2
b is small or zero). Following Berkhof and Snijders

(2001), the t-test statistic is the ratio of the restricted maximum likelihood

estimator σ̂2
b to its estimated standard deviation ŝe(σ̂2

b ) = (v̂ar(σ̂2
b ))

1
2 ; it is

given by

t =
σ̂2
b

ŝe(σ̂2
b ),

(2.26)
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where

v̂ar(σ̂2
b ) =

2

c− 1

(
σ̂2
b +

σ̂2
e

m

)2

+
2

m2(n− c)
σ̂4
e . (2.27)

The null hypothesis H0 : σ2
b = 0 is rejected if t > tn−1,α, where n is the

sample size and α is the significance level. This approach is based on an

assumption that t ∼ tn−1 when H0 is true. However, it is easy to see that

this is not justified. For the intercept-only model (2.3) with mi = m, the

maximum likelihood estimator for σ2
b is given by

σ̂2
b =

1

m

{(
1− 1

c

)
MSA−MSE

}
, (2.28)

provided that this estimator is positive and 0 otherwise. The probability

that σ̂2
b=0 tends to 0.5 under H0 for large c and m (Berkhof and Snijders,

2001). When H0 is not true, the approximate distribution of σ̂2
b is

σ2
b

c
χ2
c−1

with standard error
√

2(c− 1)σ2
b/c, for large m and fixed values of c, σ2

b and

var(σ̂2
b ). Hence the t-test statistic would be expected to give flawed inference

for testing that H0 : σ2
b = 0.

2.3.2 Restricted Likelihood Ratio Test (RLRT)

A better option is to use REML estimators to derive the likelihood ratio test

(LRT) statistic for testing H0 : σ2
b = 0.

The problem of testing H0 : σ2
b = 0 using the likelihood ratio test is

discussed by Self and Liang (1987) using ML estimators for the variance
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components. Self and Liang (1987) allowed the true parameter values to be

on the boundary of the parameter space, and showed that the large sample

distribution of the likelihood ratio test is a mixture of χ2 distributions un-

der nonstandard conditions assuming that response variables are iid. This

assumption does not generally hold in linear mixed models, at least under

the alternative hypothesis. Stram and Lee (1994) used the results of Self and

Liang (1987) to prove that the asymptotic distribution of the likelihood ratio

test for testing H0 : σ2
b = 0 has an asymptotic 50:50 mixture of χ2 with 0

and 1 degrees of freedom under H0 rather than the classical single χ2 if the

data are iid under the null and alternative hypotheses. (χ2
0 is defined to be

the identically zero distribution.) This is because the chance of obtaining

a negative estimate of σ2
b under the null hypothesis is 50% and the chance

of obtaining a positive estimate is 50% as well. However, negative values of

σ̂2
b are not permitted and are therefore corrected to 0. When this happens,

the chance of getting zero σ̂2
b is approximately 50% (LaHuis and Ferguson,

2009).

From (2.8), the restricted likelihood ratio test is given by

Λ = −2 log(RLRT ) (2.29)

= 2
MAX

HA `R(β, σ2
b , σ

2
e)− 2

MAX

H0 `R(β, σ2
b , σ

2
e).

In the intercept-only model case (2.3) assuming balanced data, Visscher
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(2006) gave the REML-based likelihood ratio test (RLRT) as

Λ =

 (n− 1) log
(
n−c
n−1

+ c−1
n−1

F
)
− (c− 1) log(F ) if F > 1

0 if F ≤ 1.
(2.30)

Derivation of 2.30: See Appendix A

The large sample distribution of the likelihood ratio Λ is a 50:50 mixture of

χ2 distribution with 0 and 1 degrees of freedom as the parameter values fall

on the boundary of the parameter space (Self and Liang, 1987).

In the unbalanced data case, with the intercept-only model, the RLRT is

Λ = −2
( MAX

H0 `R −
MAX

HA `R

)
= ln(n) + (n− 1) ln(MSE0) +

∑c
i=1 mi(ȳi. − ȳ..)2

MSE0

−(n− c)ln(MSEA)−
c∑
i=1

ln(η̂i)− ln
( c∑
i=1

(λ̂i)
)

−
c∑
i=1

λ̂i(ȳi. − β̂)2, (2.31)

where MSE0 = 1
n−1

∑c
i=1

∑mi
j=1(yij − y..)2 is the mean squared error under

the null hypothesis, σ2
b = 0 and MSEA = σ̂2

e is the mean squared error under

the alternative hypothesis, σ2
b > 0 and ηi = σ2

e +miσ
2
b .

Derivation of 2.31: See Appendix A

2.4 Adaptive Procedures

2.4.1 Review of Longford (2008)

Longford (2008) has investigated the advantages of estimators based on se-
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lected models, assuming a two-stage sampling design and c PSUs with mi

observations from each. He used the one-way analysis of variance model,

yij = βi + bi + eij, i = 1, . . . , c; j = 1, . . . ,mi, where βi is the mean of PSU i.

Two alternative sub-models were considered;

• Model A: no restrictions on βi;

• Model B: the group means are all equal, βi = β, i = 1, . . . , c .

Longford (2008) was interested in estimation of βi for each i = 1, . . . , c,

but for simplicity just β1 was discussed.

For estimating βi two estimators were considered β̂Ai = ȳi under model

A or β̂Bi = β̂ = ȳ.. under model B.

The mean squared errorMSE = E[(β̂i−βi)2] of the alternative estimators

of βi were compared. The mean squared errors for β̂i and β̂ wereMSE(β̂Ai) =

σ2

mi
and MSE(β̂Bi) = σ2

n
+(βi−β)2. Longford recommended using whichever

of β̂Ai or β̂Bi had lower MSE. This results in the following estimator of βi: ȳi. if (βi − β)2 > σ2 gi

ȳ.. otherwise,
(2.32)

where

gi =
1

mi

− 1

n
.

In practice (2.32) could not be used because βi-β is unknown, but Longford

used (2.32) to motivate several estimators which can be applied in practice.
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One example was to estimate βi using ȳ.. when mi was small, and using ȳi.

when mi was large.

As an alternative estimator to (2.32), Longford (2008) considered the

convex combination

β̃i = (1− ti) β̂i + ti β̂, (2.33)

where ti is set to minimize MSE(β̃i; βi) = E[(β̃i− βi)2]. The value of ti that

minimizes the MSE is

t∗i =
gi

gi + (βi−β)2

σ2

. (2.34)

The “ideal synthetic estimator” is then

β̃i(t
∗
i ) = (1− t∗i ) β̂i + t∗i β̂. (2.35)

In practice (2.35) can not be calculated as (βi − β) is unknown.

Assuming σ2 is known, one approach would be to estimate t∗i using

t̂i =
gi σ

2

gi σ2 + (β̂i − β̂)2
. (2.36)

2.4.2 Model Averaging

Model averaging is an alternative to model selection. In model selection the

best model is selected and used for estimating the model parameters. Model

selection calculations are simple as they rely on a single model. On the other
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hand, model selection ignores model uncertainty and can give therefore over-

optimistic inference. Model averaging combines models together and calcu-

late the estimates as weighted averages. It requires more calculations but

provides better estimates (Madigan and Ridgeway, 2003). Bayesian model

averaging (BMA) is a widely used approach to model averaging approach in

many fields, including medicine, meteorology and management sciences (Li

and Shi, 2010).

Sorenson and Gianola (2002) define the following terms

Ψ = parameter or future data point,

y = data,

D = {D1, D2, . . . , Dk} set of models,

p(Dr) = prior probability of model r, r = 1, . . . , k,

p(Dr|y) = posterior probability of model r.

It is commonly assumed that models are assigned equal prior probabilities,

although this is not always true the case (Posada and Buckley, 2004).

The posterior distribution of Ψ in the usual Bayesian approach is given

by

p(Ψ|y,Dr) =
p(y|Ψ,Dr)p(Ψ|Dr)

p(y|Dr)
. (2.37)

The posterior distribution Equation (2.37) shows the case in which, if the
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model is true, inferences are conditional on Dr. The idea of Bayesian model

averaging, in contrast, is to find the average of the posterior distribution of

models, resulting in the following Equation

p(Ψ|y) =
k∑
r=1

p(Ψ|y,Dr)p(Dr|y). (2.38)

It is attractive to use BMA, but two real challenges have arisen. The first

is how to select the set of models D1, . . . , Dk. For computational reasons, it

is preferable not to use too many models particularly if each model involves

complex structure. One approach is to only use the models that operate

well according to some criteria such as the Akaike information criteria (AIC)

(Akaike, 1974) or Bayesian information criteria (BIC) (Kass and Wasserman,

1995).

Another problem is how to calculate the marginal model likelihood ac-

cording to the likelihood of every model,

p(Ψ|Dr) =

∫
p(Ψ|θr,Dr)p(θr|Dr)dθr, (2.39)

where θr is the vector of parameters in model Dr.

Adaptive confidence intervals calculated in the model selection criterion

do not incorporate the model selection uncertainty, and so may not have

the correct coverage rates. In this thesis we will evaluate the extent of this

problem by simulation. Estimates of the variances of regression coefficients

could be done based on model averaging of the linear and the linear mixed
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model rather than selecting between them (see for example Hoeting et al.,

1999; Yuan and Yang, 2005). This approach will not be developed in this

thesis, because one of the objectives is to simplify the modeling process when

the intraclass correlation is small.

2.5 Cluster and Multistage Sampling

2.5.1 Introduction

In multistage sampling, the population is divided into groups called primary

sampling units (PSUs). A random sample from each selected PSU is then

selected. If all units within each selected PSU are selected then two-stage

sampling is called cluster sampling. Multistage sampling may employ more

than two stages of selection. For example, in order to select a sample of local

voters in New South Wales in Australia, a random sample of post codes could

be surveyed. Then a sample of city blocks could be chosen within selected

post codes. Then within each of these blocks a random sample of households

could be selected.

One reason why two-stage sampling is used is to reduce cost with face-to-

face interviewing (Lehtonen and Pahkinen, 1994). Although the variability

of estimates is increased if two-stage sampling is used, it enables surveys to

be completed faster with less cost. For example, in the first stage a sample

of areas could be chosen; in the second stage a sample of respondents within
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those areas is selected (Tate and Hudgens, 2007). This can reduce travel and

other administrative costs.

Two-stage sampling can be used when there is a list of all PSUs in the

population but not of all units. Therefore, one might obtain a random sample

of PSUs and then take a census or a sample within the selected PSUs (Hansen

and Hurwitz, 1951).

Using a two-stage sample rather than simple random sample of the same

size will increase the variance of estimates. The design effect is used to

measure the increase in variance that happened when two-stage sampling is

used. It is defined as the ratio of the variance of a statistic β̂ under a two-

stage sampling design, vard(β̂), to the variance of the statistic calculated

under the simple random sampling design of the same sample size n (Kish,

1965, Chapter 5). If the sample PSUs are of equal sizes, m, then the design

effect is given by (1.1) in the intercept-only model. If the sample PSUs have

different sizes, one approximation of the design effect is given by Equation

(1.2).

Under the intercept-only model (2.3), in the unbalanced case

deff(ȳ..) = 1 +

(∑
m2
i

n
− 1

)
ρ

= 1 + (m̄(1 + c2
m)− 1)ρ,

where cm is the coefficient of variation of the within PSU sample sizes. Hence
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provided the within PSU sample size do not vary considerably, c2
m will be

small and (1.2) will provide a reasonable approximation.

2.5.2 Ignorable Two-Stage Sampling

This thesis assumes ignorable sampling, in the sense that multilevel models

can be estimated from sample data without explicitly allowing for the sample

design. This subsection reviews the concept of ignorability.

Sugden and Smith (1984) modeled the selection procedure by a sample

selection method which relies on the design variables z and may rely on the

response variables y and a vector of parameters θ. This design can be written

as

p(s|y, z; θ), s ∈ Ω, (2.40)

where Ω is the set of feasible samples.

Sugden and Smith (1984) investigated ignorability conditions based on

designs which depend on the design variables only, given partial information

on the design. Such designs can be written as

p(s|z), s ∈ Ω, (2.41)

They defined ds = Ds(z) to be data derived from knowledge of selection

procedure (2.40) and from values of the available probabilities of selection

(s, p(s)), as well as any values or functions of z. The fundamental condition
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for ignoring the sampling design given the design information is that p(s|z) =

p(s|ds) for z such that ds = Ds(z).

Models fitted using data from a simple random sample are generally ap-

proximately unbiased for the model that would be estimated from the full

population. If the sample design is more complex, the sample model could

be biased for the population model (Pfeffermann, 1993).

Pfeffermann (1993) assumed that the population consists of N units and

a vector of measurements (yi, zi) is linked with every unit i where (yi, zi)

are independent draws and have a bivariate normal BN(µ,Σ). The aim

was to estimate µy = E(Y ), where Y is the variable of interest with values

Yi, i = 1, . . . , N , from a sample s selected by a probability sampling method.

If simple random sampling is used then Ȳs is an unbiased estimator of µy, and

it fulfils other optimal properties. It is obvious that inference can ignore the

sampling design in this case. However, if probability proportional to zi, with

replacement, is used, then ignoring the sampling design can be misleading,

and Ȳs may be biased for µy.

The ignorability of the sampling design depends on the model and the

parameters of interest as well as the sample design and the information avail-

able about the design. If all design variables are incorporated in the regressor

variables in the regression model, then the sampling design is ignorable for

estimating the regression coefficients. It is not ignorable for estimating the
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unconditional mean and variance for the regression dependent variables, if

the values of the design variables are only known for units in the sample.

2.5.3 Cost-Variance Modeling and Optimal Design

Two-stage sampling normally leads to estimates having a higher variance

than simple random sampling with the same sample size. Therefore, when

its effect on reducing the unit cost is more than the increase of the unit

variance, two-stage sampling is recommended. Increasing the within-PSU

sample size increases both the cost and the variance (Kish, 1965, p.263).

Even small values of intraclass correlation lead to a significant increase in

variance when the average PSU sample size is large (Gao and Smith, 1998).

multi-stage sampling, assuming equal sized PSUs with equal sample size, and

simple random sample at both stages:

C = C0 + cC1 + nC2, (2.42)

Hansen et al. (1953, p.271) stated: “We shall assume, for the particular

illustrative sample survey under consideration, that on the basis of prior ex-

perience and experimental work we have estimated that C2 = $1”. Whereas

C1 is often not easy to estimate since it includes interviewer travel costs. The

fixed costs C0 do not affect the optimal design.

Kalsbeek et al. (1981) stated that “We believe that the ideal cost model

has the following three characteristics. First, it must realistically represent
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the way in which costs are incurred in an actual survey operation. Second,

the formulation should be simple enough so that the optimum solution is

tractable. Third, unit costs which constitute the parameters of the cost

model should be sufficiently straightforward in interpretation so that they

can be easily understood by operations staff to develop useful estimates for

calculating optimum allocations. The influence of clustering the sample on

costs and variances generally is opposed; it reduces the costs and increases the

variances. The economic design of a multistage sample requires the sampling

statistician to estimate and balance these influences.”

The approximate optimal number of sample PSUs and sample PSU sizes

are given by

mopt =
√

C1

C2

1−ρ
ρ

;

copt = C−C0

C1+moptC2
.

In the discussion so far, it has been assumed that simple random sam-

pling of PSUs and of elements within PSUs is used. In practice probability

proportional to size (PPS) selection of PSUs may be preferable (Hansen and

Hurwitz, 1943). In the PPS method, the probability of selecting a PSU varies

according to the PSU size: the larger the PSU size is the greater the prob-

ability of selection will be, up to a maximum of 1. The PPS approach can

increase the precision for a given sample size by targeting the sample towards

large units that affect population estimates more. With suitable redefinition
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of the variance components similar results can be obtained for PPS.
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Chapter 3

Adaptive Estimators Based on
Testing the Variance
Component in a Multilevel
Model

3.1 Introduction

In multistage sampling, sample units are selected in stages. The target popu-

lation is divided into primary sample units in the first stage. Sampling units

are then subsampled from these PSUs. Further selection is made within each

unit. It is used in many surveys of social, health, economic and demographic

topics. It is a very flexible technique since many aspects of the design can

be controlled, including the number of stages (eg PPS or equal probability,

systematic or simple random sampling) of selection or the number of units

and the number of units selected for each stage. In this thesis, we are going

to consider two-stage samples.
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Data from final units within the same PSU may be correlated. One way of

analyzing this kind of data is with multilevel models. Multilevel models are

a generalization of regression models. Goldstein (2003, Chapter 2) defined

the two-level linear mixed model (LMM) by Equation (1.6).

The intraclass correlation (ρ) is a measure of the association between

the regression residuals for members of the same PSU. It also expresses the

between-PSU variance, σ2
b as the proportion of the sum of the between- and

the within-PSU variance components (Commenges and Jacqmin, 1994), as

described in Equation (2.7)

The intraclass correlation, ρ is quite small in many cases. For instance,

it is zero if units within PSUs are homogeneous. The highest possible value

of ρ is 1. This is true when values are equal for units from the same PSU

(Kish, 1965, Chapter 5). The smallest value of the intraclass correlation is

−1
M−1

when all PSUs contain M units, but this is rare. Model (2.3) implies

that ρ is greater than or equal to 0. The intraclass correlation tends to

be positive in typical two-stage surveys. Even small intraclass correlations

can have a large effect on the variance, it within-PSU PSU sample sizes are

large. In general, when geographic areas are PSUs and household are the

final units, the intraclass correlation is less than 0.1 (Verma et al., 1980). If

households are PSUs and people in these households are the final units it is

usually between 0 and 0.2 (Clark and Steel, 2002).
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Regression coefficients, β, and the variances of their estimates, var(β),

can be estimated using many possible procedures when the intraclass corre-

lation is considered small. The linear model with independent observations

is one possible procedure. The linear mixed model is another approach that

can be used. An alternative is to use an adaptive approach based on test-

ing the null hypothesis that the PSU-level variance component, σ2
b , is zero.

Accepting the null hypothesis, the linear model will be used for estimating

var(β). If the null hypothesis is rejected, the linear mixed model or the ro-

bust Huber-White variance estimator will be used for estimating the variance

of the regression coefficient estimates.

This chapter is divided into four sections. Section 3.2 will describe the

adaptive strategies. A simulation study of the adaptive and other methods

will be described in Section 3.4. In Section 3.5 we will draw conclusions.

3.2 Adaptive Strategies

In this Chapter two adaptive strategies will be considered based on the

intercept-only model. Both of them rely on the idea of testing the vari-

ance component σ2
b in model (1.6). In the first adaptive strategy, if we reject

H0 : σ2
b = 0, we use the LMM estimators of var(β̂) defined in Equation

(2.11). On the other hand, if we accept H0, then we assume that σ2
b = 0 and

we fit the standard linear model with independent errors. This strategy is
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explained in Figure 1.1.

In the unbalanced case, β̂LMM (from the linear mixed model) will depend

on λ̂i and therefore on mi and ρ̂. But in the balanced case β̂LMM does not

depend on ρ̂ irrespective of its value as the values of λ̂i are all equal and

cancel out.

The second adaptive strategy, is identical, except that the robust Huber-

White estimator v̂arHub(β̂) is used instead of v̂arLMM(β̂) whenH0 is rejected.

The two adaptive strategies (ADM) and (ADH) are defined as

v̂arADM(β̂) =

 v̂arLMM(β̂) if H0 is not retained

v̂arLM(β̂) if H0 is retained,
(3.1)

v̂arADH(β̂) =

 v̂arHub(β̂) if H0 is not retained

v̂arLM(β̂) if H0 is retained.
(3.2)

The Huber-White variance estimator is approximately but not exactly

unbiased. For the intercept-only model, it is straightforward to show that

E
(
v̂arHub(β̂)

)
var(β̂)

=
(
∑c

i=1 λi)
2 −

∑c
i=1(λ2

i )

(
∑c

i=1 λi)
2

. (3.3)

Derivation: See Appendix B

where β̂ and var(β̂) are given by (2.10) and (2.23), respectively. Hence a

bias-adjusted estimator is given by dividing (2.23) by the right hand side of

(3.3), giving:

v̂arHub(β̂) =
1

(
∑c

i=1 λ̂i)
2 −

∑c
i=1 λ̂

2
i

c∑
i=1

λ̂2
i (ȳi. − β̂)2, (3.4)
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The LMM 90% confidence intervals for β are given by

(1− α)100%CI = β̂ ± δ−1t(df,1−α
2

)

√
v̂ar(β̂), (3.5)

where δ =
√

ν

(ν−2)V̂ (T )
, α = 0.1 and the degrees of freedom (df) are defined

to be:

df =


n− 1 using LM Est.

ν − 1 using LMM Est.

c− 1 using Huber-White Est..

(3.6)

Degrees of freedom for adaptive strategies (ADM) and (ADH) are defined as

dfADM =

 n− 1 if H0 not rejected

ν − 1 if H0 rejected;
(3.7)

dfADH =

 n− 1 if H0 not rejected

c− 1 if H0 rejected,
(3.8)

where ν represents the effective sample size, with ν̂ = n

d̂eff(β̂)
. The effective

sample size is the ratio of the sample size to the design effect of the β̂. The

degrees of freedom for the linear mixed model are only an approximation

(Faes et al., 2009). However, the degrees of freedom of the linear model

and Huber-White are exact (MacKinnon and White, 1985). See Subsections

2.2.3 and 2.2.5 for further discussion of the LMM and Huber-White variance

estimators and confidence intervals.

The advantage of the adaptive strategy is that we use the simple linear

model to derive variance estimators, unless there is strong evidence against
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H0 : σ2
b = 0. This has the benefit of simplifying the model and may also give

tighter confidence intervals.

The adaptive confidence intervals may not have the correct coverage rates

as they might not incorporate the model selection uncertainty. The extent of

this problem will be evaluated by simulation. An alternative approach would

be to fit both the LM and LMM and base estimates and inference on model

averaging of these two models (see for example Hoeting et al., 1999; Yuan

and Yang, 2005). This approach will not be developed in this thesis, because

one of the objectives is to simplify the modeling process when the intraclass

correlation is small.

3.3 Type 1 and Type 2 Errors of LM and

Huber-White Approaches

The choice between the Huber-White and LM estimators of var(β̂) can be

considered as a tradeoff of type 1 and type 2 error. In this context, type 1

error means using v̂arHub(β̂) when σ2
b=0 and type 2 error means v̂arLM(β̂)

when σ2
b > 0. This section derives a result on the mean squared errors of

the two approaches reflecting the type 1 and type 2 errors. For simplicity

a balanced design and an intercept-only model are assumed, and only the

Huber-White and LM approaches are compared.

When σ2
b=0, we know that v̂arLM(β̂) = 1

n
s2, where s2 =

∑c
i=1

∑m
j=1(yij−
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ȳ..)
2 which is distributed as a σ2

eχ
2
(n−1)/(n− 1) (Hocking, 1996, Theorem 3.1).

Therefore,

E
(
v̂arLM(β̂)

)
= (n− 1)

σ2
e

n(n− 1)
=
σ2
e

n

var
(
v̂arLM(β̂)

)
= 2(n− 1)

σ4
e

n2(n− 1)2
=

2σ4
e

n2(n− 1)
. (3.9)

In the general case when σ2
b > 0, the estimated variance of β̂ is given by

v̂arLM(β̂
)

=
1

n
s2 =

1

n(n− 1)

c∑
i=1

m∑
j=1

(yij − ȳ..)2

=
1

n(n− 1)

c∑
i=1

m∑
j=1

[(yij − ȳi.)− (ȳi. − ȳ..)]2

=
1

n(n− 1)

[ c∑
i=1

m∑
j=1

(yij − ȳi.)2 +
c∑
i=1

m∑
j=1

(ȳi. − ȳ..)2
]

=
1

n(n− 1)
[SSE + SSA]. (3.10)

But SSE and SSA are stochastically independent and have σ2
eχ

2
(n−c) and

(σ2
e + mσ2

b )χ
2
(c−1) distributions, respectively (Sahai and Ojeda, 2004, Theo-

rems 2.3.2 and 2.3.3). Hence,

E
(
v̂arLM(β̂)

)
=

1

n(n− 1)
(E(SSE) + E(SSA))

=
1

n(n− 1)
((n− c)σ2

e + (c− 1)(σ2
e +mσ2

b ))

var
(
v̂arLM(β̂)

)
=

1

n2(n− 1)2
(var(SSE) + var(SSA))

=
2

n2(n− 1)2

[
(n− c)σ4

e + (c− 1)(σ2
e +mσ2

b )
2
]

Therefore, the mean squared error for v̂arLM(β̂) when σ2
b=0, MSELM0, is
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derived as

MSELM0 =
[
E
(
v̂arLM(β̂)

)
− varLM(β̂)

]2
+ var

(
v̂arLM(β̂)

)
=

[
E
(s2

n

)
− σ2

e

n

]2
+

2σ4
e

n2(n− 1)
=

2σ4
e

n2(n− 1)
. (3.11)

The mean squared error for v̂arLM(β̂) when σ2
b >0, MSELMG, is derived as

MSELMG =
[ 1

n(n− 1)

(
(n− c)σ2

e + (c− 1)(σ2
e +mσ2

b )
)
− 1

n
(σ2

e +mσ2
b )
]2

+
2

n2(n− 1)2

(
(n− c)σ4

e + (c− 1)(σ2
e +mσ2

b )
2
)

=
1

n2

[(n− c
n− 1

)
σ2
e +

(
c− 1

n− 1
− 1

)
(σ2

e +mσ2
b )
]2

+
2

n2(n− 1)2

(
(n− c)σ4

e + (c− 1)(σ2
e +mσ2

b )
2
)

=
1

n2

[n− c
n− 1

σ2
e −

(
n− c
n− 1

)
(σ2

e +mσ2
b )
]2

+
2

n2(n− 1)2

(
(n− c)σ4

e + (c− 1)(σ2
e +mσ2

b )
2

)

=
1

n2

[m(n− c)
n− 1

σ2
b

]2

+
2

n2(n− 1)2

(
(n− c)σ4

e

+(c− 1)(σ2
e +mσ2

b )
2
)
. (3.12)

But σ2
e = (1− ρ)σ2

y and σ2
b = ρσ2

y, so that σ2
e +mσ2

b = (1 + (m− 1)ρ)σ2
y .
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Therefore, substituting these terms into (3.12), we have

MSELMG =
1

n2(n− 1)2

[
m2(n− c)2ρ2 + 2(n− c)(1− ρ)2

+2(c− 1)(1 + (m− 1)ρ)2
]
σ4
y (3.13)

The Huber-White variance estimator of β̂ is given by

v̂arHub(β̂) =
1

c(c− 1)

c∑
i=1

(ȳi. − ȳ..)2. (3.14)

But ȳi. is normally distributed with mean 0 and variance (σ2
e + mσ2

b )/m;

hence, v̂arHub(β̂) has a
(σ2
e+mσ2

b )/m

c(c−1)
χ2

(c−1) distribution. Therefore,

E
(
v̂arHub(β̂)

)
= (c− 1)

σ2
e+mσ2

b

m

c(c− 1)
=
σ2
e +mσ2

b

n

var
(
v̂arHub(β̂)

)
= 2(c− 1)

(σ2
e +mσ2

b )
2

m2c2(c− 1)2
=

2(σ2
e +mσ2

b )
2

n2(c− 1)
. (3.15)

Therefore, the mean squared error for v̂arHub(β̂), MSEH , is derived as

MSEH =
[
E
(
v̂arHub(β̂)

)
− varHub(β̂)

]2
+ var

(
v̂arHub(β̂)

)
=

2(σ2
e +mσ2

b )
2

n2(c− 1)

=
2(1 + (m− 1)ρ)2

n2(c− 1)
σ4
y . (3.16)

When σ2
b=0, this reduces to MSEH0, where

MSEH0 =
2σ4

e

n2(c− 1)
. (3.17)

Comparing MSEH0 to MSELM0, it is obvious that MSELM0 is always

less than MSEH0. MSELM0 is m times smaller than MSEH0 when n and c

are large.
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By manipulating (3.13) and (3.16), it is clear that MSEH < MSELM

when

m2c2(m−1)2ρ2+2c(m−1)(1−ρ)2+2(c−1)(1+(m−1)ρ)2

(mc−1)2

−2(1+(m−1)ρ)2

(c−1)
> 0.

(3.18)

The left hand side of (3.18) is a quadratic and can be rewritten as:

m2c2(m− 1)2(c− 1)ρ2 + 2c(c− 1)(m− 1)(1− ρ)2

+2(c− 1)2(1 + (m− 1)ρ)2 − 2(mc− 1)2(1 + (m− 1)ρ)2 > 0.
(3.19)

Simplifying this inequality, we have

2(c− 1)2 + 2c(m− 1)(c− 1)− 2(mc− 1)2 + (4(m− 1)(c− 1)2

−4c(m− 1)(c− 1)− 4(m− 1)(mc− 1)2)ρ+ (2c(m− 1)(c− 1)

+2(m− 1)2(c− 1)2 + c2m2(m− 1)2(c− 1)

−2(m− 1)2(mc− 1)2)ρ2 > 0

Expanding the constant term and the coefficients of ρ and ρ2, this inequality

simplifies to:

−2c(m− 1)(mc− 1)− 4c(m− 1)(mc− 2m+ 1)ρ

+c(m− 1)(2(2m2 − 4m+ 1)−mc(3m2 − 3m− 2) +m2c2(m− 1))ρ2 > 0

Dividing by c(m− 1), we get

−2(mc− 1)− 4(mc− 2m+ 1)ρ+ (2(2m2 − 4m+ 1)

−mc(3m2 − 3m− 2) +m2c2(m− 1))ρ2 > 0
(3.20)

Setting the left hand side of (3.20) to zero, we obtain the following roots

of this quadratic equation:

ρ1 =
2(mc−2m+1)+

√
4(mc−2m+1)2+2(mc−1)(m2c2(m−1)+2(2m2−4m+1)−mc(3m2−3m−2))

m2c2(m−1)+2(2m2−4m+1)−mc(3m2−3m−2)
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ρ2 =
2(mc−2m+1)−

√
4(mc−2m+1)2+2(mc−1)(m2c2(m−1)+2(2m2−4m+1)−mc(3m2−3m−2))

m2c2(m−1)+2(2m2−4m+1)−mc(3m2−3m−2)

But 2m2 − 4m + 1 is positive if and only if m ≥ 2+
√

2
2

and 3m2 − 3m − 2

is positive if and only if m ≥ 32+
√

33
6

. It follows that 2m2 − 4m + 1 and

3m2−3m−2 are positive if and only if m ≥ 2. Therefore, ρ1 ≥ 0 and ρ2 ≤ 0

whenever m ≥ 2. In practice, m would almost always be greater than or

equal 2. It follows that the Huber-White variance estimator has lower MSE

than the LM variance estimator when ρ ≥ ρ1, since ρ would almost always

be greater than or equal to 0.

Figure 3.1 shows the values of m, c and ρ such that the Huber-White

variance estimator (MSEH) has lower mean squared error than the LM vari-

ance estimator (MSELM) for different values of ρ, m and c. The Figure

shows that for ρ = 0, MSEH is larger than MSELM for all values of m and

c, except when m=1 for all values of c. When m=1, the two estimators have

equal mean squared error for all ρ and c; this is clear from (3.21).

For ρ=0.01, the Huber-White variance estimator does better than the LM

variance estimator for values of m > 20 with c > 17. In case of ρ=0.025, the

region such that the Huber-White variance estimator is better than the LM

variance estimator becomes larger. MSEH < MSELM for values of m > 8

with c > 8.

For ρ = 0.05, the Huber-White variance estimator has lower mean squared
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error than the LM variance estimator for values of c ≥ 4 with m ≥ 4. Finally,

in case of ρ = 0.1 the region such that the Huber-White variance estimator

has lower mean squared error than the LM variance estimator is bounded by

values of c ≥ 3 with m ≥ 2.

The Figure shows that as the value of ρ increases the region such that

Huber-White variance estimator has lower mean squared error than LM vari-

ance estimator increases.

For large m and c, Equation (3.20) can be rewritten as:

−2c− 4cρ+ (4m− 3m2c+m2c2)ρ2 > 0 (3.21)

For large m and c, the quadratic term in (3.21) is dominated by m2c2;

therefore, (3.21) reduces to

−2− 4ρ+m2cρ2 = 0 (3.22)

Setting the left hand side of (3.22) to 0, we obtain the following roots:

ρ1 =
2 +

√
2(2 +m2c)

m2c
,

ρ2 =
2−

√
2(2 +m2c)

m2c

It is clear that ρ1 > 0 and ρ2 < 0. Hence Huber-White variance estimator

does better than LM variance estimator whenever ρ ≥ ρ1. We can further

approximate ρ1 to be

ρ1 ≈
2

m2c
+

√
2

m2c
≈
√

2

m2c
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So the Huber-White variance estimator generally does better than the LM

variance estimator when ρ ≥
√

2
m2c

. This lower bound on ρ tends to 0 as c

and particularly m increase.

3.4 Simulation Study

3.4.1 Design of Simulation Study

A simulation study was conducted to compare the adaptive and non-adaptive

methods for estimating var(β̂). Data were generated from the normal dis-

tribution, with mi = m and an intercept only model (2.3). The values of ρ,

m and c were varied. 1000 samples were generated in each case. The values

of σ2
b and σ2

e were set to ρ
1−ρ and 1 respectively, to ensure that the intraclass

correlation was ρ.

For each sample the estimated regression coefficients β̂ and the estimators

of var(β̂) were calculated for the LMM and LM models using the lme4 and

lm packages (Pinheiro and Bates, 2000) in the R statistical environment (R

Development Core Team, 2007). The true variance of β̂ was determined by

calculating the variance over all 1000 simulations.

The hypothesis H0 : σ2
b = 0 was tested as described in Subsection 2.3.2.

The two adaptive strategies ADM and ADH are defined by (3.1) and (3.2).

90% confidence intervals were calculated for the LMM method using the

method of Faes et al. (2009) as described in Subsection 2.2.3. Huber-White
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confidence intervals were calculated as discussed in Subsection 2.2.5, and the

adaptive confidence intervals were calculated as discussed in Section 3.2. The

hope is that the adaptive procedures give shorter confidence intervals as they

will use the LM when H0 is not rejected and for small sample sizes these cases

still have ρ̂ away from zero. As the sample size increases, H0 will only be not

rejected when ρ̂ is close to zero.

Two methods were evaluated for testingH0 : σ2
b = 0: a t-test (as described

in Subsection 2.3.1) and the restricted likelihood ratio test (as described in

Subsection 2.3.2).

The values of ρ, m and c were varied. The parameter ρ was varied over

a range of values of 0, 0.01, 0.025, 0.05 and 0.1; c was varied over 2, 5, 10

and 25; and m was varied over 2, 5, 10, 15, 25 and 50. So the design effects

varied from 1 to 5.9.

The estimated regression coefficients β̂ and the estimators of var(β̂) were

calculated for the LMM and LM models using the lme4 and lm packages

(Pinheiro and Bates, 2000) in the R statistical environment (R Development

Core Team, 2007). The t-test for H0 : σ2
b = 0 was applied by coding Equation

(2.26) in R.
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3.4.2 Simulation Results on Testing H0 : σ2
b = 0

This subsection will summarize the performance of the t-test and the RLRT

for testing H0 : σ2
b = 0. Results for the intercept-only model with equal-sized

PSUs will be used, with ρ=0 and 0.05.

Table 3.1: Non-coverage of testing H0 : σ2
b = 0 using RLRT and t-test with

ρ=0 and ρ = 0.05.

PSUs Obser P(Reject H0 : σ2
b = 0) when

vations ρ = 0 ρ = 0.05

c m t-test (%) RLRT (%) t-test (%) RLRT (%)

2 2 0.0 10.5 0.0 10.2

2 5 0.0 5.8 0.0 8.6

2 10 0.0 5.2 0.0 11.5

2 15 0.0 5.0 0.0 11.7

2 25 0.0 3.8 0.0 19.4

2 50 0.0 4.5 0.0 29.2

5 2 0.9 10.5 1.0 10.9

5 5 0.0 8.0 0.1 13.1

5 10 0.0 7.5 0.3 22.7

5 15 0.0 6.4 1.3 27.8

5 25 0.0 7.4 4.4 43.6

5 50 0.0 7.2 16.8 62.7

10 2 11.1 10.1 14.7 11.2

10 5 11.3 8.5 23.9 19.7

10 10 11.1 6.3 37.0 32.2

10 15 10.7 8.6 52.8 47.4

10 25 9.3 9.7 71.6 66.1

10 50 9.7 6.7 90.7 89.3

25 2 14.4 10.9 20.9 14.4

25 5 12.9 9.4 37.9 30.0

25 10 10.2 7.6 58.2 57.4

25 15 12.3 10.9 77.8 73.0

25 25 10.2 8.7 93.3 92.2

25 50 16.0 8.0 99.9 99.3

Table 3.1 shows the probability of rejecting H0 : σ2
b = 0 based on the t-

56



CHAPTER 3. ADAPTIVE ESTIMATORS BASED ON TESTING THE
VARIANCE COMPONENT IN A MULTILEVEL MODEL

test using the derived standard error defined by Equation (2.27) as well as the

rejection probability based on the restricted likelihood ratio test using two

different values of ρ of 0 and 0.05. We expect that the probability of rejecting

H0 should be close to 0.1 when ρ=0, while the probability of rejecting H0

should be as high as possible when ρ > 0.

The t-test performed very poorly as the proportions of samples where

H0 : σ2
b = 0 is rejected were very small, in general, when there where small

number of PSUs (5 or less) for both values of ρ. Proportions of samples

where H0 : σ2
b = 0 is rejected were close to the nominal rate when ρ=0 and

unacceptably high when ρ=0.05. For example: This is an important finding,

because the t-test is the method used by the SPSS statistical software.

The RLRT proportions of samples where H0 : σ2
b = 0 was rejected were

closer to the nominal rate when ρ=0. For ρ=0.05, the proportions of samples

where H0 is rejected were much better than the t-test when there small

numbers of sample PSUs. For example:

• When c=2 and m=5, the proportion of sample where H0 is rejected

were 5.8% when ρ=0 and 8.6% when ρ=0.05.

• When c=5 and m=15, the proportion of sample where H0 is rejected

were 6.4% when ρ=0 and 27.8% when ρ=0.05.

• When c=10 and m=25, the proportion of sample where H0 is rejected
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were 9.7% when ρ=0 and 66.1% when ρ=0.05.

• When c=25 and m=2, the proportion of sample where H0 is rejected

were 10.9% when ρ=0 and 14.4% when ρ=0.05.

Therefore, the RLRT method used in this thesis.

3.4.3 Simulation Results on Adaptive Confidence In-
tervals for β for Balanced Data

A simulation study based on equal sized PSUs, mi = m, and an intercept only

model was conducted to compare the adaptive and non-adaptive methods

for estimating var(β̂). Data were generated from the intercept-only model

(2.3). The values of ρ, m and c were varied. 1000 samples were generated in

each case. In this study we used the parametric bootstrap to estimate V (T )

because the scale parameter δ relies on V (T ) (see Equation 2.16) and Faes

et al. (2009) did not specify how V (T ) can be estimated.

To apply the parametric bootstrap method to estimate var(T ), 100 sam-

ples were generated from the intercept-only model (2.3) with variances σ̂2
b

and σ̂2
e . For each sample, we estimated β and var(β̂) to find the value of

T = β̂√
v̂ar(β̂)

. The variance of the 100 values of T was calculated and used to

estimate V (T ).

Another way to estimate var(T ) is to estimate v̂ar[v̂ar(β̂)], and then

substitute into (2.16), but Faes et al. (2009) also did not specify how to esti-
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mate this parameter, therefore we have tried to do that using the parametric

bootstrap. The same procedure above is used, but now we estimated var(β̂)

from the fitted model and then calculated the variance of the 100 estimated

values of var(β̂). Then v̂ar(T ) was calculated by coding Equation (2.16) in

R. The LMM non-coverage rates were very small, specially for small number

of sample PSUs (5 or less).

In the end the method of estimating V (T ) by calculating the variance

of the 100 estimated values of T performed better than the method uses

v̂ar[v̂ar(β̂)] to estimate var(T ). Therefore, the first was used in the simula-

tion studies in Chapters 3-5 in the balanced design.

The hypothesis H0 : σ2
b = 0 was tested as described in Subsection 2.3.2

using the restricted likelihood ratio test defined in Equation (2.30). The

two adaptive strategies ADM and ADH were as defined in Section 3.2. 90%

confidence intervals were calculated for the LMM method using the method

of Faes et al. (2009) as described in Subsection 2.2.3. Huber-White confidence

intervals were calculated as discussed in Subsection 2.2.5, and the adaptive

confidence intervals were calculated as discussed in Section 3.2.

Tables 3.2 - 3.4 show the ratio of the mean estimated variance of β̂,

E(v̂ar(β̂))/var(β̂), using the four strategies of estimation (ADM, ADH, LMM

and Huber) with values of ρ of 0, 0.025 and 0.1. In all tables we used β = 0

and significance level α = 0.1 for testing σ2
b = 0. The tables show the non-
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coverage rates of 90% confidence intervals of β and the average lengths of

these confidence intervals. The proportion of samples where H0 : σ2
b = 0

was rejected are also shown. Results on non-coverage and 90% confidence

intervals average length are shown in graphical form in Figures 3.2 - 3.4. In

the graphs we also include the LM strategy of estimation so that the effect

of completely ignoring the clustered nature of the data can be examined.

The variance estimators were generally approximately unbiased, as all

ratios are approximately 1. There were some exceptions. The first was the

variance estimator using the LMM strategy; it tended to be biased when there

were 10 or less sample PSUs with approximately all numbers of observations

per PSU for ρ=0. For 0.025, it tended to biased when there were 2 sample

PSUs with 25 or less observations per PSU and when there were 5 sample

PSUs with 2 and 15 observations per PSU. It tended to be biased when there

were 2 sample PSUs with 5 observations or less per PSU in case of ρ = 0.1,

as well. In case of ρ=0, it also tended to be biased when there were 5 PSUs

with all numbers of observations per PSU. The other exception was the ADM

and the ADH variance estimators, they tended to be biased when there were

2 sample PSUs with 2, 5, 15 and 50 observations per PSU when ρ=0.

Non-coverage rates for confidence intervals for β were close to the nominal

rate of 10% when ρ = 0 for all methods.
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CHAPTER 3. ADAPTIVE ESTIMATORS BASED ON TESTING THE
VARIANCE COMPONENT IN A MULTILEVEL MODEL
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Figure 3.2: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and c, ρ=0
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Figure 3.3: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and c, ρ=0.025

0 10 20 30 40 50

10
15

20
25

30

c =  2 

Obervations from each PSU (m)

C
I n

on
−

co
ve

ra
ge

●

●

●

●

●

●

0 10 20 30 40 50

10
15

20
25

30

c =  5 

Obervations from each PSU (m)

C
I n

on
−

co
ve

ra
ge

●
●

●
●

●

●

0 10 20 30 40 50

10
15

20
25

30

c =  10 

Obervations from each PSU (m)

C
I n

on
−

co
ve

ra
ge

●

●
●

●

●

●

0 10 20 30 40 50

10
15

20
25

30

c =  25 

Obervations from each PSU (m)

C
I n

on
−

co
ve

ra
ge

●

● ●

●

●
●

● ADM
ADH
LM
LMM
Huber

65



3.4. SIMULATION STUDY

Figure 3.4: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and c, ρ=0.1
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Figure 3.5: Confidence interval average lengths using different variance esti-
mation methods and for various values of m and c, ρ=0
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Figure 3.6: Confidence interval average lengths using different variance esti-
mation methods and for various values of m and c, ρ=0.025
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Figure 3.7: Confidence interval average lengths using different variance esti-
mation methods and for various values of m and c, ρ=0.1
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For ρ 6= 0, Huber non-coverage was close to 10% in all cases. For ρ 6=

0, non-coverage rates for confidence intervals for β were generally close to

the nominal rate of 10% for all other methods of estimation. There were

some exceptions. The first was the non-coverage rates for the LMM, ADM

and ADH strategies; they tended to be much higher when there were small

number of sample PSUs (10 or less) with 10 or more observations per PSU

when ρ=0.025, in general. They also tended to be high when ρ=0.1, when

there were 2 and 5 sample PSUs with approximately 5 or more observations

per PSU. The ADM and ADH non-coverage rates tended to be high when

there were 10 sample PSUs with 10 or more observations per PSU. This may

be because of the difficulty in determining the appropriate degrees of freedom

in the LMM case.

For ρ =0.1, the LMM non-coverage rates were high when c was small (10

or less) and m was large (5 or more), in general.

The ADH average lengths of confidence intervals for β were almost always

shorter than the Huber average lengths of confidence intervals for β. When

there were 2 sample PSUs it was very clear that ADH average lengths of

confidence intervals for β were much shorter than Huber average lengths of

confidence intervals for β, with orders 40-60% when ρ=0 and 0.025, and 30-

70% when ρ=0.1. When there were 5 sample PSUs, the average lengths for

the ADH were shorter with order of 15-25% for ρ=0 and 0.025, and 30-70%
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when there were 25 or less observations per PSU when ρ=0.1. When there

were 10 sample PSUs, the ADH average lengths were shorter for ρ=0.025

when there were 10-25 observations per PSU with order of about 15% and

when there were 5 and 10 observations per PSU for ρ=0.1 of order 10-15%.

There were no clear difference when there were more than 10 observations

per PSU.

Figure 3.2 shows that LM non-coverage was close to 10% when ρ = 0. It

was very high otherwise as shown by Figures 3.3 and 3.4. Hence, the use of

LM without at least checking H0 : σ2
b = 0 is not a viable strategy.

Figures 3.5 - 3.7 show the average lengths of confidence intervals for β

using the LM strategy were the shortest, however this strategy is not viable

because of its high non-coverage when ρ 6= 0. The Huber based approach

gave the widest intervals in general. The ADM average lengths of confidence

intervals for β were almost always shorter than the LMM average lengths of

confidence intervals for β. When there were 2 sample PSUs it was very clear

that ADM average lengths of confidence intervals for β were much shorter

than LMM average lengths of confidence intervals for β, with orders 7-15%

when ρ=0 and 0.025, and 10-20% when ρ=0.1. There were no clear difference

otherwise. For example:

• in case of c=2 and m=2 and ρ=0, ADM and ADH average lengths of

71
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confidence intervals for β were 5.676 and 3.059, respectively, while the

average lengths of confidence intervals for β of LMM and Huber were

6.330 and 5.429, respectively.

• in case of c=10 and m=5 and ρ=0.025, ADM and ADH average lengths

of confidence intervals for β were 0.507 and 0.507, respectively, while

the average lengths of confidence intervals for β of LMM and Huber

were 0.514 and 0.537, respectively.

• in case of c=25 and m=15 and ρ=0.1, ADM and ADH average lengths

of confidence intervals for β were 0.288 and 0.285, respectively, while

the average lengths of confidence intervals for β of LMM and Huber

were 0.288 and 0.285, respectively.

3.4.4 Simulation Results on Adaptive Confidence In-
tervals for β for Unbalanced Data

A simulation study was conducted to compare the adaptive and non-adaptive

methods for estimating var(β̂) using PSUs with unequal sample sizes. Data

were generated from model (2.3), with different PSU sizes, mi. The value of

ρ was varied over a range of values of 0, 0.025 and 0.1. The number of PSUs,

c, was also varied over a range of values of 2, 5, 10, 25 and 50. mi generated

randomly from uniform distribution. The average number of observations

per PSU, m̄ was varied to be 3, 10 and 25 to be consistent with the balanced
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data case. For this purpose three cases were used. In case 1, the number of

observations was generated to be an integer between 2 and 4 with average

equal to 3 observations per PSU. In case 2, this number varied from 5 to 15,

with average equal to 10. Finally, in case 3, the average was 25, with mi

varying between 15 and 35. 1000 samples were generated in each case. The

hypothesis H0 : σ2
b = 0 was tested as described in Subsection 2.3.2 using the

restricted likelihood ratio test defined in Equation (2.31).

Tables 3.5 - 3.7 show the results for the unbalanced data case. They show

the ratio of the mean estimated variance of β̂, E(v̂ar(β̂))/var(β̂), using the

four strategies of estimation (ADM, ADH, LMM and Huber) with values of ρ

of 0, 0.025 and 0.1. In all tables we used β = 0 and significance level α = 0.1

for testing σ2
b = 0. The tables show the non-coverage rates of 90% confidence

intervals for β and the average lengths of these confidence intervals. The

proportion of samples where H0 : σ2
b = 0 was rejected are also shown.

The variance estimators were generally approximately unbiased as most

ratios were close to 1. There were some exceptions. The first was the LMM,

ADM and ADH variance estimators, which tended to be biased when there

were 2 sample PSUs with all average numbers of observations per PSU and

when there 5 sample PSUs with 10 or less average number of observations

per PSU for ρ=0. For ρ=0.025, it tended to be biased when c was 2 with

m̄ was (10 or less) and when there were 5 sample PSU with m̄ was 3. For
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ρ=0.1, it tended to be biased when c was 2 with m̄ was 3 only.

Non-coverage rates for β were close to the nominal rate of 10% when ρ=0

for all methods except for the LMM method. The LMM non-coverage rates

were a bit smaller than the nominal rate when c=2 with all average numbers

of observations per PSU. The LMM non-coverage was good when there were

5 or more PSUs.

For ρ 6= 0, Huber non-coverage rate was close to 10% in all cases.

For ρ=0.025, the LMM and ADM non-coverage rates were much higher

than the nominal rate when there were (25 or less) sample PSUs with average

number of observations per PSU was large 25. The ADH non-coverage rate

was higher than the nominal rate when there were 2 sample PSUs with m̄=25.

In case of ρ=0.1, the LMM and ADM non-coverage rates were much higher

than the nominal rate when c ≤10 and m̄=10 or 25, and when c=50 with

m̄=3. The ADH non-coverage rate was about the same as the nominal rate

in most cases except when c=5 with all values of m̄ for ρ=0, when c=2 and

5 with m̄=25 and 3, respectively when ρ=0.025 and when c=2 with m̄=10

and 25, c=5 with m̄=25 and when c=50 with m̄=3 in case of ρ=0.1.

The ADM average lengths of confidence intervals for β were similar to the

LMM average lengths of confidence intervals for β for c ≥ 5 with all average

numbers of observations per PSU for all values of ρ. When c=2, the ADM

average lengths were about 6-12% shorter. The ADH average lengths of
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confidence intervals for β were similar to the Huber average lengths of con-

fidence intervals for β for all sample PSUs with all values of m and ρ except

when c=2, as the ADH average lengths were shorter than the Huber average

lengths of order about 30-65%.

The proportions of samples where H0 : σ2
b = 0 is rejected were generally

much higher than 10% when ρ=0, and was a very high 27% when c=5 and

m̄=3. They were much higher than for the balanced data case. This might

be because the PSU sizes in the unbalanced design case have a wide range,

for example; in case of m̄=25, the PSU sizes vary between 15 and 35. Or this

might be because of the distribution of the RLRT. It was assumed that the

distribution is a 50:50 mixture of χ2
0 and χ2

1 following Chernoff (1954) in the

balanced and unbalanced designs. The 50:50 mixture of χ2 distribution of the

likelihood ratio test might not perform well in the unbalanced designs because

the response can not be divided into identically distributed sub-vectors as

in Stram and Lee (1994). This approximation may not be a very good

approximation in the unbalanced designs if the response is divided into small

or moderate number of sub-vectors, even if the responses are independent

(Scheipl et al., 2007).
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3.5 Conclusions

i. Adaptive confidence intervals can perform poorly in designs with few

sample PSUs and large sample sizes in each PSU. In these designs, even

a small intraclass correlation will substantially inflate the variance of

the mean, however the PSU-level variance component is unlikely to be

statistically significant even if the intraclass correlation is as high as 0.1.

As a result, when the number of PSUs (c) is 2 or 5, and the number

of observations per PSU (m or m̄) is 25 or more both of the adaptive

estimators have higher than desirable non-coverage when the intraclass

correlation is non-zero, of the order of 15-20%. It appears that for these

extreme designs, clustering must be allowed for in variance estimates,

even if it is not statistically significant.

ii. In comparing the Linear Mixed Model (LMM) with the adaptive version

(ADM), we find that:

• Both the LMM and ADM approaches have close to nominal non-

coverage, except for extreme designs of the kind discussed in i.

For these designs, the adaptive and non-adaptive LMM methods

both have high non-coverage. In the case of the adaptive method,

this is presumably because there is not much power to detect the

PSU-level variance component, even when it is substantial. For
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the non-adaptive LMM, the problem seems to be that the LMM

confidence intervals are not exact and do not do well for small

sample sizes.

• The ADM confidence intervals are noticeably narrower (10-20%)

than the LMM for c equal to 2 and 5, but there is not much to

choose between ADM and LMM for c=10 or more.

iii. In comparing the robust Huber-White approach with the adaptive ver-

sion (ADH), we find that:

• The Huber approach has close to nominal non-coverage in all

cases. So does the ADH approach, except for the extreme de-

signs mentioned in i.

• The Huber method gives wide confidence intervals when c is small

(2 or 5) with order of 10-80% eventhough the non-coverage is close

to the nominal 10%. This is because the degrees of freedom for

this method is equal to (c-1). ADH has much narrower confidence

intervals (10-80%) , because its degrees of freedom are equal to

(n-1) rather than (c-1) if the PSU-level variance component is not

significant.

iv. This leads to the following recommendations:
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• Designs with fewer than 10 PSUs, and a large sample size in each

PSU should be avoided, even if the intraclass correlation is be-

lieved to be low. Hence, we recommend ignoring clustering if the

PSU-level variance effect is insignificant.
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Chapter 4

Robustness of Adaptive
Estimators based on Linear
Mixed Models to
Non-Normality

4.1 Introduction

In Chapter 3, the methods were based on fitting a linear mixed model. Data

were assumed to be normally distributed. In this chapter, the purpose is

to see if these methods still work well if the assumption of normality is not

justified. For this purpose, the same methods applied in Chapter 3 will be

applied to data that are log-normal rather than normal.

Log-normal distributions play a very important role in many sciences in-

cluding ecology and biology (Ott, 1995). A random variable Y is said to have

a log-normal distribution with parameters µ ∈ R and σ > 0 if the natural

logarithm of Y , X = ln(Y ), follows a normal distribution with mean µ and
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4.1. INTRODUCTION

standard deviation σ (i.e. X ∼ N(µ, σ2)) (Kapadia et al., 2005). Therefore,

it is equivalent to Y = eX where X is normally distributed with mean µ and

standard deviation σ. The log-normal distribution is a continuous distribu-

tion which is typically used to model right-skewed variables. The log-normal

distribution is useful for many intrinsically positive variables, for example

residential property prices (Zabel, 1999) and household income (Longford

and Pittau, 2006), and organisms size and number of species in biology (Kr-

ishnamoorthy and Mathew, 2003).

The log-normal distribution will be denoted in this thesis by LN(µ, σ2).

Crow and Shimizo (1988) defined the probability density function (pdf) of

Y ∼ LN(µ, σ2) by

f(y) =


1√

2πσy
exp
[
− (ln(y)−µ)2

2σ2

]
y > 0,

0 y ≤ 0.
(4.1)

Figure 4.1 shows the log-normal probability density function with different

values of σ - this parameter controls the skewness of Y .

Crow and Shimizo (1988) noted that the mean (E(Y )) and the variance

(V ar(Y )) of the log-normal random variable Y as

E(Y ) = exp(µ+
1

2
σ2);

V ar(Y ) = exp(2µ+ σ2){exp(σ2)− 1.} (4.2)

This chapter is divided into four sections. Sections 4.2 and 4.3 describe

the simulation studies conducted to evaluate the adaptive methods described
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Figure 4.1: Probability density function of the Log-normal distribution plot-
ted for a sample of size 10,000
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in Chapter 3 when data are log-normal rather than normal. Section 4.2

describes simulation of a balanced design and Section 4.3 covers unbalanced

designs. In Section 4.4, we will state the conclusions of this chapter.

4.2 Simulation Study of Log-Normal Data in

a Balanced Two-Stage Design

A simulation study was performed to compare the adaptive and non-adaptive

methods utilized in Chapter 3 for estimating var(β̂) and associated confi-
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dence intervals where data are log-normal rather than normal. This study

was based on equal sample sizes within PSUs. Data were generated from the

intercept only model (2.3) assuming that bi and eij are normally distributed

with zero mean and variances equal to σ2
b = ρ

1−ρσ
2 and σ2

e = σ2, respectively,

where σ was 1
3
, 1

2
or 2

3
. Then the Equation Y = eX was applied to generate

log-normally distributed values.

The five procedures for estimating the variance of β̂ used in Chapter 3

were used in this simulation as well. These strategies are the linear model

strategy (LM), the linear mixed model strategy (LMM), the robust Huber-

White variance estimator strategy (Hub) and the two adaptive strategies,

the LMM based and the Huber based adaptive strategies. 1000 samples were

generated in each case. All methods used in this chapter were identical to

those used in Chapter 3. The values of ρ, c, m and σ were varied. The

parameter ρ was varied over a range of values of 0 and 0.025. The number

of PSUs, c, was varied over a range of values of 2, 5, 10 and 25 and the PSU

sample size was varied over a range of values of 2, 5, 10, 15, 25 and 50.

For each sample, the estimated regression coefficients β̂ and the estimators

of var(β̂) were calculated for the LMM and LM models using the lme4 and

lm packages (Pinheiro and Bates, 2000) in the R statistical environment (R

Development Core Team, 2007). The true variance of β̂ was determined by

calculating the variance over all 1000 simulations.
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The hypothesis H0 : σ2
b = 0 was tested as described in Section 2.3.2 using

the restricted likelihood ratio test defined in equations (2.30) and (2.31). The

two adaptive strategies ADM and ADH were as defined in Section 3.2. 90%

confidence intervals for β were calculated for the LMM method using the

method of Faes et al. (2009) as described in Subsection 2.2.3. Huber-White

confidence intervals for β were calculated as discussed in Subsection 2.2.5,

and the adaptive confidence intervals for β were calculated as discussed in

Section 3.2. The approaches are applied to Y but the intraclass correlation,

ρ, applies to X.

The results for the simulation study using several log-normal distributions

with two values of σ (1
3

and 2
3
), and two values of ρ (0 and 0.025) are shown

in Tables 4.1 - 4.4. At this section we assumed that the PSUs have the same

number of observations, that is mi = m, for all i=1, 2, . . ., c. Results for

other values of ρ and σ are shown in Appendix C.

As in Chapter 3, the ratio of the estimated variance to the true variance

of β̂, E(v̂ar(β̂))/var(β̂), was calculated. The tables also include the non-

coverage rates for β as well as the average lengths of the 90% confidence

intervals for β. The restricted likelihood ratio test probabilities of rejecting

H0 : σ2
b = 0 are included in these tables as well. Four strategies of estimation

are included in the tables, ADM, ADH, LMM and Hub. The LM strategy of

estimation is not shown, because Chapter 3 showed that this method was
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4.2. SIMULATION STUDY OF LOG-NORMAL DATA IN A
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CHAPTER 4. ROBUSTNESS OF ADAPTIVE ESTIMATORS BASED
ON LINEAR MIXED MODELS TO NON-NORMALITY
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4.2. SIMULATION STUDY OF LOG-NORMAL DATA IN A
BALANCED TWO-STAGE DESIGN
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inadequate even for normal data.

Similar to the Huber variance ratios calculated in Chapter 3, Huber vari-

ance ratios were as close to 1 for all values of ρ and σ.

The LMM variance estimators have approximately the same bias as the

LMM variance estimators in Chapter 3, when ρ=0 regardless of the skewness

level, σ. These biases were large when there were 5 or less sample PSUs.

They became smaller for larger numbers of sample PSUs (10 or more).

For ρ=0.025, the LMM variance estimators for log-normal data have

smaller bias than the LMM variance estimators for normal data when there

were 2 sample PSUs for σ = 1
3
. These biases were larger in the case of σ = 2

3

when c=2. The biases were approximately the same for other numbers of

sample PSUs (5 or more).

For ρ=0 and ρ=0.025, the ADM and ADH variance estimators for the

log-normal data with both skewness levels have approximately the same bias

as the ADM and ADH variance estimators in Chapter 3. The biases were

large when there was 2 sample PSUs and small otherwise. For the log-

normal as well as the normal data, the biases for the ADM variance estimator

were smaller than the biases of the LMM variance estimator, regardless the

intraclass correlation value, ρ, and the skewness level, σ.

For ρ=0 and σ = 1
3
, non-coverage rates of confidence intervals of β using

the LMM, ADM and ADH methods were close to the nominal rate (10%) as
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well as the LMM, ADM and ADH non-coverage rates in Chapter 3. For ρ=0

and σ = 2
3
, the LMM, ADM and ADH non-coverage rates differed signifi-

cantly from 10% when there were 2 or 5 sample PSUs with small number of

observations per PSU (15 or less). For ρ=0.025, the LMM, ADM and ADH

non-coverage rates differed appreciably from 10% for all values of c and m,

in general, for both skewness levels. For all values of ρ and σ the Huber

non-coverage rates were close to the nominal rate, as in Chapter 3.

For both values of ρ, the LMM non-coverage rates when σ = 1
3

were closer

to the nominal rate than the LMM non-coverage rates when σ = 2
3

for small

sample PSUs (5 or less). The average length of the 90% confidence intervals

for β using all methods of estimation were obviously shorter when σ = 1
3

than when σ = 2
3

for all values of c.

The 90% confidence intervals for β were much shorter using the log-

normal data than those calculated using the normal data in Chapter 3, be-

cause V ar(Y ) = exp(2µ + σ2){exp(σ2) − 1} less than the variance of the

simulated data in Chapter 3.

For ρ=0 with σ = 1
3

and σ = 2
3
, when there were 2 sample PSUs the

average length of the 90% confidence intervals for β using the ADM method

was 15-25% shorter than the LMM method. The ADM were 10-15% shorter

when there were 5 sample PSUs with large number of observations per PSU

(15 or more). The average length of the 90% ADH confidence intervals for β

93



4.3. SIMULATION STUDY OF LOG-NORMAL DATA IN AN
UNBALANCED TWO-STAGE DESIGN

were 65-80% shorter than the Huber when there were 2 sample PSUs, 15-30%

shorter when there were 5 sample PSUs, and 10-15% shorter when there were

10 sample PSUs with 5 or more observations per PSU. Differences between

the adaptive and non-adaptive confidence interval lengths were negligible in

all other cases.

For ρ=0.025 with σ = 1
3

and σ = 2
3
, when there were 2 sample PSUs

the average lengths of the 90% ADM confidence intervals for β were 10-

25% shorter than the LMM method. The average lengths of the 90% ADH

confidence intervals for β were 65-85% shorter than the Huber when there

were 2 sample PSUs, and 10-20% shorter when there were 5 sample PSUs.

There were no relevant differences, otherwise.

The proportions of samples where H0 : σ2
b = 0 was rejected were similar

to those in Chapter 3.

4.3 Simulation Study of Log-normal Data in

an Unbalanced Two-Stage Design

A simulation study was conducted to compare the adaptive and non-adaptive

methods for estimating var(β̂) using PSUs with unequal sample sizes and

log-normal data. Tables 4.5 - 4.8 show the results of the simulation study.

Log-normal data were generated in the same way as described in Section

4.2. Data were generated assuming unequal sample within PSU sizes, mi.
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Results for other values of ρ and σ are shown in Appendix C. Two values of

ρ were used, 0 and 0.025. The number of sample PSUs, c, was also varied

over a range of values of 2, 5, 10, 25 and 50. The value of σ was varied

over 1
3

and 2
3
. Results for other values of ρ and σ are shown in Appendix

C. The average number of observations per PSU, m̄ was set to 3, 10 and

25. The three cases used for this purpose are explained in Subsection 3.4.4.

The hypothesis H0 : σ2
b = 0 was tested as described in Subsection 2.3.2

using the restricted likelihood ratio test defined in Equation (2.31). In all

tables we used β = 0 and significance level α = 0.1 for testing σ2
b = 0.

The tables show the non-coverage rates of 90% confidence intervals for β

and the average lengths of these confidence intervals. The proportion of

samples where H0 : σ2
b = 0 was rejected are also shown. The tables show the

ratio of the mean estimated variance of β̂, E(v̂ar(β̂))/var(β̂), using the four

strategies of estimation (ADM, ADH, LMM and Huber) with values of ρ of

0 and 0.025 and skewness levels of σ = 1
3

and σ = 2
3
.

For all values of ρ and σ, the average length of the 90% ADM confidence

intervals for β was 10-15% shorter than the LMM confidence intervals for β

when there were 2 sample PSUs with all values of m̄. For all values of ρ and

σ, the average length of the 90% ADH confidence intervals for β was much

shorter than the Huber (50-65%) when there were 2 sample PSUs with all

values of m̄. For ρ=0 and σ = 2
3
, the average length of the 90% ADH confid-
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CHAPTER 4. ROBUSTNESS OF ADAPTIVE ESTIMATORS BASED
ON LINEAR MIXED MODELS TO NON-NORMALITY
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4.3. SIMULATION STUDY OF LOG-NORMAL DATA IN AN
UNBALANCED TWO-STAGE DESIGN
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CHAPTER 4. ROBUSTNESS OF ADAPTIVE ESTIMATORS BASED
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4.3. SIMULATION STUDY OF LOG-NORMAL DATA IN AN
UNBALANCED TWO-STAGE DESIGN

ence intervals for β was shorter than the Huber (5-8%) when there were 5

sample PSUs with m̄=2 and 25. For ρ=0.025 and σ = 1
3
, the average length

of the 90% ADH confidence intervals for β was shorter than the Huber (about

6%) when there were 5 sample PSUs with m̄ ≥ 10. For ρ=0.025 and σ = 2
3
,

the average length of the 90% ADH confidence intervals for β was shorter

than the Huber (5-8%) when there were 5 sample PSUs with all values of m̄

and when c=50 with m̄=10. There were no relevant differences, otherwise.

The proportions of samples where H0 : σ2
b = 0 was rejected were relatively

smaller for log-normal data than for normal data, regardless the value of the

intraclass correlation, ρ and the skewness level, σ.

The Huber non-coverage rates were close to the nominal rate (10%) for

all values of ρ and σ, as in Chapter 3.

For ρ=0, the LMM, ADM and ADH non-coverage rates were close to the

nominal rate for both values of σ, as in Chapter 3, except when there were

small number of sample PSUs (5 or less) with 2 observations per PSU.

For ρ=0.025 with σ = 1
3
, the non-coverage rates of the LMM, ADM and

ADH confidence intervals were close to 10%, except when there were 2 sample

PSUs with 10 or more observations per PSU, as in Chapter 3. The LMM

and ADM non-coverage rates were higher than the nominal rate when there

were 5 and 2 sample PSUs with average number of observations per PSU

equal to 25. When σ = 2
3
, the non-coverage rates of the LMM, ADM and
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CHAPTER 4. ROBUSTNESS OF ADAPTIVE ESTIMATORS BASED
ON LINEAR MIXED MODELS TO NON-NORMALITY

ADH confidence intervals were close to 10%, except when there was a small

number of sample PSUs (5 or less) with all all values of m̄.

Similar to Chapter 3 all variance estimators for ρ=0.025 and both values

of σ were approximately unbiased as all variance ratios were approximately

1, except that the LMM, ADM and ADH variance estimators tended to be

biased when there were small numbers of sample PSUs (5 or less) with all

average numbers of observations per PSU.

The proportions of samples where H0 : σ2
b = 0 was rejected were higher

than the nominal rate (10%), but they were lower for normal data in Chapter

3 for both values of ρ. Possible reasons why these proportions are higher than

10% are discussed in Subsection 3.4.4.

4.4 Conclusion

• Huber variance estimators were unbiased regardless of σ and ρ.

• Huber has close to the nominal non-coverage in all cases.

• For ρ=0 with both values of σ, LMM variance estimators have similar

biases to Chapter 3.

• LMM variance estimators have smaller bias than in Chapter 3 when

c=2, σ = 1
3
, and ρ=0.025.
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4.4. CONCLUSION

• LMM variance estimators have larger bias than in Chapter 3 when c=2,

σ = 2
3
, and ρ=0.025.

• ADM and ADH variance estimators have approximately the same bias

as in Chapter 3, regardless the values of ρ and σ.

• When c ≤ 5 and for all values of ρ and σ, ADM variance estimators

have smaller biases than the LMM variance estimators, similar to what

was in Chapter 3.

• In the unbalanced data designs, LMM, ADM and ADH variance esti-

mators tended to be biased when c ≤ 5 for all m̄.

• LMM, ADM and ADH non-coverage rates were

– close to the nominal rate when ρ=0 and σ = 1
3
.

– significantly larger than the nominal rate when c ≤ 5 with m ≤ 15

when ρ=0 and σ = 2
3
, in the balanced data design. They were

larger than 10%, in the unbalanced data designs when c ≤ 5 with

m̄ = 2.

– were considerably different from 10% for all values of c, m and σ

when ρ = 0.025, in the balanced data design. They were close to

the nominal rate except when c=2 with m̄ ≥ 10
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• Log-normal data with σ = 1
3

gave shorter confidence intervals than

log-normal data with σ = 2
3

in all cases.

• In comparing adaptive and non adaptive confidence intervals when ρ=0

and for both values of σ, in the balanced data designs:

– ADM was 15-25% shorter than the LMM when c=2, 10-15% shorter

when c=5 with m ≥ 15.

– ADH was 65-80% shorter than the Huber when c=2, 15-30%

shorter when c=5 and 10-15% shorter when c=10 with m ≥ 5.

• In comparing adaptive and non adaptive confidence intervals when

ρ=0.025 and for both values of σ, in the balanced data designs:

– ADM was 10-25% shorter than the LMM when c=2, 10-15% shorter

when c=5 with m ≥ 15.

– ADH was 65-85% shorter than the Huber when c=2 and 10-20%

shorter when c=5.

• In the unbalanced data designs

– the ADM confidence intervals were 10-15% shorter than the LMM

confidence intervals when c=2.

– the ADH confidence intervals were 50-65% shorter than the Huber
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4.4. CONCLUSION

confidence intervals when c=2, for both values of ρ and σ. They

were 5-8% when c=5, in general.

• Proportions of samples where H0 : σ2
b = 0 is rejected were similar to

those in Chapter 3 in the balanced data designs and relatively smaller

in the unbalanced data designs.
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Chapter 5

A Modified Adaptive Strategy
based on the Estimated Design
Effect

5.1 Introduction

The design effect is the ratio of the design variance of a statistic, β̂, to the

variance under simple random sampling with the same sample size (Kish,

1965, p.162). For two-stage sampling with equal probability of selection at

both stages, it can be approximated by deff = 1 + (m̄− 1)ρ, where m̄ is the

average number of observations per sample PSU. One way of estimating the

design effect is

d̂eff = 1 + (m̄− 1)ρ̂,

where ρ̂ is obtained from a REML fit of the linear mixed model (2.3).

In Chapter 3, the adaptive strategies were defined based on the linear

mixed model. Clustering was allowed for in the estimation of var(β̂) only if
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5.1. INTRODUCTION

the PSU-level variance component (σ2
b ) was statistically significant. However,

it is possible that the estimated intraclass correlation could be quite small,

even if σ2
b is significant. In this case, it may still be preferable to ignore

clustering when estimating var(β̂). Then ρ could be large and m̄ is small so

design effect is small. This chapter evaluates adaptive strategies along these

lines.

In this chapter the adaptive strategies are based on the linear mixed

model and normal data as in Chapter 3. The new adaptive strategies will be

defined based on testing the null hypothesis H0 : σ2
b = 0 and on comparing

the estimated design effect to a cutoff value, d. If we reject the null hypothe-

sis and, at the same time the estimated design effect d̂eff is larger than the

cutoff point, d, the variance estimators are extracted from the linear mixed

model or are estimated using the robust Huber-White variance estimator.

Otherwise, the variance estimators are extracted from the linear model. Sev-

eral cutoff points were evaluated. The flowchart in Figure 5.1 summarizes

the two adaptive estimators of var(β̂): v̂arADM(β̂) and v̂arADH(β̂).

The two adaptive strategies (ADM) and (ADH) are defined as

v̂arADM(β̂) =


v̂arLMM(β̂) if H0 is not retained,

and d̂eff ≥ d

v̂arLM(β̂) otherwise.

(5.1)

106



CHAPTER 5. A MODIFIED ADAPTIVE STRATEGY BASED ON THE
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v̂arADH(β̂) =


v̂arHub(β̂) if H0 is not retained,

and d̂eff ≥ d

v̂arLM(β̂) otherwise.

(5.2)

This chapter is divided into three sections. Section 5.2 will evaluate

the adaptive and other methods using cutoff values of d of 1.05 and 1.5

by simulation using balanced and unbalanced data cases. In Section 5.3 we

will draw conclusions.

Test H0 : σ2
b = 0

Calculate d̂eff(β̂) =
1 + (m̄ − 1)ρ̂

v̂arADM(β̂) =
v̂arADH(β̂) = v̂arLM(β̂)

v̂arADM(β̂) = v̂arLMM(β̂);
or v̂arADH(β̂) = v̂arHub(β̂)

Otherwise

Reject H0 and d̂eff ≥ d

Figure 5.1: Flowchart showing the adaptive procedure based on testing H0 :

σ2
b = 0 and comparing d̂eff to a predetermined cutoff (d), using

LMM-REML variance estimator or Huber-White variance esti-
mator as an alternative
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5.2. SIMULATION STUDY

5.2 Simulation Study

The simulation study conducted in this chapter takes the balanced and un-

balanced designs cases into consideration. In this study data were generated

from intercept-only model defined in Equation (2.3). H0 : σ2
b = 0 is tested

using the restricted likelihood ratio test (2.30). The intraclass correlation

(ρ) is estimated using Equation (2.7). The estimated intraclass correlation is

then used to estimate the design effect for β̂ defined by Equation (1.1). The

estimated design effect with the RLRT, simultaneously, are used to define

the adaptive strategies in equations (5.1) and (5.2). Values of d of 1.05 and

1.5 were used.

5.2.1 Simulation Study Using Balanced Data case

Similar to the simulation study conducted in Chapter 3, a simulation study

was conducted in this chapter to compare the adaptive and non-adaptive

methods for estimating var(β̂) based on testing whether the PSU-level vari-

ance component is zero and at the same time estimating the design effect and

comparing it to a cutoff value, d. The simulation study aimed to compare

the effect of using the estimated design effect on the adaptive methods for

estimating var(β̂). The intercept only model (2.3) was used to generate the

data for the simulation study, with mi = m. The values of ρ, c and m were

varied. The parameter ρ was varied over a range of values of 0, 0.025, 0.05
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ESTIMATED DESIGN EFFECT

and 0.1; c takes the values 2, 5, 10 and 25; and m takes the range of values

of 2, 5, 10, 15, 25 and 50. 1000 samples were generated in each case.

For each sample the estimated regression coefficients (β̂) and the estima-

tors of var(β̂) were calculated for the LMM and LM models using the lme4

and lm packages (Pinheiro and Bates, 2000) in the R statistical environment

(R Development Core Team, 2007). The Huber-White variance estimator of

β̂ was calculated as well by coding Equation (2.24) in R. The true variance

of β̂ was determined by calculating the variance over all 1000 simulations.

The two adaptive strategies ADM and ADH were as defined in Section

5.1. 90% confidence intervals of β̂ were calculated for the LMM method using

the method of Faes et al. (2009) as described in Subsection 2.2.3. Huber

confidence intervals of β̂ were calculated as discussed in Subsection 2.2.5,

and the adaptive confidence intervals of β̂ were calculated as discussed in

Section 3.2.

Tables 5.1 - 5.4 show the ratio of the mean estimated variance of β̂ using

the four strategies of estimation (ADM, ADH, LMM and Huber) with values

of ρ of 0 and 0.025, and values of d of 1.05 and 1.5. Results for other

values of ρ and d are shown in Appendix D. In all tables we used β = 0

and significance level α = 0.1 for testing H0 : σ2
b = 0 and at the same

time checking if d̂eff ≥ d. The tables show the non-coverage rates of 90%

confidence intervals of β and the average lengths of these confidence intervals.
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CHAPTER 5. A MODIFIED ADAPTIVE STRATEGY BASED ON THE
ESTIMATED DESIGN EFFECT

T
ab

le
5.

2:
V

ar
ia

n
ce

ra
ti

os
,

av
er

ag
e

le
n
gt

h
an

d
n
on

-c
ov

er
ag

e
of

th
e

90
%

co
n
fi
d
en

ce
in

te
rv

al
s

fo
r
β

,
an

d
p

ow
er

of

te
st

in
g
H

0
:
σ

2 b
=

0
an

d
d̂
ef
f
≥

1.
05

w
it

h
ρ
=

0.
02

5,
b
al

an
ce

d
d
at

a
ca

se
.

N
on

-C
ov

er
a
g
e

o
f

p
[ d̂ef

f
p
[ d̂ef

f
C

o
n

fi
d

en
ce

P
S

U
s

O
b

s
E

(v̂
a
r(
β̂

))
/v
a
r(
β̂

)
C

I
fo

r
β

R
L

R
T

>
1
.0

5
|
>

1.
0
5

&
E
( d̂ef

f
) p[

d̂
ef
f

In
te

rv
a
l

L
en

g
th

c
m

A
D

M
A

D
H

L
M

M
H

u
b

A
D

M
A

D
H

L
M

M
H

u
b

R
ej
H

0

] R
ej
H

0

]
>

1.
0
5
] A

D
M

A
D

H
L

M
M

H
u

b

2
2

1.
18

9
1.

18
9

1.
44

0
1.

07
4

8.
2

8.
2

1
2
.0

8
.9

9
.9

1
0
0
.0

9
.9

1
.2

3
4

4
2
.5

4
.9

3
4

2
.9

7
7

5
.5

5
2

5
.2

9
9

2
5

1.
18

2
1.

18
2

1.
41

5
1.

01
2

11
.4

10
.9

1
1
.1

1
2
.6

7
.5

1
0
0
.0

7
.5

1
.3

8
1

2
9
.5

1
.3

3
0

1
.6

9
3

1
.4

3
7

3
.3

3
0

2
10

1.
13

9
1.

13
9

1.
35

6
0.

98
5

11
.4

11
.4

1
2
.9

1
1
.6

7
.5

1
0
0
.0

7
.5

1
.4

7
5

2
7
.9

0
.9

1
5

1
.2

1
1

1
.0

0
9

2
.4

1
3

2
15

1.
00

5
1.

00
5

1.
22

7
0.

94
7

15
.5

15
.5

1
3
.9

8
.5

8
.6

1
0
0
.0

8
.6

1
.6

3
0

3
3
.2

0
.7

8
0

1
.0

3
4

0
.8

8
0

2
.1

6
7

2
25

1.
07

4
1.

07
4

1.
27

3
1.

05
8

18
.6

18
.6

1
6
.1

8
.7

1
4
.4

1
0
0
.0

1
4
.4

1
.9

8
5

3
8
.6

0
.7

1
0

1
.0

5
4

0
.8

0
0

1
.9

1
1

2
50

0.
88

6
0.

88
6

1.
05

6
0.

91
1

23
.4

23
.4

1
9
.9

9
.3

1
6
.9

1
0
0
.0

1
6
.9

2
.2

9
1

4
3
.7

0
.5

4
8

0
.8

3
5

0
.6

2
3

1
.4

6
9

5
2

1.
12

3
1.

12
3

1.
24

5
1.

06
1

9.
6

9.
6

8
.5

9
.2

1
1
.9

1
0
0
.0

1
1
.9

1
.1

9
0

4
8
.7

1
.2

2
4

1
.2

3
0

1
.2

5
4

1
.3

2
3

5
5

0.
98

6
0.

98
6

1.
10

2
0.

94
1

10
.8

10
.9

1
1
.2

1
0
.8

1
1
.2

1
0
0
.0

1
1
.2

1
.2

7
6

3
3
.2

0
.7

5
1

0
.7

5
9

0
.7

8
0

0
.8

5
4

5
10

0.
96

7
0.

96
7

1.
09

3
0.

97
5

12
.4

12
.1

1
2
.1

8
.7

1
4
.7

1
0
0
.0

1
4
.7

1
.3

9
8

3
9
.9

0
.5

4
3

0
.5

5
1

0
.5

7
2

0
.6

4
4

5
15

1.
08

0
1.

08
0

1.
23

3
1.

11
8

11
.3

11
.3

1
0
.1

8
.8

1
7
.1

1
0
0
.0

1
7
.1

1
.4

8
7

4
4
.2

0
.4

5
7

0
.4

6
5

0
.4

8
7

0
.5

4
9

5
25

0.
89

5
0.

89
5

1.
00

7
0.

94
5

15
.8

15
.8

1
3
.6

1
0
.7

2
4
.7

1
0
0
.0

2
4
.7

1
.6

9
1

5
1
.6

0
.3

8
3

0
.3

9
2

0
.4

0
9

0
.4

6
2

5
50

0.
81

2
0.

81
2

0.
88

8
0.

86
1

19
.3

19
.3

1
6
.3

1
1
.6

4
0
.2

1
0
0
.0

4
0
.2

2
.1

8
5

6
6
.1

0
.3

2
0

0
.3

3
0

0
.3

3
9

0
.3

7
6

10
2

1.
04

4
1.

04
4

1.
12

5
1.

00
8

9.
0

9.
1

8
.2

9
.5

1
1
.9

1
0
0
.0

1
1
.9

1
.1

4
3

4
9
.6

0
.8

0
9

0
.8

1
2

0
.8

1
9

0
.8

3
0

10
5

0.
95

3
0.

95
3

1.
01

6
0.

94
8

11
.6

11
.6

1
2
.0

1
0
.2

1
2
.5

1
0
0
.0

1
2
.5

1
.1

7
9

2
8
.4

0
.5

0
7

0
.5

0
7

0
.5

1
4

0
.5

3
7

10
10

1.
04

5
1.

04
5

1.
12

1
1.

06
2

11
.0

10
.9

1
1
.5

9
.6

1
8
.6

1
0
0
.0

1
8
.6

1
.2

7
5

3
6
.4

0
.3

7
0

0
.3

7
1

0
.3

7
8

0
.3

9
8

10
15

0.
93

5
0.

93
5

1.
00

8
0.

97
5

13
.1

13
.0

1
1
.4

1
0
.5

2
5
.8

1
0
0
.0

2
5
.8

1
.4

0
0

4
5
.2

0
.3

1
8

0
.3

1
8

0
.3

2
7

0
.3

4
4

10
25

1.
00

2
1.

00
2

1.
07

2
1.

06
1

11
.6

11
.5

1
1
.4

8
.6

4
0
.5

1
0
0
.0

4
0
.5

1
.6

3
9

6
1
.2

0
.2

6
9

0
.2

7
0

0
.2

7
9

0
.2

9
2

10
50

0.
99

5
0.

99
5

1.
02

9
1.

03
0

14
.1

13
.3

1
2
.8

1
0
.3

6
7
.1

1
0
0
.0

6
7
.1

2
.2

3
1

8
1
.8

0
.2

3
1

0
.2

3
2

0
.2

3
7

0
.2

4
3

25
2

1.
01

8
1.

01
8

1.
06

6
0.

99
7

9.
6

9.
7

9
.9

9
.7

1
2
.7

1
0
0
.0

1
2
.7

1
.0

9
2

4
5
.2

0
.4

8
9

0
.4

8
9

0
.4

9
0

0
.4

9
1

25
5

1.
00

7
1.

00
7

1.
02

2
1.

01
7

10
.5

10
.6

1
0
.7

1
0
.2

1
7
.2

1
0
0
.0

1
7
.2

1
.1

0
7

2
2
.3

0
.3

1
6

0
.3

1
4

0
.3

1
4

0
.3

2
3

25
10

0.
99

1
0.

99
1

1.
00

8
1.

03
4

11
.7

11
.6

1
2
.1

1
0
.1

2
9
.0

1
0
0
.0

2
9
.0

1
.2

0
2

3
4
.7

0
.2

3
2

0
.2

3
1

0
.2

3
2

0
.2

4
2

25
15

0.
99

0
0.

99
0

1.
00

9
1.

03
8

11
.3

11
.3

1
1
.0

9
.6

4
2
.3

1
0
0
.0

4
2
.3

1
.3

0
9

4
9
.2

0
.1

9
9

0
.1

9
7

0
.2

0
0

0
.2

0
6

25
25

1.
04

9
1.

04
9

1.
06

3
1.

08
7

10
.8

11
.1

1
0
.8

9
.7

6
6
.0

1
0
0
.0

6
6
.0

1
.5

8
0

7
1
.8

0
.1

7
1

0
.1

6
9

0
.1

7
2

0
.1

7
5

25
50

0.
94

7
0.

94
8

0.
95

3
0.

95
4

11
.0

10
.7

1
0
.9

1
0
.7

9
2
.7

1
0
0
.0

9
2
.7

2
.2

1
4

9
6
.2

0
.1

4
4

0
.1

4
4

0
.1

4
5

0
.1

4
5

111



5.2. SIMULATION STUDY
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5.2. SIMULATION STUDY

The proportions of samples where H0 : σ2
b = 0 is rejected are also shown, as

well as the proportions of samples where H0 : σ2
b = 0 is rejected and at the

same time d̂eff ≥ d, p
[
d̂eff ≥ d& Rej H0

]
, and the proportion of samples

where d̂eff ≥ d given that H0 : σ2
b = 0 is rejected, p

[
d̂eff ≥ d|Rej H0

]
, are

also shown.

Tables 5.1 and 5.2 showed the simulation results for the cutoff d=1.05

with both values of ρ. They showed that p
[
d̂eff ≥ d|Rej H0

]
was 100% for

all designs. They showed that the variance ratios, non-coverage rates and

average lengths of 90% confidence intervals were perfectly identical to the

variance ratios, non-coverage rates and average lengths of 90% confidence

intervals in Chapter 3.

Tables 5.3 and 5.4 showed the simulation results for the cutoff d=1.5

with both values of ρ. They showed that p
[
d̂eff ≥ d|Rej H0

]
was 100%

for designs with c ≤ 10, except in designs with c=10 with m=2. In these

designs they showed that p
[
d̂eff ≥ d|Rej H0

]
was 100% for all designs. They

showed that the variance ratios, non-coverage rates and average lengths of

90% confidence intervals were perfectly identical to the variance ratios, non-

coverage rates and average lengths of 90% confidence intervals in Chapter 3.

In designs with c=25, p
[
d̂eff ≥ d|Rej H0

]
was less than 100% for both values

of ρ. Therefore, the variance ratios, non-coverage rates and average lengths of

90% confidence intervals were different from the variance ratios, non-coverage
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rates and average lengths of 90% confidence intervals in Chapter 3. There

was no relevant differences in these designs.

P [d̂eff > d|rejH0] was 100% or close to it almost all the time because

H0 is only rejected when ρ̂ is reasonably large. Also, H0 tends to be rejected

when there is sufficient data on ρ, which occurs when neither c nor m are

too small. As a result, the cases when H0 is rejected are also the cases when

d̂eff is large, so that P [d̂eff > d|rejH0] ≈ 1. This means that applying the

cutoff to the design effect has no effect, so that the results are very close or

identical to those in Chapter 3.

5.2.2 Simulation Study Using Unbalanced Data case

A simulation study was conducted based on unequal PSU sizes to see the

effect of using the estimated design effect on the adaptive strategies of es-

timating the variances of β̂. Data were generated from model (2.3), with

different PSU sizes, mi. The values of ρ and c were varied. 1000 samples

were generated in each case. The values of m̄ were varied to be 3, 10 and 25.

For this purpose three cases were used. In case 1, the number of observations

was generated to be between 2 and 4 with average equal to 3 observations per

PSU. In case 2, this number was varied from 5 to 15, with average equal to 10.

Finally, in case 3, the average was 25, therefore the number of observations

was varied from 15 to 35. Several cutoff values were used to define
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5.2. SIMULATION STUDY
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5.2. SIMULATION STUDY
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5.2. SIMULATION STUDY

the adaptive strategies as well as in the balanced data case, where d takes

the values of 1.05, 1.1, 1.2 and 1.5. The results related to values of d of 1.1

and 1.2 are shown in Appendix D.

Tables 5.5 - 5.8 show the results of the simulation study for the unbalanced

data case with two cutoff values, d=1.05 and 1.5. They show the ratio of the

mean estimated variance of β̂ using the four strategies of estimation (ADM,

ADH, LMM and Huber) with a range of values of ρ of 0 and 0.025 for both

cutoff values. Similar to what was done in Chapter 3, in all tables we used

β = 0 and significance level α = 0.1 for testing σ2
b = 0 and comparing the

estimated design effect d̂eff to a cutoff value d. The tables show the non-

coverage rates of 90% confidence intervals for β as well as the average lengths

of these confidence intervals. The proportion of samples where H0 : σ2
b = 0

is rejected, H0 : σ2
b = 0 is rejected and at the same time d̂eff ≥ d and the

proportion of samples where d̂eff ≥ d given that H0 : σ2
b = 0 is rejected are

also shown.

Tables 5.5 and 5.6 show the results for the cutoff value d=1.05 with both

values of ρ. They show that p
[
d̂eff ≥ d|Rej H0

]
was 100% for all designs.

They showed that the variance ratios, non-coverage rates and average lengths

of 90% confidence intervals were perfectly identical to the variance ratios,

non-coverage rates and average lengths of 90% confidence intervals in Chapter

3.
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Tables 5.7 and 5.8 show the results for the cutoff value d=1.5 with both

values of ρ. They showed that all simulation results were identical to sim-

ulation results in Chapter 3 in designs with c=2 with all values of m̄ and

for both values of ρ. When c ≥ 5, p
[
d̂eff ≥ d|Rej H0

]
was less than 100%.

Hence the adaptive variance estimators were smaller than the adaptive vari-

ance estimators in Chapter 3. They were less biased in designs with c=5 and

10 with m̄ ≤ 10 and 25, respectively. The adaptive non-coverage rates were

close to the nominal rate as in Chapter 3 when ρ=0. The ADM non-coverage

rates were close to the nominal rate when ρ=0.025, except in designs with

c=5, 10 and 25 with m̄ = 25 and designs with c=50 with m̄ ≤ 10. The

ADH non-coverage rates were close to the nominal rate when ρ=0.025, ex-

cept in designs with c=5 and 25 with m̄ = 25 and in designs with c=50 with

m̄ ≤ 10. In these designs there was no relevant difference in the average

lengths of the 90% adaptive confidence intervals from the average lengths of

the 90% adaptive confidence intervals in Chapter 3.

5.3 Conclusions

The variance ratios, non-coverage rates and average lengths of 90% confidence

intervals were perfectly identical to the variance ratios, non-coverage rates

and average lengths of 90% confidence intervals in Chapter 3 in all designs

when the cutoff value d=1.05, because p
[
d̂eff ≥ d|Rej H0

]
=1 in all of these
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designs. When the cutoff value d=1.5, the variance ratios, non-coverage rates

and average lengths of 90% confidence intervals were perfectly identical in

balance designs with c ≤ 10 and unbalanced designs with c=2.

In the unbalanced designs, the adaptive variance estimators were less

biased than the adaptive variance estimators in Chapter 3 in designs with

c=5 and m̄ ≤ 10 and designs with c=10 and m̄=25. For ρ=0.025, the

adaptive non-coverage rates were closer to the nominal rate than in Chapter

3 when c=5, 10 and 25 with m̄ = 25 and when c=50 with m̄ ≤ 10. Lengths

of adaptive confidence intervals were relatively similar to lengths of adaptive

confidence intervals in Chapter 3.

For balanced sampling, including a cutoff of 1.05 or 1.5 for the estimated

deff has no effect on adaptive strategies. Larger values for the cutoff may be

worth evaluating in future research, but it seems unlikely that the approach

will give useful benefits. When there are unequal sample sizes, there is a

small benefit in including a cutoff of 1.5 for the estimated deff , perhaps

because the restricted likelihood ratio test has a high type-I error rate for

unbalanced data.
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Chapter 6

Adaptive Design Using a Pilot
Survey

6.1 Introduction

A pilot survey is a small survey conducted prior to a survey, in order to trial

the operations, instrument design and possibly sample design for the main

survey (Stopher and Metcalf, 1996, Chapter 4).

Pilot surveys are an important step in running a successful survey (Tei-

jlingen and Hundley, 2002). They can save time and money by giving ad-

vance warning about the points where the main survey could fail (Teijlingen

and Hundley, 2002). They should provide enough data for the researcher or

survey manager to decide whether to continue with the main survey. They

reduce the number of unexpected problems because there is an opportunity

to redesign the main survey to be conducted according to the results revealed

by the pilot survey (Skinner et al., 2007).
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6.1. INTRODUCTION

The number of units to select from each PSU is an important decision

that has to be made in developing the design of a two-stage survey. A

common approach is to assume a simple cost model such as (1.3). For two-

stage sampling designs, assuming equal sample sizes from each PSU and

simple random sampling at both stages, the optimal choice of number of

observations per PSU is mopt =
√

C1

C2

1−ρ
ρ

(Hansen et al., 1953, p.286) where

ρ is the intraclass correlation and C1 and C2 are the parameters of the cost

model (1.3).

To develop the design, a value of ρ has to be assumed or estimated.

One way to do this is to conduct a pilot survey. However, estimates of

ρ are often quite small, for example 0.01 or 0.02 in human studies (Killip

et al., 2004). When ρ is small even small changes to the assumed value can

affect mopt. The intraclass correlation is often quite small. It is 1 when

there is perfect homogeneity within PSU. It can be negative when there is

extreme heterogeneity within PSUs with smallest possible value of ρ equal

to −1/(M − 1) (Hansen et al., 1953, p.260). When PSUs are geographic

areas and final units are households in these areas, it is generally less than

0.1 (Verma et al., 1980). It is typically between 0 and 0.2, when PSUs are

households and final units are people in households (Clark and Steel, 2002).

Small values will lead to a large within PSU sample size (Steel and Clark,

2006). When the true ρ is small, the estimated ρ̂ in multilevel analysis is
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CHAPTER 6. ADAPTIVE DESIGN USING A PILOT SURVEY

often equal to 0 (Muthén and Satorra, 1995). Estimates of ρ̂ calculated from

a pilot survey would often be highly variable, given the small sample usually

selected for pilot surveys.

In this chapter, it is assumed that the intraclass correlation is estimated

from pilot survey data. It is then used to estimate the optimal sample PSU

size based on minimizing the variance of the sample mean subject for fixed

total cost.

Figure 6.1: Histograms of ρ̂ from 1000 simulations when ρ=0.025
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Figure 6.1 shows how variable ρ̂ can be for typical pilot sample sizes. The

distributions of ρ̂ are shown for different numbers of sample PSUs, cp, and
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units per sample PSU, mp, based on 1000 simulated data sets from model

(2.3) with no covariates and ρ=0.025. The Figure shows that ρ̂ is zero more

than 70% of the time and even when nonzero is often much smaller than

0.025.

When ρ̂ equals to zero, Equation (1.4) for mopt cannot be applied. In this

case, the optimal design involves setting m to the largest possible value, i.e.

the PSU population size, M . The resulted number is truncated to be at least

2 to be able to estimate the intraclass correlation, and used as the number of

PSU observations to design the main survey. In this case we can obtain the

intraclass correlation. Even when ρ̂ is positive, it may be very small, leading

to large values of m. To avoid very large values of m in the main survey,

truncation based on a maximum cutoff value A will be evaluated. The PSU

sample size for the main study will therefore be

mmain = min(max

(√
C1

C2

1− ρ
ρ

, 2

)
, A). (6.1)

It will be assumed that the objective of the main survey is to estimate a

regression coefficient β. Simulations to evaluate the procedures will be based

on an intercept-only model, (2.3). Figure 6.2 shows the procedure of the

pilot survey performed in this chapter.

Example

The following example shows the effect of small value of ρ̂ on the optimal

126



CHAPTER 6. ADAPTIVE DESIGN USING A PILOT SURVEY

PSU sample size (mopt). It also shows the effect of the estimated intraclass

correlation and the PSU sample size on the design effect.

Pilot survey, with cp PSUs
and mp units per PSU

Calculate ρ̂ from
pilot survey data

Calculate mmain =

[√
1−ρ̂
ρ̂

C1

C2

]A
2

cmain =
Cf

C1+mmainC2
based on a fixed

budget, C2=1, C1=0.5, 2 and 10
and A=10, 20, 30, 40, 50 and 100

Conduct the main sur-
vey using cmain and mmain

Calculate statistics, such as ȳ..

Figure 6.2: Flowchart explaining the adaptive procedures based on a pilot
survey

Assume that the total cost, Cf is 5000, the cost of including an extra

element in the sample, C2, is 1 and the average cost of including an extra
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6.1. INTRODUCTION

PSU in the sample, C1, is 0.5, 2 or 10.

Table 6.1: The effect of estimated intraclass correlation, ρ̂ on the optimal
number of PSUs, optimal number of observations per PSU and on
the design effect, where deff = 1 + ρ̂(m− 1), based on ρ = 0.025,
a budget of Cf=5000 and different values of the cost of including
a new PSU in the sample, C1, of 0.5, 2 and 10.

Est ICC C1 = 0.5 C1 = 2 C1 = 10

ρ̂ mopt copt deff mopt copt deff mopt copt deff

0.045 3 1429 1.05 7 667 1.15 15 323 1.35

0.025 4 1111 1.08 9 526 1.20 20 244 1.48

0.01 7 667 1.15 14 345 1.33 31 159 1.75

0.005 10 476 1.23 20 244 1.48 45 110 2.10

0.001 22 222 1.53 45 110 2.10 100 50 3.48

0.0005 32 154 1.78 63 79 2.55 141 35 4.50

0.0001 71 70 2.75 141 35 4.50 316 16 8.88

0.00005 100 50 3.48 200 25 5.98 447 11 12.15

0.00001 224 22 6.58 447 11 12.15 1000 5 25.98

0.000005 316 16 8.88 632 8 16.78 1414 4 36.33

0.000001 707 7 18.65 1414 4 36.33 3162 2 80.03

Table 6.1 shows that as ρ̂ approaches zero, mopt becomes very large,

whereas the number of PSUs copt decreases. The value of mopt is also larger

when the cost of including a new PSU increases. The design effect, calcu-

lated from Equation (1.1), with ρ of 0.025 is also very large as ρ̂ approaches

zero. This demonstrates how small values of ρ̂, which can easily occur when

ρ=0.025, can lead to a very inefficient design.
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CHAPTER 6. ADAPTIVE DESIGN USING A PILOT SURVEY

This chapter is divided into 4 sections. In Section 6.2 a review of Brooks

(1955) is given. Section 6.3 describes a simulation study conducted to evalu-

ate the adaptive design based on a pilot, and to evaluate different settings for

A, cp and mp. The parameters ρ, C1 and C2 were also varied. It discusses the

best choice for A given ρ, C1 and C2 in order to minimize var(β̂). In practice,

however, ρ would not be known. Also, var(β̂) is not the ideal measure for

choosing mp and cp, because it does not reflect the cost of increasing mp and

cp. Section 6.4 introduces the “cost-adjusted design effect” to compare the

adaptive strategy where a pilot is conducted and used to design the main

survey, to the strategy of conducting a simple random sampling (SRS) with

no pilot, with same total cost.

6.2 Review of Brooks (1955)

Brooks (1955) described a very similar problem to the one covered by this

chapter. He used the model

yij = Ȳ.. + bi + eij, i = 1, . . . , c, j = 1, . . . ,m, (6.2)

where Ȳ.. is the population mean.

Fixing the two-stage sample cost model (1.3) and minimizing the variance

of the sample estimate, he derived the optimal PSU sample size to be

mopt =

√
C1

C2

σe
σb
, (6.3)
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6.2. REVIEW OF BROOKS (1955)

mopt could be estimated using a pilot sample to be

m̂opt =

√
C1

C2

σ̂e
σ̂b
. (6.4)

But this estimate does not yield a fundamental value of m̂opt, therefore an

integer k can be used such that

k(k − 1) ≤ m̂2
opt ≤ k(k + 1), (6.5)

k = ∞ is indicated whenever the variance ratio σ̂2
b/σ̂

2
e ≤ 1, this means that

every sampled PSU will have all of its elements enumerated.

Brooks (1955) assumed the same cost ratios for the pilot and the main

samples. He varied the cost ratio C1/C2 and the ratio of the within- and

between-PSU variance components, σ2
e/σ

2
b , over ranges of values. Table 6.2

shows part of Brooks’ table I which was based on the pilot sample designs

corresponding to the value of M =∞. He used different cost ratios of 0.01,

2 and 8 and variance components ratios of 0.25 , 1, 2, 8, 16, 32 and 64.

In this chapter we used the procedure of truncation the value of m if it is

greater than a cutoff value, A. It also will be truncated below to be greater

than or equal to 2. Whereas Brooks (1955) considered a use of m̂opt=1 in

some cases, but this case is not considered in our work in this chapter as in

this case we cannot estimate the intraclass correlation.

Brooks (1955) obtained approximate results, using an approximation

which ignored the possibility of σ̂2
b/σ̂

2
e ≤ 1. This was necessary given the
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Table 6.2: Pilot sampling designs using cost ratio C1/C2 and variance com-
ponents ratio σ2

e/σ
2
b

C1/C2 0.01 2 8

σ2
e/σ

2
b cp mp cp mp cp mp

0.25 5 3 5 3 4 4

1 7 3 6 4 5 6

2 8 5 7 7 6 9

4 9 9 8 11 7 14

8 10 14 10 15 9 18

16 10 25 10 27 10 28

32 10 46 10 47 10 49

64 10 92 10 93 10 100

computing technology available in 1955, but it means that Brooks’ results

could be substantially in error. In contrast, we obtained results by simula-

tion, so no such approximation was necessary in our case.

6.3 Simulation Study

A simulation study was conducted based on model (2.3). Different numbers

of pilot PSUs (cp) with equal within-PSU sample sizes (mp) will be used.

The cost of including a new PSU in the sample (C1) was varied. The average

cost of including an extra element in the sample (C2) was fixed at 1.

The variance of β̂ from the main survey was evaluated by calculating the
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6.3. SIMULATION STUDY

variance over all 1000 estimated values of β.

The number of pilot sample PSUs (cp) was varied over a range of values

of 2, 5, 10 and 25. The number of units per PSU (mp) was varied over a

range of values of 2, 5, 10, 15, 25 and 50. A range of values of the cutoff A

of 10, 20, 30, 40, 50 and 100 was evaluated.

The cost of including a new PSU in the sample (C1) was varied over a

range of values of 0.5, 2 and 10.

The value of ρ was estimated using Equation (2.7), using the estimated

PSU-level variance components extracted from the random effects variances

matrix (REmat) appeared in the summary of the lmer() function in the lme4

package in R (R Development Core Team, 2007).

Table 6.3 shows the simulation results for ρ=0 and ρ=0.05 with C1=10

and various numbers of pilot PSUs, cp, and numbers of observations per PSU,

mp. The true variance of β̂ (×103) is calculated over the 1000 simulations.

Choice of A

For ρ=0, the minimum variance of β̂ occurred at A=100 for almost all

the values of cp and mp with a few exceptions. The first exception appeared

when cp was small (10 or less) with mp=2, in this case the variance was

minimized at A=40. The other exception appeared at mp = cp=25, where in

this case the minimum variance occurred at A=50 because true mopt =∞.

When ρ=0.05, the best A was much lower at either 10 or 20 when there
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6.3. SIMULATION STUDY

Figure 6.3: Variance of β̂ calculated from a main survey with budget
Cf=5000, designed using a pilot survey (C1=10 and C2=1, ρ=0)
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Figure 6.4: Variance of β̂ calculated from a main survey with budget
Cf=5000, designed using a pilot survey (C1=10 and C2=1,
ρ=0.05)
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6.3. SIMULATION STUDY

were small number of sample PSUs (5 or less) and 20 or 30 when there were

large number of sample PSUs (10 or more). Table 6.4 shows the optimal A

for each mp and cp.

Figures 6.3 and 6.4 show the plots of the variance of β̂ versus the cutoff

A, for all values of cp and mp with C2=1, C1=10 and ρ=0 and 0.05.

Choosing mp and cp

For ρ=0 and A=10, the minimum variance of β̂ occurred when mp=50

for cp ≤ 10 and when mp=25 for cp=25. For A=20 the minimum variance

of β̂ occurred at mp=50 for cp ≤ 5 and at mp=25 for cp ≥ 10. For A=30

and 100, the minimum variance of β̂ occurred at mp=50 for all values of cp.

For A=40, the minimum variance of β̂ occurred at mp=50 for cp ≤ 10 and

at mp=15 for cp=25. For A=50, the minimum variance of β̂ occurred when

mp=25 for cp=5 and when mp=50 for other values of cp.

For ρ=0.05 and A=10, the minimum variance of β̂ occurred at mp=10

when cp=2 and 10, at mp=25 when cp=5 and at mp=5 when cp=25. For

A=20, the minimum variance of β̂ occurred at mp=15 when cp=2, at mp=50

when cp=5, at mp=25 when cp=10 and at mp ≥25 when cp=25. A=30 gives

minimum variance of β̂ at mp=15 and 50 when cp=2, at mp=50 when cp=5

and 10 and at mp=15 when cp=25. A=40 gives minimum variance of β̂

occurred at mp=10 when cp ≤ 5 and at mp=50 when cp ≥ 10. For A=40, the

minimum variance of β̂ occurred at mp=10 and 25 when cp=2 and at mp=50
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CHAPTER 6. ADAPTIVE DESIGN USING A PILOT SURVEY

Table 6.4: Optimal A when ρ=0.05 for various mp and cp

mp

2 5 10 15 25 50

cp

2 20 20 10 10 10 10

5 10 20 10 20 10 10

10 20 20 20 30 20 30

25 10 20 30 30 20 40

for other values of cp. For A=100, the minimum variance of β̂ occurred at

mp=50 for all values of cp.

6.4 Analysis of Simulation Results Using a

Cost-Adjusted Design Effect

The discussion in the previous section was not enough to guide choice of

pilot sample size, because the costs attached to a bigger pilot sample were

not considered. In this section we will look at the total cost of the pilot

and the main survey, and the variance of β̂ from the main survey. We are

comparing our strategy where a pilot is conducted and used to design the

main survey, to the strategy of conducting a simple random sampling (SRS)

with no pilot, with same total cost. For this purpose we defined the “cost-

adjusted design effect” 1, cdeff , to be the ratio of the variance of an estimator

under a complex design, to the variance of an estimator under simple random

1This contribution suggested by my supervisor Robert Clark
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sampling with the same cost (or expected cost), according to a cost model.

That is

cdeff =
V

Vsrs
. (6.6)

The difference between the cdeff and the usual design effect is that: in the

usual design effect the denominator is the variance from a SRS with the same

sample size, whereas in the cdeff the denominator is the variance from a

SRS with the same cost. The cdeff is useful for comparing the efficiency of

designs with different costs.

Under the linear mixed model, the variance of the sample mean for a

balanced two-stage design is given by

V =
σ2
b

c
+
σ2
e

n
. (6.7)

The variance of the sample mean under a simple random sample is given by

Vsrs =
σ2
b

nsrs
+

σ2
e

nsrs
, (6.8)

because under simple random sampling, the number of PSUs (c) approxi-

mately equals the sample size (n), because provided the sampling fraction is

small, 1 unit will be selected from each selected PSU in almost all cases.

Now suppose the cost under simple random sampling, Csrs = nsrsC1 +

nsrsC2, to be equal to the cost of the two-stage design, including the ... test

Ctot = (cmain + cp)C1 + (nmain + np)C2.
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Therefore, the simple random sample size can be calculated to be

nsrs =
Ctot

C1 + C2

. (6.9)

Therefore, cdeff becomes

cdeff =
V

σ2
b

nsrs
+ σ2

e

nsrs

= nsrs

(
V

σ2
b + σ2

e

)

=

(
Ctot

C1 + C2

)(
V

σ2
b + σ2

e

)
(6.10)

=
( 1

C1 + C2

)( 1

σ2
b + σ2

e

)
CtotV,

where V = var(β̂) from the main study, designed using a pilot. In the

simulation study described in Section 6.3, the values of σ2
b and σ2

e were set to

ρ
1−ρ and 1, respectively, to ensure that the intraclass correlation was ρ. The

value of C2 was assumed to be 1. Therefore, σ2
b +σ2

e = ρ
1−ρ +1 = 1

1−ρ . Hence,

Equation (6.10) reduces to

cdeff =
1− ρ
ρ

Ctot V.

We will now find the best choice of A, mp and cp by minimizing cdeff

from the simulation study.

Table 6.5 shows the best choice of A, mp and cp, based on the cost-

adjusted design effect. For all values of C1, the optimal A was generally

small, A=10, with some exceptions. The first exception was when C1=0.5

with ρ=0.05 and 0.1 the optimal A was 50 and 20 respectively. The second
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exception was when C1=2 with ρ=0.1 as the optimal A was 40. Finally when

C1=10 with ρ=0 and 0.01 as the optimal A was 30 and 20 respectively. The

table shows that the “cost-adjusted design effect” values became smaller for

larger average cost of including an extra element in the sample.

Table 6.5: The best designs based on the cost-adjusted design effect based
on perfect knowledge of ρ

Optimal Design Setting Cost Adjusted

PSU Cost ICC PSUs Observations Cutoff Design Effect

C1 ρ cp mp A cdeff

0.5

0 10 25 10 1.535

0.01 25 15 10 1.731

0.025 5 50 10 1.951

0.05 25 50 50 1.965

0.1 10 50 20 1.965

2

0 10 50 30 0.790

0.01 10 25 10 0.931

0.025 10 10 10 1.039

0.05 10 10 10 1.196

0.1 25 25 40 1.442

10

0 10 50 50 0.241

0.01 5 25 30 0.329

0.025 10 10 20 0.417

0.05 5 25 10 0.509

0.1 10 5 10 0.669

Figures 6.5 - 6.7 show the plots of the variance of β̂ calculated from a

main survey with budget Cf=5000, designed using a pilot survey for all costs

of including a new PSU in the sample, C1, where C1=0.5, 2 and 10 and a

fixed average cost of including an extra element in the sample, C2=1 when
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Table 6.6: The best designs based on the cost-adjusted design effect based
on perfect knowledge of A, C1=10, ρ=0.05

Optimal Design Setting Cost Adjusted

Cost PSUs Observations Cutoff Design Effect

Cf cp mp A cdeff

500 5 50 10 1.49

1000 10 10 10 1.03

2000 2 50 10 0.741

5000 5 25 10 0.509

ρ varies over a range of values of 0, 0.01, 0.025, 0.05 and 0.1.

Table 6.6 shows the optimal A based on different values of the total cost

Cf of 500, 1000, 2000 and 5000 when the true ρ=0.05. It shows that the

optimal A was 10 for all values of Cf . The table shows that the “cost-

adjusted design effect” values became smaller for larger values of total cost.

Values of cp and mp changed by varying Cf . For Cf=500, cp=5 and mp=50.

For Cf=1000, cp=mp=10. For Cf=2000, cp=2 and mp=50. For Cf=5000,

cp=5 and mp=25.

6.5 Conclusions

When ρ=0, a large value of A (generally 100) was most efficient, not surpris-

ingly. When ρ=0.05, A=20 gave the best results in most cases. This suggests

in practice, PSU sample sizes should be forced to be 20 or less unless a very

large pilot is conducted to estimate ρ.
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Figure 6.5: Variance of β̂ calculated from a main survey with budget
Cf=5000, designed using a pilot survey for different values of
ρ (C1=0.5 and C2=1)
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Figure 6.6: Variance of β̂ calculated from a main survey with budget
Cf=5000, designed using a pilot survey for different values of
ρ (C1=2 and C2=1)
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Figure 6.7: Variance of β̂ calculated from a main survey with budget
Cf=5000, designed using a pilot survey for different values of
ρ (C1=10 and C2=1)
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For a fixed total cost of 5000, and based on the variance of β̂, when ρ=0,

a small number of pilot PSUs (10 or less, in general) should be chosen with

large number of observations per PSU (generally 50), for all values of A,

in general. When ρ=0.05, the number of pilot PSUs should be 10 or less

with 25 or less observations per PSU, in general, for A ≤ 30. For A=40,

the number of pilot PSUs should be 5 or less with 10 observations per PSU.

When A=50, 2 pilot PSUs with 10 or 25 observations per PSU should be

chosen. For A=100, a large number of observations per pilot PSU with any

number of pilot PSUs should be chosen.

Based on the cost-adjusted design effect, when C1=0.5 and Cf=5000, a

large number of pilot PSUs (10 or more, in general) should be chosen with

large number of observations per PSU (25 for ρ=0, 15 for ρ=0.01 and 50 for

ρ ≥ 0.025. When C1=2, the number of pilot PSUs should be 10 in most cases

with 10 or 25 observations per PSU. While when C1=10, a small number of

pilot PSUs (5 or 10) should be selected with 25 or more observations per

PSU when ρ=0, 0.01 and 0.05. For other values of ρ, number of pilot PSUs

should be 10 with 5 or 10 observations per PSU.

For a fixed total cost of 5000 and C1=0.5, the best choice of A was 10

when ρ ≤ 0.025. It was 50 when ρ=0.05 and 20 when ρ=0.1. For C1=2, the

best choice of A was 10 when ρ=0.01, 0.025 and 0.05, while it was 30 and

40, when ρ=0 and 0.1, respectively. For C1=10, A=10 was the best choice
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when ρ ≥0.05, and 20 or more otherwise.

For a range of values of Cf for fixed ρ of 0.05 and C1=10, the optimal A

was 10. The cdeff decreased by increasing the Cf value. The best choice of

cp was 5 with 50 and 25 observations per PSU, when Cf is fixed at 500 and

5000, respectively. When Cf=1000, the best number of pilot PSUs was 10

with 10 observations each. Finally, when Cf=2000, the best number of pilot

PSUs was 2 with 50 observations each.

146



Chapter 7

Conclusions

7.1 Summary and Conclusions

Regression coefficients and the variances of their estimates can be estimated

using different methods when the intraclass correlation is believed to be small.

The linear mixed model (LMM) is one alternative. Another alternative, when

observations are assumed to be independent, is the linear model (LM). LMM

variance estimators can be larger than LM variance estimators when the PSU

sample size are large, and this leads to wider confidence intervals for β.

A third alternative is to use an adaptive strategy. The strategy devel-

oped in Chapter 3 is to test the null hypothesis that the PSU-level variance

component, σ2
b , is zero. The LM variance estimator is used if the null hypoth-

esis is not rejected. Otherwise, the LMM or alternatively the Huber-White

variance estimator is used.

Chapter 3 found that the adaptive confidence intervals in extreme designs
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with a small number of sample PSUs and a large number of observations

per PSU. In these designs, the variance of the mean will be significantly

boosted even when the intraclass correlation is small, however even with

high intraclass correlation, the PSU-level variance component is unlikely to

be statistically significant. Accordingly, for c ≤ 5 with m̄ ≥ 25, adaptive non-

coverage rates were 15-20% higher than the nominal rate when ρ 6= 0, where

c is the number of sample PSUs and m̄ is the average number of observations

per PSU. Therefore, even if clustering is not statistically significant for these

extreme designs, it has to be allowed for in variances estimates.

The ADM, adaptive based on LMM as an alternative, confidence inter-

vals were shorter than the LMM confidence intervals in designs with 2 sample

PSUs with all average numbers of observations per PSU for all values of intr-

aclass correlation, ρ. In the balanced designs, the ADM confidence intervals

were a bit shorter for designs with 5 sample PSUs with m ≥25 when ρ=0 and

designs with c=5 for all numbers of observations per PSU, m, approximately,

when ρ 6= 0. They were shorter in designs with number of sample PSUs, c=10

and m ≥ 10 and m=5 and 10 when ρ=0.025 and 0.1, respectively. Otherwise,

ADM and LMM confidence intervals performed similarly.

The ADH, adaptive based on Huber-White as an alternative, confidence

intervals were much shorter than the Huber-White confidence intervals in

designs with 2 and 5 sample PSUs with, approximately all average num-
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bers of observations per PSU for all values ρ. In the balanced designs, the

ADH confidence intervals were shorter for designs with 10 sample PSUs with

m ≥10, with m ≥15 and m ≤ 15 for ρ=0, 0.025 and 0.1, respectively and

for designs with c=25 and m=10, 15 and 25 when ρ=0.025. There were no

relevant differences, otherwise.

The same adaptive strategies were applied in Chapter 4 for log-normal

data with two skewness levels, σ = 1
3

and σ = 2
3
. Biases of adaptive variance

estimators were similar to biases of adaptive variance estimators in Chapter 3.

ADM variance estimators were less biased than the LMM variance estimators

for designs with c=2 and c=5 with m ≤ 5. In the unbalanced designs,

ADM variance estimators were less biased than the LMM variance estimators

for designs with c ≤5 when σ = 1
3

and in designs with c=2 when σ = 2
3
.

ADH variance estimators were more biased than the Huber-White variance

estimators in designs with c ≤ 5 when ρ = 0 and in designs with c=2 when

ρ = 0.025. There were no relevant differences otherwise.

ADH non-coverage rates were larger than Huber-White non-coverage rates

except in designs with c=5, 25 with m=2 and c=10 with m=5. ADM non-

coverage rates were larger than LMM non-coverage rates except in designs

with c=2 and 10 with m=2 and 5, respectively; and designs with c=5 with

m ≤ 10 and designs with c=25.

ADM confidence intervals were shorter than LMM confidence intervals
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in designs with c=2, whereas ADH confidence intervals were shorter than

Huber-White confidence intervals in designs with c ≤ 5 and designs with

c=10 with m ≥ 5. In the unbalanced designs, the adaptive confidence inter-

vals were shorter than the non-adaptive confidence intervals in designs with

c=2 with all m̄ similar to what was in Chapter 3 and unlike what was in

Chapter 3 in designs with c=2.

Rejecting H0 : σ2
b = 0 is possible even if the estimated intraclass correla-

tion and the estimated design effect are relatively small. It may be desirable

to use the linear model rather than the linear mixed model in these cases.

To assess this possibility a new adaptive strategy was used in Chapter 5. We

used the LMM or alternatively the Huber-White variance estimators were

used if H0 is rejected and d̂eff ≥ d, where d is a cutoff value. Otherwise,

the LM variance estimators were used.

A simulation study showed that for balanced designs, cutoffs of d=1.05

and 1.5 had no effect - results were identical to the adaptive strategy de-

scribed in Chapter 3. For unbalanced designs, a cutoff of d=1.5 slightly

improved adaptive confidence intervals and variance estimates.

In Chapter 6 we considered a pilot survey to estimate the intraclass cor-

relation assuming the intercept-only model. This estimator was used to esti-

mate the optimal within-PSU sample size for the main survey, for fixed cost

based on a simple cost model. The estimated value of ρ could be zero or close
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to zero and this might lead to a very large PSU sample size being calculated,

which could lead to very high variances from the main survey. To deal with

this problem, m was truncated above at a cutoff, A. The value of m was also

truncated below to be greater than or equal to 2. A range of values of the

cutoff A were evaluated by simulation. A range of values of the pilot sample

sizes of PSUs (cp) and units per PSU (mp) were also evaluated.

Based on the variance of β̂ when C1=10, the best choice of A (out of

possible values) occurred at:

• A=100 when ρ=0 for all values of cp and mp except for the extreme

case cp = mp=2;

• A between 10 and 40 depending on the value of mp and cp.

Based on the variance of β̂, when C1=10 and ρ=0, the best choice of mp

was 50. When ρ=0.025, the best choice was at mp=10 if A is 10 or 50, at

mp=15 if A is 20, 30 or 40 and at mp=50 if A is 100.

Designs were also evaluated in terms of their cost-adjusted design effect

(cdeff), a measure of efficiency reflecting both cost and variance. Based on

the cost-adjusted design effect, when C1=10, the optimal A was

• 50 when ρ =0 when cp=10 and mp=50;

• 30 when ρ =0.01 when cp=5 and mp=25;
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• 20 when ρ =0.025 when cp=mp=10;

• 10 when ρ =0.05 when cp=5 and mp=25;

• 40 when ρ =0.1 when cp=25 and mp=5.

Chapter 6 also gives results for other values of C1 and Cf .

7.2 Further Research

Chapter 3 found that adaptive confidence intervals perform poorly in de-

signs with small numbers of PSUs and large numbers of observations per

PSU. ADM and LMM non-coverage rates are high for these extreme designs.

A possible reason is that there is not much power to detect the PSU-level

variance component in the adaptive approach, even when it is substantial.

One way to do this was the adaptive approaches developed in this thesis.

Another possible approach is model averaging of the LMM and LM models.

This would be more computationally intensive but would perhaps give better

results than adopting either the LMM or LM.

Another possible reason is that the LMM confidence intervals are not

exact and do not do well for small sample sizes. Confidence intervals rely

on the degrees of freedom and we do not have exact degrees of freedom

in the LMM case. We tried the approach suggested by Faes(2009). Other

approaches such as Kenward and Roger (1997) or Satterthwaite (1941) would
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be worth trying and might result in confidence intervals with better coverage

properties when the number of clusters is small.

Chapter 6 developed optimal design strategies for using a pilot study to

guide the sample design of a main study. Optimal choices of mp, cp and a

cutoff A for the within-PSU sample size for the main study, were obtained by

simulation, for given values of ρ and other parameters. In practice, however,

ρ would be unknown, and the pilot/main design strategy would need to be

developed in ignorance of ρ. Future research could focus on choices of mp,

cp and A that perform well across a range of possibilities for ρ.
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Appendix A

Proofs for Chapter 2

A.1 Unbalanced Data Case

A.1.1 The Maximum Likelihood Estimators

Under HA

The likelihood function for the sample observations yijs from model 2.3 is

given by

L =
c∏
i=1

f(yi), (A.1)

where

f(yi) =
1

(2π)mi/2|Vi|1/2
exp
{
− 1

2

c∑
i=1

(yi − β)′V−1
i (yi − β)

}
.

Therefore, the likelihood function (A.1) is given by

L =
1

(2π)mi/2
∏c

i=1 |Vi|1/2
exp
{
− 1

2

c∑
i=1

(yi − β)′V−1
i (yi − β)

}
. (A.2)
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But

|Vi| = ηi(σ
2
e)
mi−1;

V−1
i =

1

σ2
e

Imi −
σ2
b

ηi σ2
e

Jmi .

where ηi = σ2
e +miσ

2
b . Substituting for β = β1mi , |Vi| and V−1

i in (A.2), we

obtain

L =
exp
[
− 1

2

{
n−c
σ2
e
MSE +

∑c
i=1

mi(ȳi.−β)2

ηi

}]
(2π)n/2(σ2

e)
(n−c)/2

∏c
i=1(ηi)1/2

. (A.3)

The natural logarithm of the likelihood function is determined by taking the

logarithm for both sides of (A.3), which is simplified to

` = −n
2
ln(2π)− n− c

2
ln(σ2

e)−
1

2
ln(ηi)

−(n− c)MSE

2σ2
e

− 1

2

c∑
i=1

mi(ȳi. − β)2

ηi
. (A.4)

The partial derivatives of (A.4) with respect to β, σ2
e and ηi are obtained as

∂`
∂β

=
∑c

i=1
mi(ȳi.−β)

ηi
;

∂`
∂σ2
e

= n−c
2σ2
e

+ (n−c)MSE
2(σ2

e)2
;

∂`
∂ηi

= −1
2

[∑c
i=1

1
ηi

+ mi(ȳi.−β)2

η2i

]
.

 (A.5)

Equating to zero the partial derivatives in (A.5) and solving with respect

to β, ηi and σ2
e and denoting the solutions by β̂, η̂i and σ̂2

e and after some
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simplifications we obtain

β̂ =

∑c
i=1

(
miȳi./η̂i

)
∑c
i=1

(
mi/η̂i

)
= ȳw;

σ̂2
e = MSE;∑c
i=1

1
η̂i

=
∑c

i=1
mi(ȳi.−ȳw)2

η̂2i
.


(A.6)

It is obvious that the system of equations (A.6) has no explicit solutions for

β̂ and η̂i, therefore there is no explicit solution for σ̂2
b .

Under H0

Under H0 we have σ2
b = 0 therefore, the log-likelihood function (A.4) reduces

to

`0 = −n
2
ln(2π)− n− c− 1

2
ln(σ2

e)

− 1

2σ2
e

[
(n− c)MSE +

c∑
i=1

mi(ȳi. − β)2
]
. (A.7)

Differentiating (A.7) partially with respect to σ2
e , we obtain

∂`0

σ2
e

= −n− c− 1

2σ2
e

+
1

2(σ2
e)

2

[
(n− c)MSE +

c∑
i=1

mi(ȳi. − β)2
]
. (A.8)

Equating (A.8) to zero and solving with respect to σ2
e and denoting the

solution by σ̂2
e , we find

σ̂2
e =

n− c
n− c− 1

MSE +
1

n− c− 1

c∑
i=1

mi(ȳi. − β)2

=
1

n− c− 1

c∑
i=1

mi∑
j=1

mi(ȳij − ȳ..)2. (A.9)
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A.1.2 Derivation of Equation (2.31)

A.1.3 The Restricted Maximum Likelihood Estimators
(RLRT)

Proceeding from the general case considered in Subsection 2.3.2, the re-

stricted log-likelihood function for the sample observations yijs, from the

model defined in (2.3) is given as

`R = −1

2

[
(n− c)ln(σ2

eA) +
c∑
i=1

ln(ηi)− ln
( c∑
i=1

mi

ηi

)
+

(n− c)MSEA
σ2
eA

+
c∑
i=1

mi(ȳi. − ȳw)2

ηi

]
. (A.10)

The partial derivatives of (A.10) with respect to σ2
e and ηi are given by

∂`R
∂σ2
eA

= −1
2

[
n−c
σ2
eA
− (n−c)MSEA

(σ2
eA)2

]
;

∂`R
∂ηi

= −1
2

[∑c
i=1

1
ηi

+

∑c
i=1

mi
η2
i∑c

i=1
mi
ηi

− mi(ȳi.−ȳw)2

η2i

]
.

 (A.11)

Equating to zero the partial derivatives in (A.11) and solving with respect

to σ2
e and ηi and representing the solutions by σ̂2

eA and η̂i, we get

σ̂2
eA = MSEA;∑c
i=1

mi(ȳi.−ȳw)2

η̂2i
=

∑c
i=1

1
η̂i
−

∑c
i=1

mi
η̂2
i∑c

i=1
mi
η̂i

.

 (A.12)

Therefore, there is no explicit form for η̂i. Hence, σ̂2
b has no explicit form.

The restricted maximum likelihood under HA is given by

−2
MAX

HA `R = (n− c)ln(MSEA) +
c∑
i=1

ln(η̂i) + ln
( c∑
i=1

(λ̂i)
)

+n− c+
c∑
i=1

λ̂i(ȳi. − β̂)2. (A.13)
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Under H0

Under H0, we have σ2
b = 0 therefore, the log-likelihood function (A.10) re-

duces to

`R0 = −1

2

[
(n− 1)ln(σ2

e0) + ln(n) +
1

σ2
e0

(
(n− c)MSE0

+
c∑
i=1

mi(ȳi. − ȳw)2
)]
. (A.14)

But, under H0, ȳw reduces to ȳ.., because

ȳw =

∑c
i=1(miȳi./σ

2
e0)∑c

i=1(mi/σ2
e0)

=

∑c
i=1miȳi.∑c
i=1 mi

=

∑c
i=1

∑mi
j=1 yij

n

= ȳ... (A.15)

Therefore, Equation (A.14) reduces to

`R0 = −1

2

[
(n− 1)ln(σ2

e0) + ln(n) +
1

σ2
e0

(
(n− c)MSE0

+
c∑
i=1

mi(ȳi. − ȳ..)2
)]
. (A.16)

Differentiating (A.16) partially with respect to σ2
e0, we obtain

∂`R0

σ2
e0

= −1

2

[n− 1

σ2
e0

− 1

σ4
e0

(
(n− c)MSE0

+
c∑
i=1

mi(ȳi. − ȳ..)2
)]
. (A.17)
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Equating (A.17) to zero and solving with respect to σ2
e0 and denoting the

solution by σ̂2
e0, we find

σ̂2
e0 =

1

n− 1

[ c∑
i=1

(ȳij − ȳi.)2 +
c∑
i=1

mi∑
j=1

mi(ȳi. − ȳ..)2
]

=
1

n− 1

c∑
i=1

mi∑
j=1

(yij − ȳ..)2

= MSE0. (A.18)

The restricted maximum likelihood under H0 is given by

−2
MAX

H0 `R = (n− c)ln(MSE0) +
c∑
i=1

ln(MSE0) + ln
( c∑
i=1

mi

MSE0

)
+n− c+

∑c
i=1mi(ȳi. − ȳ..)2

MSE0

= (n− c)ln(MSE0) + c ln(MSE0) + ln
( n

MSE0

)
+n− c+

∑c
i=1mi(ȳi. − ȳ..)2

MSE0

= n− c+ ln(n) + (n− 1)ln(MSE0)

+

∑c
i=1mi(ȳi. − ȳ..)2

MSE0

. (A.19)

One way to define the restricted likelihood ratio test is to subtract Equa-

tion (A.19) from (A.13). Therefore, the restricted likelihood ratio test can
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be given as

Λ = −2
( MAX

H0 `R−
MAX

HA `R

)
= ln(n) + (n− 1) ln(MSE0) +

∑c
i=1 mi(ȳi. − ȳ..)2

MSE0

−(n− c)ln(MSEA)−
c∑
i=1

ln(η̂i)− ln
( c∑
i=1

(λ̂i)
)

−
c∑
i=1

λ̂i(ȳi. − β̂)2. (A.20)

Substituting mi = m into the unbalanced case, we get

−2`RA = (n− c)ln(MSEA) +
c∑
i=1

ln(η̂) + ln
( c∑
i=1

(λ̂)
)

+n− c+
c∑
i=1

λ̂(ȳi. − β̂)2

= n− c+ (n− c)ln(MSE) + c ln(η̂) + ln
(n
η̂

)
+

c∑
i=1

m

η̂
(ȳi. − ȳ..)2

= n− c+ (n− c)ln(MSE) + c ln(MSA) + ln(n)− ln(MSA) +
1

MSA
.(c− 1)MSA

= n− 1 + (n− c)ln(MSE) + (c− 1)ln(MSA) + ln(n). (A.21)

−2`R0 = (n− 1)ln
(SSE + SSA

n− 1

)
+ (n− c)ln(MSE) + (c− 1)ln(MSA) + ln(n)

= (n− 1)ln
(SSE + SSA

n− 1

)
+ ln(n) +

(c− 1)MSA+ (n− c)MSE
SSE+SSA

n−1

= (n− 1)ln
(SSE + SSA

n− 1

)
+ ln(n) +

(c− 1)MSA+ (n− c)MSE
(n−c)MSE+(c−1)MSA

n−1

= n− 1 + ln(n) + (n− 1)ln
((n− c)MSE + (c− 1)MSA

n− 1

)
. (A.22)
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B = 0

Subtracting (A.21) from (A.22), we obtain

Λ = n− 1 + ln(n) + (n− 1)ln
((n− c)MSE + (c− 1)MSA

n− 1

)
−n+ 1− (n− c)ln(MSE)− (c− 1)ln(MSA)− ln(n)

= −(n− 1)ln(MSE) + (c− 1)ln(MSE)− (c− 1)ln(MSA)

= +(n− 1)ln
((n− c)MSE + (c− 1)MSA

n− 1

)
= (n− 1)ln

(n− c
n− 1

+
c− 1

n− 1
F
)
− (c− 1)ln(F ). (A.23)

where η̂i = σ̂2
e +miσ̂

2
b , λ̂i = mi

η̂i
.

A.2 Restricted Maximum Likelihood Method

Likelihood Ratio Test (RLRT) for Test-

ing H0 : σ
2
b = 0

Under model 2.1, the likelihood function using restricted maximum likelihood

is given by

`R = −1

2
(n− 1)log(2π)− 1

2
log(n)− 1

2
(n− c)log(σ2

e)

−1

2
(c− 1)log(η)− SSE

2σ2
e

− SSA

2η
. (A.24)

Differentiating this likelihood Equation with respect to the parameters η and

σ2
e , we get

∂`R
∂σ2

e

= −n− c
2σ2

e

+
SSE

2(σ2
e)

2

∂`R
∂η

= −c− 1

2η
+
SSA

2η2
. (A.25)
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Equating the partial derivatives in (A.25) to zero and referring to the solu-

tions as η̂ and σ̂2
e we obtain

σ̂2
e =

SSE

(n− c)
= MSE;

η̂ =
SSA

c− 1
= MSA. (A.26)

Therefore

σ̂2
b =

1

m
(MSA−MSE).

Hence, multiplying by 2 the restricted maximum likelihood Equation under

the full model

2
MAX

HA `R = (1− n)log(2πe)− log(n)

−(n− c)log(MSE)− (c− 1)log(MSA). (A.27)

A.2.1 Under the null hypothesis H0

We know that under H0, σ2
b = 0, so in this case η reduces to σ2

e . Therefore,

if we substitute this quantity in (A.24), we obtain

`R = −1

2
(n− 1)log(2π)− 1

2
log(n)− 1

2
(n− 1)log(σ2

e)

−SSE + SSA

2σ2
e

. (A.28)

Differentiating Equation (A.28) with respect to σ2
e , we get

∂`R
∂σ2

e

= −n− 1

2σ2
e

+
SSE + SSA

2(σ2
e)

2
. (A.29)
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Equating to zero the partial derivative in (A.29) with respect to σ2
e , and

representing the solution by σ̂2
e , we obtain

σ̂2
e =

SSE + SSA

n− 1

=
n− c
n− 1

MSE +
c− 1

n− 1
MSA. (A.30)

Therefore, -2 multiplied by the restricted maximum likelihood becomes

−2
MAX

H0 `R = (n− 1)log(2πe) + log(n)

+(n− 1)log
(SSE + SSA

n− 1
.
)

(A.31)

Adding equations (A.27) and (A.31), we obtain the restricted likelihood ratio

test as

ΛR =

 (n− 1) log
(
n−c
n−1

+ c−1
n−1

F
)
− (c− 1) log(F ) if F > 1,

0 if F ≤ 1.
(A.32)

where F = MSA
MSE

.

A.3 Proof of 2.11

var(β̂) = (X′V−1X)−1X′V−1var(Y)V−1X(X′V−1X)−1

= (X′V−1X)−1X′V−1VV−1X(X′V−1X)−1

= X′V−1X)−1X′V−1X(X′V−1X)−1

= (X′V−1X)−1.
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A.4 Proof of 2.23

c∑
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êiê
′
i

×
{ 1

σ̂2
e

(Imi)−
σ̂2
b

σ̂2
e(σ̂

2
e +miσ̂2

b )
(1mi1

′
mi

)
}

1mi

=
c∑
i=1

{ 1

σ̂2
e

(1′miImi)−
σ̂2
b

σ̂2
e(σ̂

2
e +miσ̂2

b )
(1′mi1mi1

′
mi

)
}

êiê
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λ̂2(mi(ȳi. − β̂))2 (A.34)

Substituting (A.34) and (A.34) into (2.23) gives

v̂ar(β̂) =
∑c
i=1 λ̂

2
i (ȳi.−β̂)2(∑c
i=1 λ̂i

)2 . (A.35)

A.5 Proof of 2.24

In this case λi = λ for all i, therefore

v̂ar(β̂) = v̂ar(ȳ..) (A.36)

=
1

c(c− 1)

c∑
i=1

(ȳi. − ȳ..)2.
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Appendix B

Proofs and Additional Tables
for Chapter 3

B.1 Derivation of the Multiplication Factor

Used to Correct the Huber-White Vari-

ance estimator in the Unbalanced Data

case, Equation (3.3)

E
(
v̂ar(β̂)

)
=

1(∑c
i=1 λi

)2E
[ c∑
i=1

λ2
i (ȳi. − β̂)2
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i [(ȳi. − β)− (β̂ − β)]2

]

=
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λ2
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−2
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i cov(ȳi., β̂)

]
.
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B.1. DERIVATION OF THE MULTIPLICATION FACTOR USED TO
CORRECT THE HUBER-WHITE VARIANCE ESTIMATOR IN THE
UNBALANCED DATA CASE, EQUATION (3.3)
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λi∑c
j=1 λj

)]
=

1(∑c
i=1 λi

)2

[ c∑
i=1

(
λ2
i

1

λi

)
+ (var(β̂))

c∑
i=1

(λ2
i )

−2
c∑
i=1

(λ2
i )

1

λi

( λi∑c
j=1 λj

)]
=

1(∑c
i=1 λi

)2

[ c∑
i=1

(
λ2
i

1

λi

)
+ (var(β̂))

c∑
i=1

(λ2
i )− 2

∑c
i=1(λ2

i )∑c
j=1 λj

]

=
1(∑c
i=1 λi

)2

[ c∑
i=1

(
λ2
i

1

λi

)
+ (var(β̂))

c∑
i=1

(λ2
i )

−2(var(β̂))
c∑
i=1

(λ2
i )
]

= var(β̂)− (var(β̂))

∑c
i=1(λ2

i )

(
∑c

i=1 λi)
2

= var(β̂)
[
1−

∑c
i=1(λ2

i )

(
∑c

i=1 λi)
2

]
=

(
∑c

i=1 λi)
2 −

∑c
i=1(λ2

i )

(
∑c

i=1 λi)
2

var(β̂)

∴
E
(
v̂ar(β̂)

)
var(β̂)

=
(
∑c

i=1 λi)
2 −

∑c
i=1(λ2

i )

(
∑c

i=1 λi)
2

.

168



APPENDIX B. PROOFS AND ADDITIONAL TABLES FOR CHAPTER
3

B.2 Extra Tables and Plots

Figure B.1: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and c, ρ=0.01
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B.2. EXTRA TABLES AND PLOTS
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Figure B.2: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and c, ρ=0.05
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Figure B.3: Confidence interval lengths using different variance estimation
methods and for various values of m and c, ρ=0.01
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Figure B.4: Confidence interval lengths using different variance estimation
methods and for various values of m and c, ρ=0.05
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Figure B.5: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and c, ρ=0.01
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Figure B.6: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and c, ρ=0.05
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Figure B.7: Confidence interval lengths using different variance estimation
methods and for various values of m and c, ρ=0.01
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Figure B.8: Confidence interval lengths using different variance estimation
methods and for various values of m and c, ρ=0.05
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Figure B.9: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and c, ρ=0
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Figure B.10: Confidence interval non-coverage using different variance esti-
mation methods and for various values of m and c, ρ=0.025
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Figure B.11: Confidence interval non-coverage using different variance esti-
mation methods and for various values of m and c, ρ=0.1
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B.2. EXTRA TABLES AND PLOTS

Figure B.12: Confidence interval lengths using different variance estimation
methods and for various values of m and c, ρ=0
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Figure B.13: Confidence interval lengths using different variance estimation
methods and for various values of m and c, ρ=0.025
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Figure B.14: Confidence interval lengths using different variance estimation
methods and for various values of m and c, ρ=0.1
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Figure D.1: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and c, ρ=0.025, using
adaptive using RLRT and deffle1.05.
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Figure D.2: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and c, ρ=0.025, using
adaptive using RLRT and deff ≥ 1.05.

0 10 20 30 40 50

1
2

3
4

5

c =  2 

Obervations from each PSU (m)

C
I L

en
gt

h

●

●

●
● ●

●

0 10 20 30 40 50

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

c =  5 

Obervations from each PSU (m)

C
I L

en
gt

h

●

●

●

●

●

●

0 10 20 30 40 50

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

c =  10 

Obervations from each PSU (m)

C
I L

en
gt

h

●

●

●

●

●

●

0 10 20 30 40 50

0.
1

0.
2

0.
3

0.
4

0.
5

c =  25 

Obervations from each PSU (m)

C
I L

en
gt

h

●

●

●

●

●

●

● ADM
ADH
LM
LMM
Huber

207



T
ab

le
D

.3
:

V
ar

ia
n
ce

ra
ti

os
,

le
n
gt

h
an

d
n
on

-c
ov

er
ag

e
of

th
e

90
%

co
n
fi
d
en

ce
in

te
rv

al
s

fo
r
β

,
an

d
p

ow
er

of
te

st
in

g
H

0
:
σ

2 b
=

0
an

d
d
ef
f
≥

1.
1

w
it

h
ρ
=

0,
b
al

an
ce

d
d
at

a
ca

se
.

N
on

-C
ov

er
a
g
e

o
f

p
[ d̂ef

f
p
[ d̂ef

f
C

on
fi

d
en

ce

P
S

U
s

O
b

s
E

(v̂
a
r(
β̂

))
/v
a
r(
β̂

)
C

I
fo

r
β

R
L

R
T

>
1
.1
|

>
1.

1
&

E
( d̂ef

f
)

In
te

rv
a
l

L
en

g
th

c
m

A
D

M
A

D
H

L
M

M
H

u
b

A
D

M
A

D
H

L
M

M
H

u
b

R
ej
H

0

] R
ej
H

0

]
A

D
M

A
D

H
L

M
M

H
u

b
2

2
1.

29
0

1.
29

0
1.

55
3

1.
18

3
8.

4
8.

4
1
1
.6

7
.8

1
1
.2

1
1
.2

1
0
0
.0

1
.2

4
1

4
1
.3

5
.6

7
6

3
.0

5
9

6
.3

3
0

5
.4

2
9

2
5

1.
28

3
1.

28
3

1.
51

7
1.

04
2

9.
2

9.
0

9
.1

1
0
.3

6
.3

6
.3

1
0
0
.0

1
.3

0
9

2
5
.1

1
.2

4
3

1
.5

6
4

1
.3

2
7

3
.1

4
2

2
10

1.
25

9
1.

25
9

1.
52

3
1.

05
5

8.
9

8.
9

9
.2

1
0
.7

5
.1

5
.1

1
0
0
.0

1
.3

8
6

2
6
.4

0
.8

6
2

1
.0

5
3

0
.9

5
2

2
.2

7
0

2
15

1.
17

9
1.

17
9

1.
41

2
0.

92
7

9.
8

9.
8

1
0
.1

1
0
.4

3
.8

3
.8

1
0
0
.0

1
.3

6
5

2
4
.8

0
.6

8
3

0
.7

9
4

0
.7

4
9

1
.7

7
2

2
25

1.
16

5
1.

16
5

1.
41

9
0.

97
6

10
.8

10
.8

1
1
.3

8
.9

4
.2

4
.2

1
0
0
.0

1
.4

0
7

2
4
.8

0
.5

2
8

0
.6

2
1

0
.5

8
4

1
.4

4
2

2
50

1.
31

8
1.

31
8

1.
58

1
1.

08
7

7.
9

7.
9

9
.4

9
.5

5
.5

5
.5

1
0
0
.0

1
.4

9
3

2
4
.5

0
.3

8
9

0
.4

7
7

0
.4

2
6

1
.0

1
5

5
2

1.
07

4
1.

07
4

1.
18

3
0.

98
6

9.
4

9.
2

1
0
.2

9
.4

9
.9

9
.9

1
0
0
.0

1
.1

6
5

4
0
.4

1
.1

7
3

1
.1

8
1

1
.1

9
0

1
.2

5
5

5
5

1.
16

3
1.

16
3

1.
28

8
1.

05
7

9.
3

9.
3

1
0
.0

8
.5

7
.6

7
.6

1
0
0
.0

1
.2

0
7

2
7
.3

0
.7

1
6

0
.7

2
1

0
.7

3
2

0
.8

0
1

5
10

1.
15

2
1.

15
2

1.
28

2
1.

04
4

8.
0

8.
0

8
.8

9
.5

6
.7

6
.7

1
0
0
.0

1
.2

2
3

2
6
.2

0
.5

0
0

0
.5

0
5

0
.5

1
3

0
.5

6
9

5
15

1.
13

3
1.

13
3

1.
25

9
1.

01
7

9.
2

9.
2

1
0
.1

1
0
.1

7
.9

7
.9

1
0
0
.0

1
.2

4
2

2
6
.4

0
.4

1
2

0
.4

1
7

0
.4

2
3

0
.4

6
5

5
25

1.
12

4
1.

12
4

1.
23

4
0.

99
9

9.
4

9.
4

1
0
.0

1
0
.4

7
.9

7
.9

1
0
0
.0

1
.2

4
2

2
5
.2

0
.3

1
7

0
.3

2
1

0
.3

2
4

0
.3

6
0

5
50

1.
15

7
1.

15
7

1.
29

4
1.

05
9

8.
0

7.
9

8
.5

8
.7

7
.0

7
.0

1
0
0
.0

1
.2

5
7

2
6
.8

0
.2

2
4

0
.2

2
6

0
.2

3
2

0
.2

5
8

10
2

1.
03

6
1.

03
6

1.
10

3
0.

97
6

10
.9

10
.8

1
0
.9

1
1
.0

1
1
.4

1
1
.4

1
0
0
.0

1
.1

2
4

3
6
.4

0
.7

8
8

0
.7

8
7

0
.7

9
3

0
.7

9
4

10
5

1.
14

8
1.

14
8

1.
22

1
1.

07
1

8.
1

8.
1

9
.1

9
.3

8
.0

8
.0

1
0
0
.0

1
.1

3
3

2
3
.2

0
.4

8
9

0
.4

9
0

0
.4

9
2

0
.5

0
3

10
10

1.
03

3
1.

03
3

1.
09

5
0.

97
2

10
.8

11
.0

1
0
.9

1
0
.6

8
.5

8
.5

1
0
0
.0

1
.1

4
5

2
1
.7

0
.3

4
7

0
.3

4
8

0
.3

4
8

0
.3

6
1

10
15

1.
20

5
1.

20
5

1.
28

2
1.

11
6

7.
2

7.
1

8
.9

9
.1

8
.6

8
.6

1
0
0
.0

1
.1

5
1

2
3
.2

0
.2

8
2

0
.2

8
3

0
.2

8
5

0
.2

9
2

10
25

1.
20

3
1.

20
3

1.
26

8
1.

10
3

7.
3

7.
3

7
.9

9
.4

8
.3

8
.3

1
0
0
.0

1
.1

4
7

2
0
.0

0
.2

1
9

0
.2

1
9

0
.2

1
9

0
.2

2
5

10
50

1.
13

7
1.

13
7

1.
20

9
1.

04
5

9.
7

9.
7

1
0
.0

1
0
.7

8
.0

8
.0

1
0
0
.0

1
.1

4
9

2
1
.7

0
.1

5
4

0
.1

5
4

0
.1

5
5

0
.1

5
9

25
2

0.
95

0
0.

95
0

0.
99

4
0.

92
0

11
.4

11
.4

1
1
.7

1
2
.3

1
0
.1

1
0
.1

1
0
0
.0

1
.0

8
2

3
2
.9

0
.4

8
3

0
.4

8
3

0
.4

8
3

0
.4

8
2

25
5

0.
95

6
0.

95
6

0.
96

3
0.

91
3

10
.6

10
.7

1
1
.9

1
1
.1

8
.1

8
.1

1
0
0
.0

1
.0

5
0

1
0
.6

0
.3

0
3

0
.3

0
2

0
.2

9
8

0
.3

0
2

25
10

1.
03

8
1.

03
8

1.
05

1
0.

98
4

10
.6

10
.6

1
1
.1

1
1
.5

8
.7

8
.7

1
0
0
.0

1
.0

5
8

1
2
.2

0
.2

1
4

0
.2

1
4

0
.2

1
2

0
.2

1
4

25
15

1.
01

3
1.

01
3

1.
02

5
0.

96
1

9.
5

9.
4

1
0
.8

1
0
.9

6
.8

6
.8

1
0
0
.0

1
.0

4
9

1
0
.2

0
.1

7
4

0
.1

7
3

0
.1

7
1

0
.1

7
3

25
25

1.
12

3
1.

12
3

1.
13

7
1.

06
9

8.
4

8.
4

8
.8

9
.0

9
.1

9
.1

1
0
0
.0

1
.0

6
8

1
2
.8

0
.1

3
5

0
.1

3
5

0
.1

3
4

0
.1

3
6

25
50

1.
04

5
1.

04
6

1.
06

8
0.

97
1

9.
4

9.
4

1
0
.3

1
0
.3

8
.8

8
.8

1
0
0
.0

1
.0

7
6

1
6
.0

0
.0

9
6

0
.0

9
6

0
.0

9
5

0
.0

9
5

208



APPENDIX D. EXTRA TABLES AND PLOTS FOR CHAPTER 5

T
ab

le
D

.4
:

V
ar

ia
n
ce

ra
ti

os
,

le
n
gt

h
an

d
n
on

-c
ov

er
ag

e
of

th
e

90
%

co
n
fi
d
en

ce
in

te
rv

al
s

fo
r
β

,
an

d
p

ow
er

of
te

st
in

g
H

0
:
σ

2 b
=

0
an

d
d
ef
f
≥

1.
1

w
it

h
ρ
=

0.
02

5,
b
al

an
ce

d
d
at

a
ca

se
.

N
on

-C
ov

er
a
g
e

o
f

p
[ d̂ef

f
p
[ d̂ef

f
C

o
n

fi
d

en
ce

P
S

U
s

O
b

s
E

(v̂
a
r(
β̂

))
/v
a
r(
β̂

)
C

I
fo

r
β

R
L

R
T

>
1
.1
|

>
1.

1
&

E
( d̂ef

f
)

In
te

rv
a
l

L
en

g
th

c
m

A
D

M
A

D
H

L
M

M
H

u
b

A
D

M
A

D
H

L
M

M
H

u
b

R
ej
H

0

] R
ej
H

0

]
A

D
M

A
D

H
L

M
M

H
u

b
2

2
1.

18
9

1.
18

9
1.

44
0

1.
07

4
8.

2
8.

2
1
2
.0

8
.9

9
.9

9
.9

1
0
0
.0

1
.2

3
4

4
0
.2

4
.9

3
4

2
.9

7
7

5
.5

5
2

5
.2

9
9

2
5

1.
18

2
1.

18
2

1.
41

5
1.

01
2

11
.4

10
.9

1
1
.1

1
2
.6

7
.5

7
.5

1
0
0
.0

1
.3

8
1

2
9
.5

1
.3

3
0

1
.6

9
3

1
.4

3
7

3
.3

3
0

2
10

1.
13

9
1.

13
9

1.
35

6
0.

98
5

11
.4

11
.4

1
2
.9

1
1
.6

7
.5

7
.5

1
0
0
.0

1
.4

7
5

2
7
.9

0
.9

1
5

1
.2

1
1

1
.0

0
9

2
.4

1
3

2
15

1.
00

5
1.

00
5

1.
22

7
0.

94
7

15
.5

15
.5

1
3
.9

8
.5

8
.6

8
.6

1
0
0
.0

1
.6

3
0

3
3
.2

0
.7

8
0

1
.0

3
4

0
.8

8
0

2
.1

6
7

2
25

1.
07

4
1.

07
4

1.
27

3
1.

05
8

18
.6

18
.6

1
6
.1

8
.7

1
4
.4

1
4
.4

1
0
0
.0

1
.9

8
5

3
8
.6

0
.7

1
0

1
.0

5
4

0
.8

0
0

1
.9

1
1

2
50

0.
88

6
0.

88
6

1.
05

6
0.

91
1

23
.4

23
.4

1
9
.9

9
.3

1
6
.9

1
6
.9

1
0
0
.0

2
.2

9
1

4
3
.7

0
.5

4
8

0
.8

3
5

0
.6

2
3

1
.4

6
9

5
2

1.
12

3
1.

12
3

1.
24

5
1.

06
1

9.
6

9.
6

8
.5

9
.2

1
1
.9

1
1
.9

1
0
0
.0

1
.1

9
0

4
4
.5

1
.2

2
4

1
.2

3
0

1
.2

5
4

1
.3

2
3

5
5

0.
98

6
0.

98
6

1.
10

2
0.

94
1

10
.8

10
.9

1
1
.2

1
0
.8

1
1
.2

1
1
.2

1
0
0
.0

1
.2

7
6

3
3
.2

0
.7

5
1

0
.7

5
9

0
.7

8
0

0
.8

5
4

5
10

0.
96

7
0.

96
7

1.
09

3
0.

97
5

12
.4

12
.1

1
2
.1

8
.7

1
4
.7

1
4
.7

1
0
0
.0

1
.3

9
8

3
9
.9

0
.5

4
3

0
.5

5
1

0
.5

7
2

0
.6

4
4

5
15

1.
08

0
1.

08
0

1.
23

3
1.

11
8

11
.3

11
.3

1
0
.1

8
.8

1
7
.1

1
7
.1

1
0
0
.0

1
.4

8
7

4
4
.2

0
.4

5
7

0
.4

6
5

0
.4

8
7

0
.5

4
9

5
25

0.
89

5
0.

89
5

1.
00

7
0.

94
5

15
.8

15
.8

1
3
.6

1
0
.7

2
4
.7

2
4
.7

1
0
0
.0

1
.6

9
1

5
1
.6

0
.3

8
3

0
.3

9
2

0
.4

0
9

0
.4

6
2

5
50

0.
81

2
0.

81
2

0.
88

8
0.

86
1

19
.3

19
.3

1
6
.3

1
1
.6

4
0
.2

4
0
.2

1
0
0
.0

2
.1

8
5

6
6
.1

0
.3

2
0

0
.3

3
0

0
.3

3
9

0
.3

7
6

10
2

1.
04

4
1.

04
4

1.
12

5
1.

00
8

9.
0

9.
1

8
.2

9
.5

1
1
.9

1
1
.9

1
0
0
.0

1
.1

4
3

4
2
.9

0
.8

0
9

0
.8

1
2

0
.8

1
9

0
.8

3
0

10
5

0.
95

3
0.

95
3

1.
01

6
0.

94
8

11
.6

11
.6

1
2
.0

1
0
.2

1
2
.5

1
2
.5

1
0
0
.0

1
.1

7
9

2
8
.4

0
.5

0
7

0
.5

0
7

0
.5

1
4

0
.5

3
7

10
10

1.
04

5
1.

04
5

1.
12

1
1.

06
2

11
.0

10
.9

1
1
.5

9
.6

1
8
.6

1
8
.6

1
0
0
.0

1
.2

7
5

3
6
.4

0
.3

7
0

0
.3

7
1

0
.3

7
8

0
.3

9
8

10
15

0.
93

5
0.

93
5

1.
00

8
0.

97
5

13
.1

13
.0

1
1
.4

1
0
.5

2
5
.8

2
5
.8

1
0
0
.0

1
.4

0
0

4
5
.2

0
.3

1
8

0
.3

1
8

0
.3

2
7

0
.3

4
4

10
25

1.
00

2
1.

00
2

1.
07

2
1.

06
1

11
.6

11
.5

1
1
.4

8
.6

4
0
.5

4
0
.5

1
0
0
.0

1
.6

3
9

6
1
.2

0
.2

6
9

0
.2

7
0

0
.2

7
9

0
.2

9
2

10
50

0.
99

5
0.

99
5

1.
02

9
1.

03
0

14
.1

13
.3

1
2
.8

1
0
.3

6
7
.1

6
7
.1

1
0
0
.0

2
.2

3
1

8
1
.8

0
.2

3
1

0
.2

3
2

0
.2

3
7

0
.2

4
3

25
2

1.
01

8
1.

01
8

1.
06

6
0.

99
7

9.
6

9.
7

9
.9

9
.7

1
2
.7

1
2
.7

1
0
0
.0

1
.0

9
2

3
4
.5

0
.4

8
9

0
.4

8
9

0
.4

9
0

0
.4

9
1

25
5

1.
00

7
1.

00
7

1.
02

2
1.

01
7

10
.5

10
.6

1
0
.7

1
0
.2

1
7
.2

1
7
.2

1
0
0
.0

1
.1

0
7

2
2
.3

0
.3

1
6

0
.3

1
4

0
.3

1
4

0
.3

2
3

25
10

0.
99

1
0.

99
1

1.
00

8
1.

03
4

11
.7

11
.6

1
2
.1

1
0
.1

2
9
.0

2
9
.0

1
0
0
.0

1
.2

0
2

3
4
.7

0
.2

3
2

0
.2

3
1

0
.2

3
2

0
.2

4
2

25
15

0.
99

0
0.

99
0

1.
00

9
1.

03
8

11
.3

11
.3

1
1
.0

9
.6

4
2
.3

4
2
.3

1
0
0
.0

1
.3

0
9

4
9
.2

0
.1

9
9

0
.1

9
7

0
.2

0
0

0
.2

0
6

25
25

1.
04

9
1.

04
9

1.
06

3
1.

08
7

10
.8

11
.1

1
0
.8

9
.7

6
6
.0

6
6
.0

1
0
0
.0

1
.5

8
0

7
1
.8

0
.1

7
1

0
.1

6
9

0
.1

7
2

0
.1

7
5

25
50

0.
94

7
0.

94
8

0.
95

3
0.

95
4

11
.0

10
.7

1
0
.9

1
0
.7

9
2
.7

9
2
.7

1
0
0
.0

2
.2

1
4

9
6
.2

0
.1

4
4

0
.1

4
4

0
.1

4
5

0
.1

4
5

209



T
ab

le
D

.5
:

V
ar

ia
n
ce

ra
ti

os
,

le
n
gt

h
an

d
n
on

-c
ov

er
ag

e
of

th
e

90
%

co
n
fi
d
en

ce
in

te
rv

al
s

fo
r
β

,
an

d
p

ow
er

of
te

st
in

g
H

0
:
σ

2 b
=

0
an

d
d
ef
f
≥

1.
1

w
it

h
ρ
=

0.
05

,
b
al

an
ce

d
d
at

a
ca

se
.

N
on

-C
ov

er
a
g
e

o
f

p
[ d̂ef

f
p
[ d̂ef

f
C

on
fi

d
en

ce

P
S

U
s

O
b

s
E

(v̂
a
r(
β̂

))
/v
a
r(
β̂

)
C

I
fo

r
β

R
L

R
T

>
1
.1
|

>
1.

1
&

E
( d̂ef

f
)

In
te

rv
a
l

L
en

g
th

c
m

A
D

M
A

D
H

L
M

M
H

u
b

A
D

M
A

D
H

L
M

M
H

u
b

R
ej
H

0

] R
ej
H

0

]
A

D
M

A
D

H
L

M
M

H
u

b

2
2

1.
21

8
1.

21
8

1.
44

7
1.

08
3

7.
7

7.
7

1
2
.4

8
.8

1
0
.5

1
0
.5

1
0
0
.0

1
.2

2
3

3
8
.1

5
.3

6
5

3
.0

6
6

5
.8

6
4

5
.3

5
0

2
5

1.
04

2
1.

04
2

1.
24

3
0.

93
0

13
.3

13
.1

1
3
.3

1
1
.2

7
.6

7
.6

1
0
0
.0

1
.3

8
0

3
0
.2

1
.3

5
5

1
.7

4
3

1
.4

6
9

3
.4

8
9

2
10

1.
14

5
1.

14
5

1.
36

4
1.

09
7

14
.8

14
.8

1
4
.8

1
0
.2

1
1
.6

1
1
.6

1
0
0
.0

1
.6

8
2

3
5
.0

1
.0

2
2

1
.5

1
6

1
.1

4
7

2
.8

2
5

2
15

1.
05

7
1.

05
7

1.
27

5
1.

05
4

16
.7

16
.7

1
5
.0

1
0
.2

1
4
.7

1
4
.7

1
0
0
.0

1
.8

6
7

3
8
.0

0
.9

0
0

1
.3

4
9

1
.0

1
8

2
.4

5
8

2
25

1.
04

5
1.

04
5

1.
22

6
1.

09
6

21
.5

21
.5

1
6
.9

8
.2

2
0
.6

2
0
.6

1
0
0
.0

2
.4

1
4

4
7
.9

0
.8

4
9

1
.3

6
6

0
.9

6
5

2
.2

7
7

2
50

1.
04

4
1.

04
4

1.
15

9
1.

08
9

27
.7

27
.7

2
2
.1

9
.3

2
9
.0

2
9
.0

1
0
0
.0

3
.5

3
0

5
5
.8

0
.8

3
8

1
.3

6
0

0
.9

1
9

1
.9

8
1

5
2

1.
12

9
1.

12
9

1.
25

5
1.

07
0

8.
9

8.
8

9
.0

9
.8

1
1
.9

1
1
.9

1
0
0
.0

1
.1

8
9

4
5
.3

1
.2

1
5

1
.2

2
1

1
.2

4
9

1
.3

0
7

5
5

1.
08

6
1.

08
6

1.
21

8
1.

08
2

10
.5

10
.5

1
0
.1

9
.2

1
5
.1

1
5
.1

1
0
0
.0

1
.3

3
7

3
8
.8

0
.7

8
4

0
.7

9
5

0
.8

2
2

0
.9

0
8

5
10

1.
03

2
1.

03
2

1.
15

5
1.

06
7

12
.8

12
.7

1
1
.4

9
.9

2
1
.4

2
1
.4

1
0
0
.0

1
.5

4
5

4
6
.6

0
.5

9
6

0
.6

0
5

0
.6

3
1

0
.7

0
4

5
15

1.
02

0
1.

02
0

1.
14

0
1.

07
6

13
.4

13
.3

1
1
.0

9
.0

2
7
.1

2
7
.1

1
0
0
.0

1
.7

3
3

5
4
.3

0
.5

2
0

0
.5

2
8

0
.5

5
4

0
.6

1
5

5
25

0.
91

9
0.

91
9

1.
00

1
0.

97
7

16
.1

15
.5

1
3
.8

9
.3

4
2
.3

4
2
.3

1
0
0
.0

2
.2

0
4

6
8
.0

0
.4

6
8

0
.4

8
0

0
.4

9
7

0
.5

4
6

5
50

0.
99

9
0.

99
9

1.
03

1
1.

02
3

14
.5

14
.1

1
2
.4

9
.2

6
6
.5

6
6
.5

1
0
0
.0

3
.4

4
2

8
1
.1

0
.4

5
0

0
.4

5
7

0
.4

6
3

0
.4

8
5

10
2

0.
99

6
0.

99
6

1.
07

6
0.

97
4

10
.3

10
.3

9
.8

1
0
.0

1
2
.9

1
2
.9

1
0
0
.0

1
.1

4
7

4
4
.1

0
.8

1
7

0
.8

1
7

0
.8

3
1

0
.8

4
0

10
5

1.
03

3
1.

03
4

1.
11

0
1.

05
8

9.
7

9.
7

9
.8

8
.7

1
8
.6

1
8
.6

1
0
0
.0

1
.2

5
3

3
7
.8

0
.5

2
7

0
.5

2
9

0
.5

3
9

0
.5

6
6

10
10

0.
98

6
0.

98
6

1.
06

0
1.

03
9

10
.2

10
.0

1
0
.0

8
.8

3
2
.8

3
2
.8

1
0
0
.0

1
.4

7
0

5
3
.5

0
.4

0
6

0
.4

0
7

0
.4

2
0

0
.4

4
1

10
15

0.
98

7
0.

98
7

1.
05

2
1.

04
5

13
.2

12
.7

1
1
.8

9
.1

4
6
.8

4
6
.8

1
0
0
.0

1
.7

1
9

6
8
.6

0
.3

6
3

0
.3

6
4

0
.3

7
8

0
.3

9
2

10
25

0.
88

7
0.

88
8

0.
92

5
0.

92
4

15
.2

15
.1

1
3
.8

1
1
.4

6
1
.7

6
1
.7

1
0
0
.0

2
.0

9
9

7
8
.2

0
.3

1
8

0
.3

1
9

0
.3

2
6

0
.3

3
6

10
50

1.
06

3
1.

06
3

1.
07

2
1.

07
2

10
.3

9.
7

9
.3

8
.2

8
8
.6

8
8
.6

1
0
0
.0

3
.3

8
4

9
4
.1

0
.3

0
0

0
.2

9
8

0
.3

0
2

0
.3

0
2

25
2

0.
95

8
0.

95
8

1.
00

7
0.

95
5

10
.6

10
.6

1
1
.0

1
1
.0

1
5
.1

1
5
.1

1
0
0
.0

1
.1

0
3

3
9
.6

0
.4

9
7

0
.4

9
8

0
.5

0
0

0
.5

0
4

25
5

1.
04

5
1.

04
5

1.
05

9
1.

07
4

8.
8

8.
7

9
.5

8
.3

2
9
.6

2
9
.6

1
0
0
.0

1
.1

8
2

3
4
.5

0
.3

3
1

0
.3

2
9

0
.3

3
0

0
.3

4
0

25
10

0.
95

0
0.

95
0

0.
97

0
0.

99
5

11
.4

11
.7

1
1
.5

9
.9

5
3
.5

5
3
.5

1
0
0
.0

1
.4

0
5

6
1
.6

0
.2

5
6

0
.2

5
4

0
.2

5
9

0
.2

6
5

25
15

0.
94

3
0.

94
4

0.
95

4
0.

97
2

11
.0

11
.1

1
0
.7

9
.7

7
2
.5

7
2
.5

1
0
0
.0

1
.6

6
0

7
7
.6

0
.2

3
0

0
.2

2
7

0
.2

3
1

0
.2

3
3

25
25

0.
96

4
0.

96
4

0.
96

7
0.

97
1

12
.2

12
.3

1
2
.1

1
2
.0

9
3
.1

9
3
.1

1
0
0
.0

2
.1

9
7

9
4
.9

0
.2

0
8

0
.2

0
6

0
.2

0
8

0
.2

0
7

25
50

0.
96

6
0.

96
7

0.
96

7
0.

96
7

8.
9

9.
3

8
.9

9
.3

9
9
.7

9
9
.7

1
0
0
.0

3
.4

3
7

9
9
.9

0
.1

8
3

0
.1

8
2

0
.1

8
3

0
.1

8
2

210



APPENDIX D. EXTRA TABLES AND PLOTS FOR CHAPTER 5

T
ab

le
D

.6
:

V
ar

ia
n
ce

ra
ti

os
,

le
n
gt

h
an

d
n
on

-c
ov

er
ag

e
of

th
e

90
%

co
n
fi
d
en

ce
in

te
rv

al
s

fo
r
β

,
an

d
p

ow
er

of
te

st
in

g
H

0
:
σ

2 b
=

0
an

d
d
ef
f
≥

1.
1

w
it

h
ρ
=

0.
1,

b
al

an
ce

d
d
at

a
ca

se
.

N
on

-C
ov

er
a
g
e

o
f

p
[ d̂ef

f
p
[ d̂ef

f
C

o
n

fi
d

en
ce

P
S

U
s

O
b

s
E

(v̂
a
r(
β̂

))
/v
a
r(
β̂

)
C

I
fo

r
β

R
L

R
T

>
1
.1
|

>
1.

1
&

E
( d̂ef

f
)

In
te

rv
a
l

L
en

g
th

c
m

A
D

M
A

D
H

L
M

M
H

u
b

A
D

M
A

D
H

L
M

M
H

u
b

R
ej
H

0

] R
ej
H

0

]
A

D
M

A
D

H
L

M
M

H
u

b

2
2

1.
07

8
1.

07
8

1.
31

6
1.

04
4

8.
8

8.
8

1
2
.4

9
.8

1
2
.3

1
2
.3

1
0
0
.0

1
.2

5
6

4
2
.7

5
.7

5
0

3
.2

4
3

6
.5

8
6

5
.7

0
0

2
5

1.
25

2
1.

25
2

1.
47

0
1.

21
7

12
.7

12
.5

1
2
.7

9
.1

1
4
.8

1
4
.8

1
0
0
.0

1
.5

7
4

3
9
.5

1
.6

9
9

2
.4

4
0

1
.8

4
9

4
.2

4
9

2
10

0.
93

5
0.

93
5

1.
09

2
0.

93
4

21
.7

21
.7

1
8
.6

8
.7

1
6
.4

1
6
.4

1
0
0
.0

1
.8

9
3

4
1
.1

1
.1

3
6

1
.8

4
9

1
.2

7
6

3
.1

9
8

2
15

0.
99

0
0.

99
0

1.
12

5
1.

01
4

23
.3

23
.3

2
0
.0

1
0
.8

2
3
.1

2
3
.1

1
0
0
.0

2
.3

5
0

4
8
.5

1
.1

5
8

1
.9

4
0

1
.2

8
6

3
.0

3
4

2
25

0.
98

7
0.

98
8

1.
09

4
1.

02
9

26
.8

26
.8

2
1
.7

8
.7

2
9
.8

2
9
.8

1
0
0
.0

3
.2

3
4

5
6
.1

1
.1

5
9

1
.9

8
4

1
.2

7
5

2
.8

3
9

2
50

1.
00

4
1.

00
4

1.
05

5
1.

02
9

31
.5

31
.1

2
4
.8

8
.3

4
4
.1

4
4
.1

1
0
0
.0

5
.4

3
5

6
6
.5

1
.2

6
8

2
.1

4
0

1
.3

3
8

2
.6

5
9

5
2

0.
87

2
0.

87
2

0.
96

8
0.

85
0

11
.7

11
.7

1
1
.4

1
1
.7

1
4
.2

1
4
.2

1
0
0
.0

1
.2

0
4

4
7
.1

1
.2

6
3

1
.2

7
5

1
.3

0
5

1
.3

8
8

5
5

1.
02

5
1.

02
5

1.
15

9
1.

07
8

13
.8

13
.7

1
2
.5

8
.7

1
9
.7

1
9
.7

1
0
0
.0

1
.4

3
4

4
8
.1

0
.8

4
4

0
.8

5
8

0
.8

9
7

1
.0

0
3

5
10

0.
89

0
0.

89
0

0.
97

8
0.

94
7

16
.9

16
.6

1
4
.4

1
0
.9

3
6
.3

3
6
.3

1
0
0
.0

1
.8

9
7

6
2
.7

0
.7

0
8

0
.7

2
4

0
.7

5
2

0
.8

3
0

5
15

0.
93

5
0.

93
5

1.
00

0
0.

98
1

16
.1

15
.6

1
3
.5

9
.5

5
0
.4

5
0
.4

1
0
0
.0

2
.3

4
0

7
2
.5

0
.6

6
2

0
.6

7
9

0
.6

9
5

0
.7

5
2

5
25

0.
97

2
0.

97
2

1.
00

7
1.

00
4

13
.6

13
.0

1
1
.4

7
.9

6
8
.3

6
8
.3

1
0
0
.0

3
.3

5
2

8
6
.5

0
.6

5
3

0
.6

6
4

0
.6

7
4

0
.7

0
9

5
50

0.
97

3
0.

97
3

0.
98

3
0.

98
2

13
.1

12
.7

1
2
.3

1
0
.6

8
3
.6

8
3
.6

1
0
0
.0

5
.6

9
1

9
2
.4

0
.6

4
2

0
.6

3
4

0
.6

5
0

0
.6

5
0

10
2

0.
99

2
0.

99
2

1.
07

1
0.

99
4

9.
8

9.
7

9
.2

9
.3

1
7
.8

1
7
.8

1
0
0
.0

1
.1

7
4

4
9
.8

0
.8

5
0

0
.8

5
0

0
.8

6
5

0
.8

8
2

10
5

1.
05

5
1.

05
5

1.
12

0
1.

10
8

10
.8

10
.7

1
1
.1

8
.1

3
3
.9

3
3
.9

1
0
0
.0

1
.4

0
8

5
2
.1

0
.5

9
0

0
.5

8
9

0
.6

0
3

0
.6

3
4

10
10

0.
98

0
0.

98
0

1.
02

9
1.

03
0

13
.1

12
.5

1
2
.1

9
.4

5
8
.2

5
8
.2

1
0
0
.0

1
.8

6
9

7
6
.7

0
.4

8
9

0
.4

9
0

0
.5

0
5

0
.5

2
1

10
15

1.
02

0
1.

02
0

1.
04

5
1.

04
6

11
.2

10
.8

1
0
.3

9
.1

7
5
.6

7
5
.6

1
0
0
.0

2
.3

2
3

8
6
.8

0
.4

6
0

0
.4

5
8

0
.4

6
8

0
.4

7
3

10
25

0.
95

0
0.

95
0

0.
95

8
0.

96
0

12
.2

11
.6

1
1
.3

1
0
.2

8
9
.3

8
9
.3

1
0
0
.0

3
.2

8
3

9
4
.1

0
.4

3
0

0
.4

2
8

0
.4

3
3

0
.4

3
4

10
50

0.
97

3
0.

97
3

0.
97

4
0.

97
4

10
.7

10
.7

1
0
.5

1
0
.5

9
8
.0

9
8
.0

1
0
0
.0

5
.7

2
4

9
9
.4

0
.4

1
1

0
.4

0
6

0
.4

1
1

0
.4

0
7

25
2

1.
07

6
1.

07
6

1.
13

4
1.

09
7

9.
1

9.
2

8
.9

9
.0

2
3
.2

2
3
.2

1
0
0
.0

1
.1

3
8

4
9
.6

0
.5

1
7

0
.5

1
7

0
.5

2
4

0
.5

2
9

25
5

0.
92

8
0.

92
8

0.
94

3
0.

97
0

11
.6

11
.9

1
1
.2

1
1
.0

5
1
.6

5
1
.6

1
0
0
.0

1
.3

4
3

5
7
.9

0
.3

6
6

0
.3

6
3

0
.3

6
7

0
.3

7
7

25
10

1.
02

5
1.

02
5

1.
03

4
1.

04
2

10
.0

9.
8

9
.8

8
.9

8
4
.6

8
4
.6

1
0
0
.0

1
.8

7
3

8
9
.0

0
.3

0
9

0
.3

0
7

0
.3

1
1

0
.3

1
1

25
15

0.
98

1
0.

98
1

0.
98

2
0.

98
3

10
.6

10
.6

1
0
.5

1
0
.0

9
7
.0

9
7
.0

1
0
0
.0

2
.3

6
4

9
7
.9

0
.2

8
6

0
.2

8
5

0
.2

8
7

0
.2

8
5

25
25

0.
92

4
0.

92
4

0.
92

4
0.

92
4

11
.6

11
.7

1
1
.6

1
1
.7

9
9
.9

9
9
.9

1
0
0
.0

3
.3

6
6

9
9
.9

0
.2

6
4

0
.2

6
3

0
.2

6
4

0
.2

6
3

25
50

0.
96

8
0.

96
8

0.
96

8
0.

96
8

10
.1

10
.2

1
0
.1

1
0
.2

1
0
0
.0

1
0
0
.0

1
0
0
.0

5
.8

5
3

1
0
0
.0

0
.2

4
5

0
.2

4
5

0
.2

4
5

0
.2

4
5

211



Figure D.3: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and c, ρ=0.025, using
adaptive using RLRT and deff ≥ 1.1.
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APPENDIX D. EXTRA TABLES AND PLOTS FOR CHAPTER 5

Figure D.4: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and c, ρ=0.025, using
adaptive using RLRT and deff ≥ 1.1.
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Figure D.5: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and c, ρ=0.025, using
adaptive using RLRT and deff ≥ 1.2.
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Figure D.6: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and c, ρ=0.025, using
adaptive using RLRT and deff ≥ 1.2.
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Figure D.7: Histograms for ρ̂ and ρ̂ when H0 is rejected and accepted and

d̂eff when H0 is rejected (c=10, m=2, ρ = 0.025)

Design of    ρρ̂

ρρ̂

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8

0
10

0
30

0
50

0

Design of    ρρ̂    when    H0    is rejected

ρρ̂
F

re
qu

en
cy

0.4 0.5 0.6 0.7 0.8 0.9

0
5

10
20

30

Design of    ρρ̂    When    H0    is accepted

ρρ̂

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4

0
10

0
20

0
30

0
40

0
50

0

Design of    deff    When    H0    is rejected

deff

F
re

qu
en

cy

1.3 1.4 1.5 1.6 1.7 1.8 1.9

0
5

10
20

30

Figure D.8: Histograms for ρ̂ and ρ̂ when H0 is rejected and accepted and

d̂eff when H0 is rejected (c=10, m=10, ρ = 0.025)
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Figure D.9: Confidence interval non-coverage using different variance esti-
mation methods and for various values of m̄ and c, ρ=0.025,
deff = 1.05
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Figure D.10: Confidence interval lengths using different variance estimation
methods and for various values of m̄ and c, ρ=0.025, deff =
1.05
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Figure D.11: Confidence interval non-coverage using different variance esti-
mation methods and for various values of m̄ and c, ρ=0.025,
deff = 1.1
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Figure D.12: Confidence interval lengths using different variance estimation
methods and for various values of m̄ and c, ρ=0.025, deff = 1.1
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Figure D.13: Confidence interval non-coverage using different variance esti-
mation methods and for various values of m̄ and c, ρ=0.025,
deff = 1.2
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Figure D.14: Confidence interval lengths using different variance estimation
methods and for various values of m̄ and c, ρ=0.025, deff = 1.2
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Figure E.1: Variance of β̂ calculated from a main survey with budget
Cf=5000, designed using a pilot survey (C1=0.5 and C2=1, ρ=0)

0 20 40 60 80 100

0.
21

0
0.

22
0

0.
23

0

cp =  2

Cutoff for PSU sample size (A)

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

0 20 40 60 80 100

0.
21

0.
22

0.
23

0.
24

cp =  5

Cutoff for PSU sample size (A)

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0.
20

5
0.

21
5

0.
22

5
0.

23
5

cp =  10

Cutoff for PSU sample size (A)

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

0 20 40 60 80 100

0.
20

0.
21

0.
22

0.
23

cp =  25

Cutoff for PSU sample size (A)

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

mp=2
mp=5
mp=10
mp=15
mp=25
mp=50

239



Figure E.2: Variance of β̂ calculated from a main survey with budget
Cf=5000, designed using a pilot survey (C1=0.5 and C2=1,
ρ=0.01)

0 20 40 60 80 100

0.
24

0.
28

0.
32

0.
36

cp =  2

Cutoff for PSU sample size (A)

●

● ●
●

●

●

● ●

● ●

●

●

●

●
●

●
●

●

0 20 40 60 80 100

0.
24

0.
28

0.
32

0.
36

cp =  5

Cutoff for PSU sample size (A)

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

0 20 40 60 80 100

0.
24

0.
28

0.
32

0.
36

cp =  10

Cutoff for PSU sample size (A)

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0.
25

0.
30

0.
35

0.
40

cp =  25

Cutoff for PSU sample size (A)

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

mp=2
mp=5
mp=10
mp=15
mp=25
mp=50

240



APPENDIX E. EXTRA TABLES FOR CHAPTER 6

T
ab

le
E

.2
:

V
ar

ia
n
ce

of
β̂

,
(×

10
3
),

ca
lc

u
la

te
d

fr
om

a
m

ai
n

su
rv

ey
w

it
h

b
u
d
ge

t
C
f
=

50
00

,
d
es

ig
n
ed

u
si

n
g

a
p
il
ot

su
rv

ey
(C

1
=

0.
5

an
d
C

2
=

1.
ρ
=

0.
02

5
an

d
0.

05
)

P
il

ot
T

ru
e

V
ar

ia
n

ce
of

(β̂
)

fo
r
ρ
=

0
.0

2
5

T
ru

e
V

a
ri

a
n

ce
o
f

(β̂
)

fo
r
ρ
=

0
.0

5
P

S
U

s
O

b
s

C
u

to
ff

fo
r

W
it

h
in

-P
S

U
S

a
m

p
le

S
iz

e
(A

)
C

u
to

ff
fo

r
W

it
h

in
-P

S
U

S
a
m

p
le

S
iz

e
(A

)
c p

m
p

10
20

30
4
0

5
0

1
0
0

1
0

2
0

3
0

4
0

5
0

1
0
0

2
2

0.
27

3
0.

30
5

0.
31

3
0.

36
1

0
.3

5
7

0
.5

2
2

0
.3

1
9

0
.3

4
7

0
.4

1
2

0
.4

6
7

0
.5

2
4

0
.8

2
9

2
5

0.
27

0
0.

32
3

0.
32

7
0.

37
1

0
.4

1
6

0
.5

8
7

0
.3

1
6

0
.4

0
5

0
.4

2
8

0
.5

6
1

0
.5

9
6

0
.9

5
2

2
10

0.
26

2
0.

30
7

0.
34

6
0.

36
0

0
.4

2
2

0
.5

7
3

0
.3

0
6

0
.3

5
6

0
.4

4
7

0
.5

0
6

0
.5

2
2

0
.8

6
8

2
15

0.
28

7
0.

29
3

0.
32

9
0.

34
8

0
.3

9
9

0
.5

4
6

0
.3

1
2

0
.3

6
6

0
.4

3
3

0
.5

0
9

0
.5

8
3

0
.8

4
1

2
25

0.
25

3
0.

29
1

0.
32

0
0.

34
9

0
.3

9
8

0
.5

7
5

0
.3

2
2

0
.3

5
5

0
.4

1
4

0
.4

6
2

0
.5

4
2

0
.7

6
9

2
50

0.
25

7
0.

28
4

0.
31

4
0.

35
4

0
.3

9
4

0
.5

3
3

0
.3

2
0

0
.3

5
2

0
.4

0
2

0
.4

4
3

0
.4

7
3

0
.8

0
2

5
2

0.
28

1
0.

30
6

0.
29

1
0.

35
2

0
.3

7
7

0
.4

5
5

0
.3

1
3

0
.3

5
0

0
.3

9
6

0
.4

4
0

0
.5

1
6

0
.6

4
5

5
5

0.
27

4
0.

28
6

0.
32

8
0.

37
6

0
.3

9
0

0
.5

7
1

0
.3

1
8

0
.3

6
6

0
.4

5
0

0
.5

1
7

0
.5

5
6

0
.9

0
6

5
10

0.
27

2
0.

29
8

0.
32

3
0.

37
0

0
.3

9
3

0
.5

6
5

0
.3

0
2

0
.3

6
0

0
.4

0
4

0
.4

6
2

0
.5

2
2

0
.7

8
5

5
15

0.
27

7
0.

29
2

0.
32

6
0.

34
6

0
.3

7
4

0
.5

0
9

0
.3

0
4

0
.3

4
1

0
.3

9
1

0
.4

5
5

0
.4

6
8

0
.7

5
0

5
25

0.
25

4
0.

28
0

0.
30

6
0.

33
4

0
.3

5
5

0
.5

0
1

0
.2

8
8

0
.3

4
3

0
.3

4
7

0
.4

0
2

0
.3

7
9

0
.6

3
4

5
50

0.
25

4
0.

27
4

0.
27

9
0.

30
4

0
.3

3
2

0
.4

2
4

0
.3

0
1

0
.3

0
4

0
.3

3
7

0
.3

3
1

0
.3

3
5

0
.4

4
2

10
2

0.
27

5
0.

30
1

0.
31

8
0.

33
7

0
.3

6
2

0
.4

8
5

0
.3

0
2

0
.3

6
1

0
.3

6
5

0
.4

1
7

0
.4

9
6

0
.7

2
2

10
5

0.
27

6
0.

28
7

0.
33

3
0.

39
8

0
.4

3
3

0
.5

7
8

0
.3

0
6

0
.3

5
9

0
.4

5
2

0
.4

8
2

0
.5

5
7

0
.8

4
8

10
10

0.
26

5
0.

28
6

0.
31

6
0.

38
0

0
.3

9
7

0
.5

4
6

0
.3

1
1

0
.3

5
2

0
.4

3
4

0
.4

3
7

0
.5

1
5

0
.7

4
4

10
15

0.
27

4
0.

28
5

0.
27

6
0.

33
0

0
.3

6
6

0
.4

7
7

0
.2

9
4

0
.3

6
1

0
.3

7
8

0
.3

8
0

0
.4

2
4

0
.5

9
5

10
25

0.
27

0
0.

27
7

0.
28

6
0.

31
5

0
.3

4
9

0
.4

4
3

0
.3

0
8

0
.3

0
5

0
.3

0
4

0
.3

5
8

0
.4

1
1

0
.4

5
4

10
50

0.
26

1
0.

28
0

0.
27

9
0.

30
1

0
.3

0
1

0
.3

3
0

0
.2

9
0

0
.2

8
1

0
.2

9
7

0
.2

9
8

0
.3

0
2

0
.2

9
3

25
2

0.
27

8
0.

28
4

0.
31

4
0.

33
3

0
.3

5
4

0
.4

7
8

0
.2

9
7

0
.3

6
5

0
.3

7
2

0
.4

3
4

0
.4

5
1

0
.7

1
3

25
5

0.
28

3
0.

29
4

0.
35

7
0.

36
1

0
.4

1
5

0
.6

2
8

0
.3

2
7

0
.3

5
1

0
.4

7
5

0
.4

9
0

0
.5

6
7

0
.9

1
3

25
10

0.
27

2
0.

29
3

0.
33

9
0.

36
9

0
.3

8
5

0
.4

6
7

0
.3

0
3

0
.3

3
8

0
.3

5
8

0
.4

3
2

0
.4

9
2

0
.6

8
9

25
15

0.
26

9
0.

28
6

0.
29

9
0.

34
5

0
.3

6
5

0
.4

8
4

0
.2

8
0

0
.3

2
0

0
.3

4
0

0
.3

6
8

0
.3

8
3

0
.4

4
6

25
25

0.
26

3
0.

27
4

0.
27

9
0.

29
6

0
.3

3
1

0
.4

0
7

0
.2

7
8

0
.2

8
3

0
.3

1
2

0
.2

8
6

0
.3

1
6

0
.3

1
7

25
50

0.
27

2
0.

25
8

0.
26

6
0.

24
9

0
.2

6
2

0
.2

6
7

0
.2

8
1

0
.2

7
6

0
.2

7
2

0
.2

7
2

0
.2

7
7

0
.2

8
2

241



Figure E.3: Variance of β̂ calculated from a main survey with budget
Cf=5000, designed using a pilot survey (C1=0.5 and C2=1,
ρ=0.025)
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Figure E.4: Variance of β̂ calculated from a main survey with budget
Cf=5000, designed using a pilot survey (C1=0.5 and C2=1,
ρ=0.05)
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Figure E.5: Variance of β̂ calculated from a main survey with budget
Cf=5000, designed using a pilot survey (C1=0.5 and C2=1,
ρ=0.1)

0 20 40 60 80 100

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

cp =  2

Cutoff for PSU sample size (A)

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

0 20 40 60 80 100

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

cp =  5

Cutoff for PSU sample size (A)

●

●

● ●

●

●

●
●

●
●

●

●

●
●

●
● ●

●

0 20 40 60 80 100

0.
4

0.
6

0.
8

1.
0

1.
2

cp =  10

Cutoff for PSU sample size (A)

●

● ●
●

●

●

● ●

●
● ●

●

●
● ● ● ●

●

0 20 40 60 80 100

0.
4

0.
6

0.
8

1.
0

cp =  25

Cutoff for PSU sample size (A)

●
● ●

●
●

●

●
● ●

● ● ●

● ● ● ● ● ●

●

●

●

mp=2
mp=5
mp=10
mp=15
mp=25
mp=50

245



T
ab

le
E

.4
:

V
ar

ia
n
ce

of
β̂

,
(×

10
3
),

ca
lc

u
la

te
d

fr
om

a
m

ai
n

su
rv

ey
w

it
h

b
u
d
ge

t
C
f
=

50
00

,
d
es

ig
n
ed

u
si

n
g

a
p
il
ot

su
rv

ey
(C

1
=

2
an

d
C

2
=

1.
ρ
=

0
an

d
0.

01
)

P
il

ot
T

ru
e

V
ar

ia
n

ce
of

(β̂
)

fo
r
ρ
=

0
T

ru
e

V
a
ri

a
n

ce
o
f

(β̂
)

fo
r
ρ
=

0
.0

1
P

S
U

s
O

b
s

C
u

to
ff

fo
r

W
it

h
in

-P
S

U
S

a
m

p
le

S
iz

e
(A

)
C

u
to

ff
fo

r
W

it
h

in
-P

S
U

S
a
m

p
le

S
iz

e
(A

)
c p

m
p

10
20

30
4
0

5
0

1
0
0

1
0

2
0

3
0

4
0

5
0

1
0
0

2
2

0.
29

7
0.

30
1

0.
28

0
0.

29
2

0
.2

7
4

0
.2

9
7

0
.3

3
7

0
.3

2
0

0
.3

2
2

0
.3

4
8

0
.3

5
4

0
.4

2
6

2
5

0.
28

0
0.

24
6

0.
26

8
0.

26
3

0
.2

5
5

0
.2

6
0

0
.3

0
9

0
.3

0
9

0
.2

9
5

0
.3

2
6

0
.3

4
4

0
.3

9
8

2
10

0.
27

1
0.

24
9

0.
24

1
0.

24
9

0
.2

4
8

0
.2

3
9

0
.2

9
4

0
.2

7
7

0
.3

0
5

0
.2

9
9

0
.3

3
6

0
.3

9
2

2
15

0.
26

7
0.

24
1

0.
24

2
0.

23
4

0
.2

4
4

0
.2

4
2

0
.2

7
2

0
.2

7
6

0
.2

8
3

0
.3

1
3

0
.3

2
5

0
.3

9
6

2
25

0.
25

7
0.

23
5

0.
23

5
0.

22
5

0
.2

3
7

0
.2

4
5

0
.2

7
8

0
.2

8
8

0
.2

8
7

0
.3

0
9

0
.3

2
4

0
.3

8
4

2
50

0.
25

7
0.

23
0

0.
23

5
0.

22
4

0
.2

2
7

0
.2

2
2

0
.2

8
4

0
.2

6
5

0
.2

7
1

0
.2

9
3

0
.3

0
1

0
.3

8
0

5
2

0.
29

6
0.

28
7

0.
29

7
0.

30
8

0
.2

9
3

0
.2

8
3

0
.3

2
5

0
.3

1
9

0
.3

3
0

0
.3

3
1

0
.3

3
2

0
.3

9
6

5
5

0.
27

7
0.

25
5

0.
24

7
0.

25
5

0
.2

3
9

0
.2

4
2

0
.2

9
5

0
.2

8
2

0
.3

0
7

0
.2

9
5

0
.3

2
0

0
.3

7
1

5
10

0.
24

4
0.

24
0

0.
24

6
0.

23
2

0
.2

4
0

0
.2

3
4

0
.2

7
2

0
.2

7
3

0
.2

9
1

0
.2

9
9

0
.3

0
7

0
.3

7
0

5
15

0.
26

0
0.

24
1

0.
23

5
0.

22
4

0
.2

3
4

0
.2

4
2

0
.2

8
3

0
.2

7
9

0
.2

9
2

0
.2

9
8

0
.3

2
1

0
.3

8
1

5
25

0.
25

8
0.

22
4

0.
23

1
0.

22
8

0
.2

3
1

0
.2

2
7

0
.2

8
1

0
.2

8
6

0
.2

9
5

0
.2

8
9

0
.3

1
2

0
.3

6
1

5
50

0.
23

9
0.

23
5

0.
21

9
0.

22
1

0
.2

2
3

0
.2

1
2

0
.2

7
7

0
.2

6
7

0
.2

7
8

0
.2

8
1

0
.2

9
9

0
.3

4
5

10
2

0.
30

6
0.

30
3

0.
27

4
0.

28
6

0
.2

9
9

0
.2

9
2

0
.3

2
3

0
.3

1
8

0
.3

2
6

0
.3

2
2

0
.3

2
9

0
.3

9
1

10
5

0.
28

8
0.

24
8

0.
24

7
0.

24
3

0
.2

3
4

0
.2

3
1

0
.2

9
4

0
.2

9
0

0
.2

8
7

0
.3

0
3

0
.3

1
8

0
.3

8
0

10
10

0.
24

6
0.

23
6

0.
23

4
0.

22
2

0
.2

4
0

0
.2

2
3

0
.2

8
1

0
.2

8
1

0
.2

8
4

0
.3

0
0

0
.3

1
4

0
.3

7
4

10
15

0.
25

9
0.

24
4

0.
22

7
0.

22
2

0
.2

2
5

0
.2

2
1

0
.2

7
2

0
.2

8
1

0
.2

8
1

0
.2

9
8

0
.3

2
3

0
.3

6
0

10
25

0.
25

0
0.

24
0

0.
22

6
0.

22
4

0
.2

1
9

0
.2

1
9

0
.2

7
6

0
.2

8
4

0
.2

6
5

0
.2

9
1

0
.3

0
1

0
.3

5
8

10
50

0.
24

0
0.

22
3

0.
21

4
0.

22
0

0
.2

1
2

0
.2

2
1

0
.2

7
3

0
.2

7
0

0
.2

8
5

0
.2

7
5

0
.2

8
8

0
.3

4
3

25
2

0.
28

5
0.

27
9

0.
26

5
0.

26
1

0
.2

6
9

0
.2

7
6

0
.2

9
0

0
.2

9
9

0
.3

1
4

0
.3

2
2

0
.3

3
6

0
.3

9
2

25
5

0.
24

9
0.

23
6

0.
22

6
0.

21
9

0
.2

1
7

0
.2

3
4

0
.2

6
7

0
.2

5
3

0
.2

9
8

0
.3

1
2

0
.3

0
8

0
.4

1
8

25
10

0.
25

9
0.

24
5

0.
22

8
0.

22
9

0
.2

2
3

0
.2

3
1

0
.2

8
5

0
.2

7
7

0
.2

8
4

0
.3

0
5

0
.3

0
9

0
.4

0
6

25
15

0.
25

1
0.

22
2

0.
22

5
0.

23
0

0
.2

2
4

0
.2

0
9

0
.2

6
9

0
.2

6
7

0
.2

9
6

0
.3

0
1

0
.3

0
4

0
.4

1
7

25
25

0.
24

7
0.

22
3

0.
23

9
0.

22
5

0
.2

2
8

0
.2

3
2

0
.2

9
1

0
.2

7
6

0
.2

8
6

0
.2

8
2

0
.2

9
4

0
.3

6
5

25
50

0.
24

7
0.

22
8

0.
23

2
0.

21
6

0
.2

2
1

0
.2

2
6

0
.2

7
0

0
.2

8
8

0
.2

7
2

0
.2

7
4

0
.2

9
3

0
.3

2
2

246



APPENDIX E. EXTRA TABLES FOR CHAPTER 6

Figure E.6: Variance of β̂ calculated from a main survey with budget
Cf=5000, designed using a pilot survey (C1=2 and C2=1, ρ=0)
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Figure E.7: Variance of β̂ calculated from a main survey with budget
Cf=5000, designed using a pilot survey (C1=2 and C2=1,
ρ=0.01)
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Figure E.8: Variance of β̂ calculated from a main survey with budget
Cf=5000, designed using a pilot survey (C1=2 and C2=1,
ρ=0.025)
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Figure E.9: Variance of β̂ calculated from a main survey with budget
Cf=5000, designed using a pilot survey (C1=2 and C2=1,
ρ=0.05)
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Figure E.10: Variance of β̂ calculated from a main survey with budget
Cf=5000, designed using a pilot survey (C1=2 and C2=1,
ρ=0.1)
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Figure E.11: Variance of β̂ calculated from a main survey with budget
Cf=5000, designed using a pilot survey (C1=10 and C2=1,
ρ=0.025)
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Figure E.12: Variance of β̂ calculated from a main survey with budget
Cf=5000, designed using a pilot survey (C1=10, C2=1, ρ=0.1)
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