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Abstract

Two-stage sampling usually leads to higher variances for estimators of means
and regression coefficients, because of intra-class homogeneity. This thesis
will develop and evaluate adaptive strategies for designing and analyzing two-
stage surveys, where sample data will be used to determine the appropriate

way of allowing for intraclass correlation.

The approach to analysis will be based on fitting a linear regression model
to estimate means and regression coefficients. One method for allowing for
clustering in fitting a linear regression model is to use a linear mixed model
with two levels. If the estimated intra-class correlation is close to zero, it may
be acceptable to ignore clustering and use a single level model. This thesis
will evaluate an adaptive approach for estimating the variances of estimated
regression coefficients. The strategy is based on testing the null hypothesis
that the random effect variance component is zero. If this hypothesis is
not rejected the estimated variances of estimated regression coefficients are
extracted from the one-level linear model. Otherwise, the estimated variance
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is based on the linear mixed model, or, alternatively the Huber-White robust
variance estimator is used.

Another adaptive strategy based on assessing the estimated design effect
due to clustering is also evaluated. This is based on testing the null hypoth-
esis that the random effect variance component is zero and at the same time
comparing the estimated design effect to a predetermined cutoff value. If the
null hypothesis is rejected and the estimated design effect is more than the
predetermined cutoff value the estimated variances of estimated regression
coefficients are extracted from the linear mixed model, or, alternatively the
Huber-White robust variance estimator is used. Otherwise, the estimated
variance is based on the one-level linear model. This approach is found to
be nearly identical in practice to the adaptive approach based on just testing
the null hypothesis that the random effect variance component is zero.

This adaptive strategy for estimation will be developed based on a two-
level linear model assuming normality. It will be evaluated by simulation us-
ing normal data, with equal and unequal numbers of observations per cluster,
and also using log-normal data, to assess the robustness of the approach to
non-normality. The simulations indicate that extreme designs with 5 or less
PSUs and many observations per cluster should be avoided. For these ex-
treme designs, most methods perform poorly, including the adaptive methods

and the linear mixed model, due to the difficulty of appropriately defining
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the degrees of freedom for this model. Apart from these extreme designs, the
adaptive strategy is found to perform acceptably well, resulting in simpler
analysis and slightly shorter confidence intervals.

The use of a pilot survey to estimate the intraclass correlation will also
be considered. The pilot estimate of this parameter can be used to estimate
the optimal within-PSU sample size for the main survey. The best design
based on a “cost-adjusted design effect” and the estimated variance of the
estimated regression coefficients will be considered.

An upper cutoff should be placed on the sample size to be selected from
each PSU, to allow for the possibility of an under-estimate of the intraclass
correlation from the pilot data. The optimal value of this cutoff is found to
be between 10 and 50 depending on the pilot sample sizes.

Some results are also obtained on appropriate sample sizes of PSUs and

units in the pilot study.
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Chapter 1

Introduction

1.1 Cluster and Multistage Surveys

Two-stage sampling designs are used in many surveys of social, health, eco-
nomic and demographic topics. Final population units are grouped into
primary sampling units (PSUs). The first stage of selection is a sample of
PSUs and the second stage is a sample of units within selected PSUs. For
example, PSUs and units could be schools and students, or households and
people, or geographic areas and households (see for example (see for example
Cochran, 1977; Kish, 1965)).

Two-stage sampling is typically used because

e There is no sampling frame of final units, but a frame of PSUs (e.g. a

list of suburbs) is available.

e Cost; for example it is much cheaper to draw a two-stage sample of
100 students from 10 schools than draw a simple random sample of
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1.1. CLUSTER AND MULTISTAGE SURVEYS

100 students, as those students might be dispersed over 100 schools

(Snijders, 2001).

e Within-group correlations may be of interest in their own right. For
instance, the correlation between values for students in the same school

might be of interest.

A complication of two-stage sampling is that values of a variable of in-
terest may tend to be more similar for units from the same PSU than for
units from different PSUs. The intraclass correlation (ICC), p, is a measure
of the association between the observations for members of the same PSU. It
also describes the PSU homogeneity (Hansen et al., 1953, Chapter 6). If the
intraclass correlation is non-zero, the clustered nature of the design should
be reflected in the analysis procedure. One way of doing this is by fitting a
multilevel model (MLM) (Goldstein, 2003, Chapter 1).

In practice the intraclass correlation is often quite small. For example, if
units within PSUs are no more homogenous than units over all PSUs, then
the intraclass correlation is zero. On the other hand, if units from the same
PSU have equal values then the intraclass correlation is 1. The intraclass
correlation may take a negative value, but in practice it is generally positive.
If each PSU in the population contains M units, the smallest possible value

of pis —=1/(M — 1). This occurs when the population is finite with high
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CHAPTER 1. INTRODUCTION

heterogeneity within PSUs, and zero variance between PSU means (Hansen
et al., 1953, p.260, show this for repeated probability sampling from a fixed
finite population).

In this thesis we will focus on modeling two-stage survey data. In the
case of equal number of observations in each PSU, p is usually less than 0.1
when PSUs are geographic areas and final units are households in these areas
(Verma et al., 1980). When PSUs are households and final units are people

in households it is usually between 0 and 0.2 (Clark and Steel, 2002).

Variances of estimators obtained from two-stage samples are often higher
than those from a simple random sample of the same size. Kish (1965,
Chapter 5) defined the design effect as the ratio of the design variance (
the variance over repeated probability sampling from a finite population)
under the sampling technique used, to the variance assuming simple random

sampling with the same sample size.

If the number of PSUs is large, each PSU contains M units, and the
sample size in each PSU is equal to m, then the design effect for the sample

mean is given by

deff =1+ (m—1)p. (1.1)

When PSUs have unequal sample sizes, the deff is not expressible in terms
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of p. Some design effect approximations have been suggested, one of these is
deff =14 (m—1)p, (1.2)

where m stands for the average PSU sample size (Kish, 1965, p.162).
The optimal value of m can be chosen using simple cost models. Hansen
et al. (1953, p.272) and Kish (1965, p.268, Equation 8.3.5) defined a simple

cost model for two-stage sampling as
C = Cg+001+n02 (13)

where C' is the total cost, ¢ is number of PSUs in the sample, n is the total
sample size, C is the fixed cost, ' is the cost of including a new PSU in the
sample, and Cs is the average cost of including an extra unit in the sample.
Hansen et al. (1953, p.286) showed that the optimal PSU sample size that

minimizes the variance of the sample mean subject to fixed total cost is

C; 1—
Mopt = 5;7[) (1.4)

In practice p would have to be estimated, sometimes from a pilot survey, in
which case the estimator of p could be quite imprecise (Ukoumunne, 2002).
In the balanced data case, that is when all PSUs have the same number of
sample observations, m, Equation (1.3) can be rewritten as C' = Cy + ¢C; +
mcCy, therefore ¢ = (C' — Cp)/(C1 + mCy). Hence, the optimal value of ¢ is

C -0y

—_—— 1.5
Cl + Mopt 02 ( )

Copt =
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1.2 Multilevel Analysis of Clustered Data

One way of allowing for correlations between values for units between PSUs is
to fit a multilevel model. Multilevel models are a generalization of regression
models. Let y;; be a dependent variable of interest, and x;; a vector of
covariates for unit j in PSU 4. The two-level linear mixed model (LMM)

(Goldstein, 2003, Chapter 2) is given by
yU:B/XU—i—bz—l—eU, i:1,2,...,C, j:1,2,...,mi, (16)

where ¢ denotes the number of PSUs in the sample, m; denotes the number of
observations selected in PSU 4, 3 is the vector of unknown regression coeffi-
cients, b; ~ N(0, 07) is a PSU specific random effect, and e;; is assumed to be
N(0,0?2). Therefore y;; ~ N(8'%;;, 03 +07), with variance o) = o3 +07. Vari-
ances of regression coefficient estimates can be estimated by either standard
likelihood theory (West et al., 2007), or by using the robust Huber-White
estimator (Huber, 1967; White, 1982). Maximum likelihood or restricted
maximum likelihood methods can be used to estimate the model parame-
ters.

The sampler is assumed to know the values of the design variable; hence
the sampling design can be ignored (Sugden and Smith, 1984). Unequal se-
lection probabilities are often used in the sampling designs that lie behind

the sample selection, at least in some stages of the selection procedure. The
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1.3. ADAPTIVE PROCEDURES FOR ANALYZING TWO-STAGE
SURVEY DATA

use of OLS estimators or other estimators that ignore the sampling design
can bring in large bias and therefore mislead the inference when these proba-
bilities are related to dependent variable values (Pfeffermann and Sverchkov,
1999). In this thesis, it is assumed that the sampling design is ignorable
(Sugden and Smith, 1984) so that a simple LMM can be applied to the sam-
ple. The issues associated with the effect of more complex sampling designs

on multilevel models are discussed by Pfeffermann et al. (1998).

1.3 Adaptive Procedures for Analyzing Two-
Stage Survey Data

There are number of possible approaches for estimating regression coeffi-
cients and their variances when the intraclass correlation (p) is thought to
be small or has been estimated as a small value. One approach is to fit a
linear mixed model regardless. Another is to fit a linear model assuming
independent observations, i.e. p=0. However, if the sample design is rela-
tively clustered, that is a large number of final units are selected from each
PSU, the estimated variances resulting from a linear mixed model can be
much larger than those obtained from a linear model assuming independent
observations, leading to wider confidence intervals. Moreover, a linear mixed
model is more complicated to fit and explain than a simple linear model, so

the latter is preferable provided it does not give misleading inference. This

6



CHAPTER 1. INTRODUCTION

thesis will explore a third alternative: an adaptive strategy based on testing
the null hypothesis that the PSU-level variance component, o7, is zero. If
the null hypothesis is not rejected we use the linear model for estimating
the variances of the estimated regression coefficients B On the other hand,
if the null hypothesis is rejected we use the estimated variance for B either
using the standard likelihood theory variance estimator for the LMM or the

Huber-White method.

~

This strategy is explained in Figure 1.1, where var,(3) is the estimator

Test Hy : 0} = 0

Reject
Do not Reject
WADM(B) = WLMM(B); WADM(B) =
or UC”“ADH(B) = UOW‘Hub(ﬂ) UaTADH(B) = UCLTLM(/B)

Figure 1.1: Flowchart explaining the adaptive procedure relying on testing
Hy : 0 = 0 using LMM-REML variance estimator or Huber-
White variance estimator as an alternative

A ~ ~

of var(3) using the LM strategy, var () is the estimator of var(3) using

A

the LMM strategy, var apyr(3) is the adaptive estimator based on the LMM

~

variance estimator as an alternative and var apg(3) is the adaptive estimator

based on the robust Huber-White variance estimator as an alternative.
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Another possible strategy is to use the LMM variance estimator or the
robust Huber-White variance estimator as an alternative when Hy : 07 = 0
is rejected and the estimated design effect of the estimated regression coeffi-
cient, @ (B), is larger than some cutoff (d). This might be a good approach
because the linear model could still be a reasonable approximation even when
Hy is rejected, because of the small estimate of the intraclass correlation p.
Several cutoff points are considered later in this thesis. Figure 1.2 explains

this adaptive strategy.

Test Hy : 02 = 0
and calculate def f (B)

Reject Hy and cﬁf\f >d

Otherwise
@ADM(B) = WLMM(B); WAADM(B) =
or WADH(ﬁ) = WHub(B) WADH(,B) = WLM(ﬁ)

Figure 1.2: Flowchart showing the adaptive procedure based on testing H| :

o2 = 0 and comparing def f to a predetermined cutoff (d), using
LMM-REML variance estimator or Huber-White variance esti-
mator as an alternative

1.4 Adaptive Design based on a Pilot survey

A pilot survey is a small study designed to test survey procedures and possi-

bly obtain data to guide sample design, prior to conducting the full survey. It
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also can help the researcher to address the inadequacy in the proposed design
and avoid problems in the large scale studies (Lancaster et al., 2004). For
example, Niser (2010) conducted a pilot survey to understand how the field
of “study abroad” of Higher Education Institutions in the six New England
states of the USA is organized. The contributions of 195 institutions were
examined. He used websites, publications and telephone interviews to collect
the information for his study. This study revealed that most of the institu-
tions offered study abroad programs. It also revealed that providers played
an important role in the broad programs offered to students from different
institutions.

The use of a pilot survey to estimate the intraclass correlation p is con-
sidered in this thesis, assuming the intercept-only model. An estimator of
p can be substituted in Equation (1.4) to give a within-PSU sample size for
the main survey. Because p appears in the denominator of (1.4), a small esti-
mated value of p might lead to a very large PSU sample size being calculated,
which could lead to very high variances from the main survey. Besides, the
estimate of p is often 0 in multilevel models, which happens often because of
small variance across PSU-level units (Muthén and Satorra, 1995). To deal
with these possibilities, m will be truncated if it is greater than a cutoff, A.
The value of m will also be truncated below to be greater than or equal to 2,

to ensure that we can estimate the intraclass correlation p. A range of values




1.4. ADAPTIVE DESIGN BASED ON A PILOT SURVEY

of the cutoff A will be evaluated by simulation. A range of values of the pilot
sample sizes of PSUs (c¢,) and units per PSU (m,) will also be evaluated.

Figure 1.3 illustrates the approach.

pilot survey, with ¢, PSUs
and m,, units per PSU

s N
Calculate p from
pilot survey data
. J
e R
Calculate
A
[1-pC
Momain = [ Tpc_; ]
2
co . o= _—C=Co
L mamm. T C14+MmainC2 )

Conduct the main sur-
vey Using Cmain and Mu,qin

Calculate statistics, such as
.. from the main survey data

Figure 1.3: Flowchart explaining an adaptive procedure based on a pilot sur-
vey
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1.5 Outline of Thesis

This thesis is divided into seven chapters.

In Chapter 2, a summary of literature relevant to the thesis will be given.
Topics will include linear mixed models, cluster and multistage sampling and

the limited literature available on adaptive analysis of survey data.

Chapter 3 will consider two adaptive strategies. Both of them rely on the
idea of testing the variance component o7 in model (1.6). In the first adaptive
strategy, if we reject Hy : 07 = 0, we use the LMM estimators of var(B).
On the other hand, if we accept Hp, then we assume that o7 = 0 and we
fit the standard linear model with independent errors. The second adaptive

A

strategy is using the robust Huber-White estimator var g (/3) is used instead
of WLMM(B) when Hj is rejected. The two strategies are summarized in

Figure 1.1. The adaptive strategies will be evaluated in a simulation study

of normally distributed data from balanced and unbalanced designs.

The linear mixed model assumes that data are normally distributed.
Chapter 4 will evaluate whether the adaptive procedures evaluated in Chap-
ter 3 with simulated normal data are robust to this assumption. This will be

done by simulating log-normal data with varying degrees of skewness.

The adaptive procedures of Chapter 3 are based on using the linear model

whenever Hy : 07 = 0 is retained. It is possible that Hy : o7 = 0 is rejected
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but that p is still relatively small, so that a linear model may still be a reason-
able model. Chapter 5 will evaluate a strategy to deal with this possibility.
The LM estimators of var(B) will be used when Hj : 07 = 0 is not rejected
or @ < d, where d is a cutoff value. If Hy is rejected and @ > d, the
LMM variance estimators or alternatively the Huber-White variance estima-
tors will be used. This approach is summarized in Figure 1.2. Several cutoff
values, d, will be evaluated using simulated normal data.

Chapter 6 will develop approaches for using a pilot survey to estimate p,
and hence to derive the best m and ¢ for the main survey, as described in Sec-
tion 1.4. Approaches will be evaluated by simulating pilot data, calculating
Copt and My, based on the pilot data, and then simulating main survey data
using these values. The simulation will assume model (1.6) including the
assumption of normality. Conclusions will be drawn on appropriate values
for m and c for the pilot survey, and for a maximum value A for m in the
main survey.

Finally, in Chapter 7 we will state conclusions and suggest directions for
future research.

The Appendices contain derivations of some equations as well as some

extra tables and the simulation programs.
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Chapter 2

Review of Relevant Literature

2.1 List of notations

Symbol Definition

Yij 4" observation in PSU i

Y complete set of observations in all PSUs

X; vector of covariates

X the n x p matrix of explanatory variables

D number of regressors

B vector of unknown regression coefficients

b, vector of random coefficients

e;j error or residual term

c number of PSUs

m; number of observations in PSU i in the unbalanced design
m number of observations per PSU in the balanced design
n total number of observations in all PSUs

o} random-effect variance component

o? error term variance component

13
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Mmain

Cmain

deff

ps

& -

block diagonal variance-covariance matrix of the complete set
of observations in all PSUs, with diagonal elements V;

diagonal elements of V, V; = 62J,,, + 021,
estimate of V;

the determinant of the variance-covariance matrix V
m,; X m; matrix where all entries are 1

m; X m; identity matrix

mean square error within PSUs

mean square among PSUs

the sample mean for PSU i

intraclass correlation (ICC)

number of observations per PSU in the main survey of the
pilot survey

number of sample PSUs in the main survey of the pilot survey
design effect

effective sample size

total cost

cost of including a new PSU in the sample

average cost of including an extra element in the sample

the total cost

REML estimate of [ in the unbalanced data case,
ok [y

variance reciprocal of the mean for PSU 7, \; =
(var(g:.)) ™

estimate of \;

m;
2 o2
og+miog

likelihood ratio test

number of PSUs in the population

14
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M population size for each PSU, in the case where all PSUs are
of the same size.

Cp number of PSUs in the pilot survey

my number of observation per PSU in the pilot survey
A maximum number of observations per PSU

Meopt optimal PSU sample size

Copt optimal number of PSUs in the sample

1 mean of the normal distribution in Chapter 4

o? variance of the normal distribution in Chapter 4
lr restricted log-likelihood function

Loy log-likelihood function

2.2 The Two-Level Linear Mixed Model

2.2.1 The Model

Let X be the n x p design matrix, which is assumed to be of rank p, and
Y = (y},...,y.) be the complete set of n = >"7 | m; observations in the
c groups, where y; = (i1, ..., Yim,) is the observed vector for the i PSU.

Model (1.6) can also be written as
Y ~ N(X8, V), (2.1)
where V is a block diagonal matrix, V = diag(V;,i =1,...,¢), and
V, = o, + 021, (2.2)

where J,,, is an m,; X m; matrix with all entries equal to 1, and L, is the

m; X m; identity matrix. B3 is the vector of unknown regression coefficients.
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A simple special case of model (1.6) is the intercept-only model, this
model includes just a grand mean parameter, it is defined by setting z;; to 1

for all 1, 5:

yl-j:ﬁ—i—bi—l—eij, z':1,2,...,c, j:1,2,...,mi, (23)

where ¢ denotes number of the sample PSUs, m; denotes the number of
units selected in PSU 4, b; ~ N(0,07) is a PSU specific random effect and
b;s are independent and identically distributed (iid), and e;; is assumed to
be N(0,02). The parameters o7 and o2 are the between- and within-PSUs
variance components. This model will be used in the simulation studies in

Chapters 3-6.

Observations for different units from the same PSU are correlated. It is
assumed that b; is uncorrelated with e;;, and that b, and by for i # i’ are

uncorrelated. Therefore,

V(y”) = V(bl) + V(eij) = 0'5 + 0'2,
Cov(yij, yiy) = V(b)) = a,? for j# 7, and (2.4)

Cov(yij,yij) = 0fori#i.

(Rao, 1997).

Assuming balanced data design, withi =1,...,cand (j # j') =1,...,m,
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Rao (1997) defined the intraclass correlation as

_ Cov(ysj, Yij')
a Vi)V (yiy)) 25)

Therefore, substituting (2.4) into (2.5), we obtain

2
0y

2 2°
O-b+0-e

(2.6)

Notice that under model (2.3), the intraclass correlation is always greater
than or equal to 0.

Given estimates 67 and 62, an estimator for p is

po= o (2.7)

2.2.2 Likelihood Theory Estimation of Model Param-
eters

The variance components o7 and o2 are generally not known, and are usually
estimated by Restricted Maximum Likelihood (REML), giving estimates \z
of V.

REML was first introduced by Patterson and Thompson (1971) as a mod-
ification of Maximum Likelihood. The REML method is often presented as
a technique based on maximization of the likelihood of a set of linear combi-
nations of the elements of the response variable y, say k'y, where k is chosen
so that k'y is free of fixed effects. One of the attractive aspects of REML is

that it takes into account the degrees of freedom used up by the estimation
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of the fixed effects (Diggle et al., 1994, Chapter 4). There is also no loss
of information about the variance components when the inference is derived
from K’y rather than y.

The restricted log-likelihood function is given by West et al. (2007, p.28)
by the Equation

lr = —1[(n—1)log(2m) + log|V|+ log| X'V 'X| (2.8)
FY'V I - X(X'V X)X VLY, '
where V. = diag(V;) and V; are given by (2.2). Maximizing (2.8) with

respect to o7 and o2 gives the REML estimates of these parameters. The

REML estimate of ,é is given by

A

B = X'V 'X)'XV'Y
— (CLXV X)L XV s

In the intercept-only model, the REML estimates are defined by the fol-

(2.9)

lowing system of equations:

c >‘2
i=1 m, n— cMSE )
0.2 +Zz lmz Zzllj\l = ( +Zz lm,b( _/8)2
c N A2 5
Troh- B = T -y (2.10)
B — Zi:l AiyL

Zf:l Xi
(Sahai and Ojeda, 2005, p.106), where ;. is the mean of PSU ¢ and

1 (& my ~
MSE = n—c ZZ(?JW — i)’
i=1 j=1
and
m; _ 1
i = m = (var(g.)) ",
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is the variance reciprocal of the mean of PSU ¢, and

~ m;

i = ~9 ~9
oz +m;oy

is the estimate of \;. Equations in (2.10) must be solved numerically with

respect to 67 and 62. In the balanced data case (m; = m for all i), the REML

estimates have a simpler form. Let MSA = %7 (5; — §..)?, the system
of equations (2.10) becomes
N — —1
02 = min( MSE, “—SMSE + ~—= MSA);
n—1 n—1

1
of = —max(MSA— MSE, 0);
m

(Sahai and Ojeda, 2005, p.40).

2.2.3 Likelihood Theory Estimation of var(3)

In this section we discuss the variances of the estimated regression coefficients

and their estimators. The estimated variance of the REML B is given by

~

war(B) = (X'V X))
1

- (2.11)
= (25:1 x;V, 1Xi)7 )

where V; = 623, + 621,,,. For the intercept-only model given by (2.3), in

the unbalanced data case, this simplifies to

0= (S ) A e
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Proof:
W) = [ Tt
(Zi:l >‘i) T =1
1 e

1 i |
- sl i
1 ‘.
- T e
1

In the balanced data case, where m; = m, the variance estimator simplifies

further to
war(B) = - |a7 + 2| (2.13)
m
A confidence interval for 8 could be constructed using the Equation

(1= @)100%CT = B =+ t(gp1-2)1/ var(B). (2.14)

However, it is not clear how the degrees of freedom in (2.14) should be defined
for mixed models. Faes et al. (2009) suggested the following approximate

confidence interval for the mixed models based on a scaled t-distribution:

(1= )100%CT = B+ 6 t(1-9)\/var(B), (2.15)
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where

o = v ~ :
(v — Q)V(T)
v o= —1;
=1 +
V(T) = 1+ (4 ) 31}@7’[1}@7”(6)]), (2.16)

with var(J3) defined in (2.11) and T \/m The scale factor, § was chosen
so that the first two moments of dt agreed with the moments of ¢t,_;. Faes
et al. (2009) did not specify how V(T') or var[var(3)] should be estimated;
we will use a parametric bootstrap (see Subsection 3.4.3 for details). Other
approaches have been suggested, see for example Satterthwaite (1941) and
Kenward and Roger (1997). The method of Faes et al. (2009) has the ad-

vantage that it extends naturally to non-Gaussian model, unlike the other

approaches.

2.2.4 Bootstrap Approaches

Although in complex survey data there are many methods to estimate the
variance and calculate confidence intervals of nonlinear statistics such as
regression coefficients, these methods are often awkward or do not broaden
to complex designs or nonlinear estimators. Resampling methods such as
the bootstrap, the jackknife and balanced repeated replication naturally deal

with complex statistics and designs.
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Rao and Wu (1988) considered extensions of the iid bootstrap to complex
survey data of a nonlinear statistics. They applied the bootstrap method
to two-stage cluster sampling with equal probabilities at both stages and
without replacement to estimate the variances of the estimated regression
coefficients. They found that this method is extendable to general sam-
pling designs, such as stratified cluster sampling in which the clusters are
sampled with replacement, stratified simple random sampling without re-
placement, unequal probability sampling without replacement, and two-stage
cluster sampling with equal probabilities and without replacement.

Rao and Wu (1988) divided the population into B PSUs with M; elements
each and assumed that the population size is unknown. A simple random
sample of ¢ PSUs is selected without replacement, with m; elements from
the M; elements in each population PSU chosen without replacement. To
estimate the variance of B , ¢ PSUs from the ¢ sample PSUs are selected with
replacement, then m; elements are drawn with replacement from from the
m; elements in each selected PSU.

Sitter (1992) extended existing bootstrap with replacement and with-
out replacement to more complex designs including stratified sampling and
two-stage cluster sampling. The proposed resampling method was based on
resampling a smaller number, ¢ of the ¢ sample PSUs selected from the

B population PSUs without replacement. This step is repeated indepen-
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dently h = ¢(1 — /¢)/(d(1 — ¢/B)) times. Then from the m; elements
in each resampled PSU i a number of within-PSU elements, 1 < m! < m;,
are resampled without replacement. This step is also repeated independently
[mi(1—m}/m;)/mi(1—m;/M;)](B/hc) times. The variance of statistics such

as B is estimated by repeating the procedure a large number of times.

2.2.5 Huber-White Estimator of var(g3)

Liang and Zeger (1986) suggested the generalized estimation equation (GEE)
approach as an alternative to the ML and REML approaches for modeling
longitudinal and cross-sectional data. The GEE approach to linear modeling
of clustered data can use either ordinary least squares (OLS) or generalized
least squares (GLS).

The OLS estimator for 3 is defined by
Bols - (X/X)_IX/Y. (217)

The estimator Bols; when the observations from different PSUs are uncor-
related but the same PSU observations are correlated with common intraclass

correlation p, is unbiased (Scott and Holt, 1982) with variance equal to
var(Bys) = (X'X) ' X'VX(X'X) ™. (2.18)

In general, V is not known and it can be estimated by V, therefore the
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estimated variance for Bols is defined by

00 (Bos) = (X'X) ' X'VX(X'X) ™. (2.19)

~

The estimator var(3) in (2.11) will be approximately unbiased provided
that the variance model (2.2) is correct. If this is not the case, var(3) will
be biased and inference will be incorrect. An alternative to ML or REML
estimates of var(B) is the robust variance estimate approach described by
Liang and Zeger (1986), in the context of modeling longitudinal data using
generalized estimating equations (GEE). This approach can be applied to

the analysis of data collected using PSUs, where observations within PSUs

might be correlated and the observations in different PSUs are independent.

This approach can be referred to as robust or Huber-White variance es-
timation (Huber, 1967; White, 1982). It will be used as an alternative ap-
proach to estimating var(8) in this thesis. The method yields asymptotically
consistent covariance matrix estimates even if the variances and covariances

assumed in model (1.6) are incorrect. It is still necessary to assume that

observations from different PSUs are independent.

In Equation (2.11) in Subsection 2.2.3, the variance of ,[; was estimated by
substituting REML estimates of o7 and ¢ into V;. An alternative estimator

. o Hub R N ~ o~ Hub | . .
of Vyis V, = é;e,, where &; =y, — x/3. V,  is approximately unbiased
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for V; even if (2.2) does not apply.

7

E(V“”) — E(6,8)

~ Elly; —xiB8)(y; —xiB8)’] (2.20)
Note that
var(,é) = var((Zf lsz ) 1(21 ) zV yl))
~ (X0, %V, x) ( SO XV, ViVZ. Xi) (2.21)
( . 1XV xl)

One way to construct a robust estimator of var(B) is to substitute the

robust estimator VZH “in (2.21) as follows (Liang and Zeger, 1986),

1

- R . L -1 . u
i = (e ()

When there is only an intercept in the model (x;;=1), (2.22) becomes

vargw(6) = Eim M. . B)z. 2.23
SR S S WE 22

Proof: See Appendix A.
In the balanced data case, (i.e. m; = m), from Equation (2.23) and since

A; 1s constant this estimator becomes

sl = —— Z(@-.—y..)?- (2.24)

Exact confidence intervals can then be calculated using (2.15) with degrees

of freedom equal to ¢-1 (MacKinnon and White, 1985).
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2.3 Testing Hy : 0 = 0 in the Linear Mixed
Model

A hypothesis of particular interest in model (1.6) is whether o7 is zero. If the
null hypothesis Hy : 07 = 0 is retained, then there is no significant correlation
within PSUs. Two methods to test the hypothesis Hy : 02 = 0 will now be

described: the t-test and the restricted-likelihood ratio test.

2.3.1 t-Test

One approach to test Hy : 0f = 0 vs H; : o7 > 0 is a t-test approach.
This approach is the default of the statistical software SPSS (SPSS, 2007).
Assuming the intercept-only model for the balanced design with m; = m,

the variance of 67 can be approximated by

R 2 2\2 2
var(63) = po (ag + —) + e ol (2.25)

(Rao, 1997) when the probability that 67 = 0 is small. (This would be a
poor approximation if 7 is small or zero). Following Berkhof and Snijders
(2001), the t-test statistic is the ratio of the restricted maximum likelihood
estimator 67 to its estimated standard deviation se(67) = (W(&g))%; it is

given by

t = (2.26)
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where

S 2 /. 02\ 2
var(6y) = (Jg + E> + Wae. (2.27)

The null hypothesis Hj : JZ = 0 is rejected if ¢t > t,,_1 4, Where n is the
sample size and « is the significance level. This approach is based on an
assumption that ¢ ~ t,_; when Hj is true. However, it is easy to see that
this is not justified. For the intercept-only model (2.3) with m; = m, the

maximum likelihood estimator for o7 is given by

5 = i{ (1 - %)MSA - MSE}, (2.28)

m

provided that this estimator is positive and 0 otherwise. The probability
that 62=0 tends to 0.5 under Hy for large ¢ and m (Berkhof and Snijders,
2001). When H, is not true, the approximate distribution of 67 is U—ngg_l
with standard error \/2(c — 1)o7 /¢, for large m and fixed values of ¢, o7 and
var(6}). Hence the t-test statistic would be expected to give flawed inference

for testing that Hy : of = 0.
2.3.2 Restricted Likelihood Ratio Test (RLRT)

A better option is to use REML estimators to derive the likelihood ratio test
(LRT) statistic for testing Hy : 07 = 0.
The problem of testing Hy : 07 = 0 using the likelihood ratio test is

discussed by Self and Liang (1987) using ML estimators for the variance
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components. Self and Liang (1987) allowed the true parameter values to be
on the boundary of the parameter space, and showed that the large sample
distribution of the likelihood ratio test is a mixture of x? distributions un-
der nonstandard conditions assuming that response variables are #2d. This
assumption does not generally hold in linear mixed models, at least under
the alternative hypothesis. Stram and Lee (1994) used the results of Self and
Liang (1987) to prove that the asymptotic distribution of the likelihood ratio
test for testing Hy : 07 = 0 has an asymptotic 50:50 mixture of x? with 0
and 1 degrees of freedom under Hj rather than the classical single x? if the
data are id under the null and alternative hypotheses. (x2 is defined to be
the identically zero distribution.) This is because the chance of obtaining
a negative estimate of o7 under the null hypothesis is 50% and the chance
of obtaining a positive estimate is 50% as well. However, negative values of
6% are not permitted and are therefore corrected to 0. When this happens,
the chance of getting zero 67 is approximately 50% (LaHuis and Ferguson,
2009).

From (2.8), the restricted likelihood ratio test is given by

A = —2log(RLRT) (2.29)

MAX y s MAX y s
= 2 Hy (g(B,0;,0.)—2 Hy (r(B,0;,07).

e

In the intercept-only model case (2.3) assuming balanced data, Visscher
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(2006) gave the REML-based likelihood ratio test (RLRT) as

(n— 1)109(” ¢y el F> —(e—1)log(F) if F>1
0 if F <1
Derivation of 2.30: See Appendix A

A= (2.30)

The large sample distribution of the likelihood ratio A is a 50:50 mixture of
x? distribution with 0 and 1 degrees of freedom as the parameter values fall

on the boundary of the parameter space (Self and Liang, 1987).

In the unbalanced data case, with the intercept-only model, the RLRT is

MAX MAX

N o= =2 Hy tn— Ha tx)
— In(n) + (n— 1) In(MSE,) + 2ie 17]7\1/[22420— g.)”
—(n— )In(MSE,) - ZZ" () <§;(Xi)>
- ch&-(zji. - BY?, (2.31)

where MSEy = 24537, Y7 (yi; — y.)? is the mean squared error under
the null hypothesis, 07 = 0 and M SE4 = 62 is the mean squared error under
the alternative hypothesis, o7 > 0 and 7; = 02 + m;o}.

Derivation of 2.31: See Appendix A

2.4 Adaptive Procedures

2.4.1 Review of Longford (2008)

Longford (2008) has investigated the advantages of estimators based on se-
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lected models, assuming a two-stage sampling design and ¢ PSUs with m;
observations from each. He used the one-way analysis of variance model,
Yij = Bi+bi+ej, 1=1,...,¢; j=1,...,m;, where (3; is the mean of PSU i.

Two alternative sub-models were considered;
e Model A: no restrictions on f;;
e Model B: the group means are all equal, 5, =5, 1 =1,...,c.

Longford (2008) was interested in estimation of 3; for each i =1, ..., ¢,
but for simplicity just 5; was discussed.

For estimating (3; two estimators were considered B 4; = ¥; under model

~

A or BBZ- = [ = gy under model B.

The mean squared error MSE = E[(3;—f3)?] of the alternative estimators
of 3; were compared. The mean squared errors for BAZ and B were M SE( B i) =

fn—i and MSE(Bg;) = Z +(B;— B)*. Longford recommended using whichever

of B A4; OT B i had lower M SE. This results in the following estimator of ;:

. if (Bi—B)? >0y

(2.32)
. otherwise,
where
1 1
gi=———.
m; n

In practice (2.32) could not be used because ;- is unknown, but Longford

used (2.32) to motivate several estimators which can be applied in practice.
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One example was to estimate (3; using y. when m; was small, and using ;.
when m; was large.
As an alternative estimator to (2.32), Longford (2008) considered the

convex combination

Bi=(1—1t) B+t b, (2.33)

where t; is set to minimize MSE(S;; 3;) = E[(3; — 8:)?]. The value of ¢; that

minimizes the MSE is

= ————. (2.34)
g + (Bi—B)?

o2

The “ideal synthetic estimator” is then
Bity) = (1—1]) B + 17 b (2.35)
In practice (2.35) can not be calculated as (f; — ) is unknown.

Assuming o2 is known, one approach would be to estimate ¢} using

2
~ 7:0'

=TGP (2.36)

2.4.2 Model Averaging

Model averaging is an alternative to model selection. In model selection the
best model is selected and used for estimating the model parameters. Model

selection calculations are simple as they rely on a single model. On the other
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hand, model selection ignores model uncertainty and can give therefore over-
optimistic inference. Model averaging combines models together and calcu-
late the estimates as weighted averages. It requires more calculations but
provides better estimates (Madigan and Ridgeway, 2003). Bayesian model
averaging (BMA) is a widely used approach to model averaging approach in
many fields, including medicine, meteorology and management sciences (Li
and Shi, 2010).

Sorenson and Gianola (2002) define the following terms

¥ = parameter or future data point,
y = data,
D = {Di,Ds,...,Dy} set of models,
p(D,) = prior probability of model r,r =1,... k,

p(D,|ly) = posterior probability of model r.

It is commonly assumed that models are assigned equal prior probabilities,
although this is not always true the case (Posada and Buckley, 2004).
The posterior distribution of ¥ in the usual Bayesian approach is given

by

p(y|¥, D,)p(¥|D,)
p(y|Dr)

p(Yly, D;) (2.37)

The posterior distribution Equation (2.37) shows the case in which, if the
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model is true, inferences are conditional on D,. The idea of Bayesian model
averaging, in contrast, is to find the average of the posterior distribution of

models, resulting in the following Equation

p(¥ly) = > p(¥ly, De)p(Dily). (2.38)

r=1

It is attractive to use BMA, but two real challenges have arisen. The first
is how to select the set of models Dy, ..., D;. For computational reasons, it
is preferable not to use too many models particularly if each model involves
complex structure. One approach is to only use the models that operate
well according to some criteria such as the Akaike information criteria (AIC)
(Akaike, 1974) or Bayesian information criteria (BIC) (Kass and Wasserman,
1995).

Another problem is how to calculate the marginal model likelihood ac-

cording to the likelihood of every model,

p(¥D) = [ p(W16,. D)6, |D.)ds. (2.39)

where 0, is the vector of parameters in model D,.

Adaptive confidence intervals calculated in the model selection criterion
do not incorporate the model selection uncertainty, and so may not have
the correct coverage rates. In this thesis we will evaluate the extent of this
problem by simulation. Estimates of the variances of regression coefficients

could be done based on model averaging of the linear and the linear mixed
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model rather than selecting between them (see for example Hoeting et al.,
1999; Yuan and Yang, 2005). This approach will not be developed in this
thesis, because one of the objectives is to simplify the modeling process when

the intraclass correlation is small.

2.5 Cluster and Multistage Sampling

2.5.1 Introduction

In multistage sampling, the population is divided into groups called primary
sampling units (PSUs). A random sample from each selected PSU is then
selected. If all units within each selected PSU are selected then two-stage
sampling is called cluster sampling. Multistage sampling may employ more
than two stages of selection. For example, in order to select a sample of local
voters in New South Wales in Australia, a random sample of post codes could
be surveyed. Then a sample of city blocks could be chosen within selected
post codes. Then within each of these blocks a random sample of households
could be selected.

One reason why two-stage sampling is used is to reduce cost with face-to-
face interviewing (Lehtonen and Pahkinen, 1994). Although the variability
of estimates is increased if two-stage sampling is used, it enables surveys to
be completed faster with less cost. For example, in the first stage a sample

of areas could be chosen; in the second stage a sample of respondents within
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those areas is selected (Tate and Hudgens, 2007). This can reduce travel and
other administrative costs.

Two-stage sampling can be used when there is a list of all PSUs in the
population but not of all units. Therefore, one might obtain a random sample
of PSUs and then take a census or a sample within the selected PSUs (Hansen
and Hurwitz, 1951).

Using a two-stage sample rather than simple random sample of the same
size will increase the variance of estimates. The design effect is used to
measure the increase in variance that happened when two-stage sampling is
used. It is defined as the ratio of the variance of a statistic ﬁ under a two-
stage sampling design, vard(,é), to the variance of the statistic calculated
under the simple random sampling design of the same sample size n (Kish,
1965, Chapter 5). If the sample PSUs are of equal sizes, m, then the design
effect is given by (1.1) in the intercept-only model. If the sample PSUs have
different sizes, one approximation of the design effect is given by Equation
(1.2).

Under the intercept-only model (2.3), in the unbalanced case

deff(y.) = 1+(an’2 —1),0

= 1+ (m(l+cp,) = p,

where ¢,, is the coefficient of variation of the within PSU sample sizes. Hence
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provided the within PSU sample size do not vary considerably, ¢ will be

small and (1.2) will provide a reasonable approximation.

2.5.2 Ignorable Two-Stage Sampling

This thesis assumes ignorable sampling, in the sense that multilevel models
can be estimated from sample data without explicitly allowing for the sample
design. This subsection reviews the concept of ignorability.

Sugden and Smith (1984) modeled the selection procedure by a sample
selection method which relies on the design variables z and may rely on the
response variables y and a vector of parameters . This design can be written

as

p(sly, 2,0), s, (2.40)

where () is the set of feasible samples.
Sugden and Smith (1984) investigated ignorability conditions based on
designs which depend on the design variables only, given partial information

on the design. Such designs can be written as

p(slz), se, (2.41)

They defined d; = Dy(2) to be data derived from knowledge of selection
procedure (2.40) and from values of the available probabilities of selection

(s,p(s)), as well as any values or functions of z. The fundamental condition
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for ignoring the sampling design given the design information is that p(s|z) =
p(s|ds) for z such that dy = Dg(z2).

Models fitted using data from a simple random sample are generally ap-
proximately unbiased for the model that would be estimated from the full
population. If the sample design is more complex, the sample model could
be biased for the population model (Pfeffermann, 1993).

Pfeffermann (1993) assumed that the population consists of N units and
a vector of measurements (y;, z;) is linked with every unit i where (y;, z;)
are independent draws and have a bivariate normal BN (u,X). The aim
was to estimate p, = E(Y'), where Y is the variable of interest with values
Y;, e =1,..., N, from a sample s selected by a probability sampling method.
If simple random sampling is used then Y; is an unbiased estimator of fy, and
it fulfils other optimal properties. It is obvious that inference can ignore the
sampling design in this case. However, if probability proportional to z;, with
replacement, is used, then ignoring the sampling design can be misleading,
and Y, may be biased for f,.

The ignorability of the sampling design depends on the model and the
parameters of interest as well as the sample design and the information avail-
able about the design. If all design variables are incorporated in the regressor
variables in the regression model, then the sampling design is ignorable for

estimating the regression coefficients. It is not ignorable for estimating the
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unconditional mean and variance for the regression dependent variables, if

the values of the design variables are only known for units in the sample.

2.5.3 Cost-Variance Modeling and Optimal Design

Two-stage sampling normally leads to estimates having a higher variance
than simple random sampling with the same sample size. Therefore, when
its effect on reducing the unit cost is more than the increase of the unit
variance, two-stage sampling is recommended. Increasing the within-PSU
sample size increases both the cost and the variance (Kish, 1965, p.263).
Even small values of intraclass correlation lead to a significant increase in
variance when the average PSU sample size is large (Gao and Smith, 1998).
multi-stage sampling, assuming equal sized PSUs with equal sample size, and

simple random sample at both stages:
C= O() + CCl + nC'g, (242)

Hansen et al. (1953, p.271) stated: “We shall assume, for the particular
illustrative sample survey under consideration, that on the basis of prior ex-
perience and experimental work we have estimated that Cy = $1”7. Whereas
(] is often not easy to estimate since it includes interviewer travel costs. The
fixed costs Cj do not affect the optimal design.

Kalsbeek et al. (1981) stated that “We believe that the ideal cost model

has the following three characteristics. First, it must realistically represent
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the way in which costs are incurred in an actual survey operation. Second,
the formulation should be simple enough so that the optimum solution is
tractable. Third, unit costs which constitute the parameters of the cost
model should be sufficiently straightforward in interpretation so that they
can be easily understood by operations staff to develop useful estimates for
calculating optimum allocations. The influence of clustering the sample on
costs and variances generally is opposed; it reduces the costs and increases the
variances. The economic design of a multistage sample requires the sampling
statistician to estimate and balance these influences.”

The approximate optimal number of sample PSUs and sample PSU sizes
are given by

_ [C1 1—p.
Mopt = Cs p

c _ C—Cy
opt o Cl +mopt02 :

In the discussion so far, it has been assumed that simple random sam-
pling of PSUs and of elements within PSUs is used. In practice probability
proportional to size (PPS) selection of PSUs may be preferable (Hansen and
Hurwitz, 1943). In the PPS method, the probability of selecting a PSU varies
according to the PSU size: the larger the PSU size is the greater the prob-
ability of selection will be, up to a maximum of 1. The PPS approach can
increase the precision for a given sample size by targeting the sample towards

large units that affect population estimates more. With suitable redefinition
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of the variance components similar results can be obtained for PPS.
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Chapter 3

Adaptive Estimators Based on
Testing the Variance

Component in a Multilevel
Model

3.1 Introduction

In multistage sampling, sample units are selected in stages. The target popu-
lation is divided into primary sample units in the first stage. Sampling units
are then subsampled from these PSUs. Further selection is made within each
unit. It is used in many surveys of social, health, economic and demographic
topics. It is a very flexible technique since many aspects of the design can
be controlled, including the number of stages (eg PPS or equal probability,
systematic or simple random sampling) of selection or the number of units
and the number of units selected for each stage. In this thesis, we are going
to consider two-stage samples.
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Data from final units within the same PSU may be correlated. One way of
analyzing this kind of data is with multilevel models. Multilevel models are
a generalization of regression models. Goldstein (2003, Chapter 2) defined
the two-level linear mixed model (LMM) by Equation (1.6).

The intraclass correlation (p) is a measure of the association between
the regression residuals for members of the same PSU. It also expresses the
between-PSU variance, o7 as the proportion of the sum of the between- and
the within-PSU variance components (Commenges and Jacqmin, 1994); as
described in Equation (2.7)

The intraclass correlation, p is quite small in many cases. For instance,
it is zero if units within PSUs are homogeneous. The highest possible value
of p is 1. This is true when values are equal for units from the same PSU
(Kish, 1965, Chapter 5). The smallest value of the intraclass correlation is
+7 when all PSUs contain M units, but this is rare. Model (2.3) implies
that p is greater than or equal to 0. The intraclass correlation tends to
be positive in typical two-stage surveys. Even small intraclass correlations
can have a large effect on the variance, it within-PSU PSU sample sizes are
large. In general, when geographic areas are PSUs and household are the
final units, the intraclass correlation is less than 0.1 (Verma et al., 1980). If

households are PSUs and people in these households are the final units it is

usually between 0 and 0.2 (Clark and Steel, 2002).
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Regression coefficients, 3, and the variances of their estimates, var(3),
can be estimated using many possible procedures when the intraclass corre-
lation is considered small. The linear model with independent observations
is one possible procedure. The linear mixed model is another approach that
can be used. An alternative is to use an adaptive approach based on test-
ing the null hypothesis that the PSU-level variance component, o2, is zero.
Accepting the null hypothesis, the linear model will be used for estimating
var(3). If the null hypothesis is rejected, the linear mixed model or the ro-
bust Huber-White variance estimator will be used for estimating the variance
of the regression coefficient estimates.

This chapter is divided into four sections. Section 3.2 will describe the
adaptive strategies. A simulation study of the adaptive and other methods

will be described in Section 3.4. In Section 3.5 we will draw conclusions.

3.2 Adaptive Strategies

In this Chapter two adaptive strategies will be considered based on the
intercept-only model. Both of them rely on the idea of testing the vari-
ance component o7 in model (1.6). In the first adaptive strategy, if we reject
Hy : 0} = 0, we use the LMM estimators of var(B) defined in Equation

(2.11). On the other hand, if we accept Hy, then we assume that o7 = 0 and

we fit the standard linear model with independent errors. This strategy is
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explained in Figure 1.1.

In the unbalanced case, ﬁ vy (from the linear mixed model) will depend
on ;\Z and therefore on m; and p. But in the balanced case ,éLM v does not
depend on p irrespective of its value as the values of A are all equal and
cancel out.

The second adaptive strategy, is identical, except that the robust Huber-
White estimator U/CL?Hub(B) is used instead of var ys s (ﬁ) when Hj is rejected.

The two adaptive strategies (ADM) and (ADH) are defined as

- . var pam( B) if H, is not retained
varapm(B) =4 (3.1)
var L (8) if Hy is retained,

. . varpw(B) if Hy is not retained
varapu(B) = - A (3.2)
varpy(B)  if Hp is retained.

The Huber-White variance estimator is approximately but not exactly

unbiased. For the intercept-only model, it is straightforward to show that

E(varma(8)) (X, M) = X, (03)
var(B) DAY (3:3)

Derivation: See Appendix B
where 3 and var(ﬁ) are given by (2.10) and (2.23), respectively. Hence a
bias-adjusted estimator is given by dividing (2.23) by the right hand side of

(3.3), giving:

VAT () =

- 3.4
AR ; 34
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The LMM 90% confidence intervals for 8 are given by

(1= a)100%CT = B = 6 t(gr1—a)\/var(B), (3.5)
where 0§ = WVV(T)’ a = 0.1 and the degrees of freedom (df) are defined
to be:

n—1 using LM Est.
df =< v—1  using LMM Est. (3.6)
c—1 using Huber-White Est..

Degrees of freedom for adaptive strategies (ADM) and (ADH) are defined as

n—1 if Hy not rejected
df apym = (3.7)
v—1 if Hy rejected;

n—1 if Hy not rejected
df apy = (3.8)
c—1 if Hy rejected,

where v represents the effective sample size, with 7 = #f@. The effective
sample size is the ratio of the sample size to the design effect of the B The
degrees of freedom for the linear mixed model are only an approximation
(Faes et al., 2009). However, the degrees of freedom of the linear model
and Huber-White are exact (MacKinnon and White, 1985). See Subsections
2.2.3 and 2.2.5 for further discussion of the LMM and Huber-White variance
estimators and confidence intervals.

The advantage of the adaptive strategy is that we use the simple linear

model to derive variance estimators, unless there is strong evidence against
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Hy : 0 = 0. This has the benefit of simplifying the model and may also give
tighter confidence intervals.

The adaptive confidence intervals may not have the correct coverage rates
as they might not incorporate the model selection uncertainty. The extent of
this problem will be evaluated by simulation. An alternative approach would
be to fit both the LM and LMM and base estimates and inference on model
averaging of these two models (see for example Hoeting et al., 1999; Yuan
and Yang, 2005). This approach will not be developed in this thesis, because
one of the objectives is to simplify the modeling process when the intraclass

correlation is small.

3.3 Type 1 and Type 2 Errors of LM and
Huber-White Approaches

N

The choice between the Huber-White and LM estimators of var(g) can be
considered as a tradeoff of type 1 and type 2 error. In this context, type 1
error means using WHM,(B) when 07=0 and type 2 error means vary, M(B)
when o7 > 0. This section derives a result on the mean squared errors of
the two approaches reflecting the type 1 and type 2 errors. For simplicity
a balanced design and an intercept-only model are assumed, and only the

Huber-White and LM approaches are compared.

When 07=0, we know that a7 (3) = 1s?, where s> = 3¢, > (Y —
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y..)? which is distributed as a o2x, ;)/(n — 1) (Hocking, 1996, Theorem 3.1).

Therefore,

~

E(varpm(B))

N

var (varpy(B))

In the general case when o7

2 2
= n-1)—2e =7
nn—1) n
4 2 4
= n—1)—e = T (3.9)

n2(n—1)2  n2(n—1)

> 0, the estimated variance of 3 is given by

varpn(B) = %32 = n<n1_ 1 Z(yz‘j y.)"
1 e _ _ —\12
= n(n —1) 2= Z [(yij Yi.) — (Ui — 9..)]
I U sy
_ ﬁ[SSEvLSSA]. (3.10)

But SSE and SSA are stochastically independent and have afx%n_c) and

(0% + ma?)x%c_l) distributions, respectively (Sahai and Ojeda, 2004, Theo-

rems 2.3.2 and 2.3.3). Hence,
E@@n () = g5 (B(SSE) + E(S54)
= gy = a2+ (e~ D(oZ + mof)
var(@ o (B) = m@ar(sw) +var(5S4))
~ el = Aot = 102 + moi

~

Therefore, the mean squared error for varyy(8) when o2=0, MSEpy0, is
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derived as

MSEiy0 = [E(WLM(B» - UC”’LM(B)}Q + UGT(WLM(B))

R N NN B

The mean squared error for WLM(B) when of >0, MSEpyq, is derived as

[n(nl— 1)

2 4 2 2)2
+oa (= ol + (e = (o2 + mai)?)

lfn—c) , c—1 9 NE
- ﬁ[(n—l)ae—i_ (n—l_l)(ae—i_mab)}

+ﬁ((n —c)ot + (¢ = 1)(0? + may)?)

1 2
MSEwye = ((n = )02+ (c = 1)(0? +mo})) = ~(0? +ma)|

1 n—c , n—cy, o NE
- ﬁ[n—lae_(n—l)@e—i_mgb)}

Ve (<n — ot + (c— (02 + maZf)
- sl (- ot

+(c — 1)(0? + mo;)?).

But 07 = (1 — p)o; and o = poy, so that o2 +moy = (1 + (m —1)p)o;.
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Therefore, substituting these terms into (3.12), we have

1
MSE e = 2 =12 m*(n —c)*p* +2(n — c)(1 - p)?

+2(c—1)(1+ (m— 1)p)2] o (3.13)

The Huber-White variance estimator of B is given by

) = Y~ 7. (3.14)

But ¢; is normally distributed with mean 0 and variance (¢? + mo?)/m;

(o2 +ma§ )/m

hence, Ua7 () has a (e—1)

X%c—l) distribution. Therefore,

og—&—mag 2 2
o R - o; + moj

E(Tar i, — (=1 %
(var mun(0)) (c )C(C _—y "

(0% + mo})? B 2(c% +ma})?

m2c2(c—1)2  n2(c—1)

~

var (varg(B)) = 2(c—1)

(3.15)

Therefore, the mean squared error for var Hub(B), MSFEy, is derived as

~

MSEH = [E(U/CﬁHub(B)) — UaT’Hub(B)}Q + UCLT(WHub(ﬁ))

2(07 + moy)?

(nQ(c -1) |
_ 21+ (m—1)p)* ,
Rl (3.16)

When ¢7=0, this reduces to MSEy,, where

204

Comparing MSEgg to MSE5 0, it is obvious that M SE o is always
less than M SFEg. MSEy is m times smaller than MSFE g when n and ¢

are large.
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By manipulating (3.13) and (3.16), it is clear that MSEy < MSEpy

when

m2e2(m—1)2p*+2c(m—1) (1= p)>+2(c—1)(1+(m—1)p)>
(me—1)2 (3.18)
> 0.

_ 2014(m-1)p)?
(1)

The left hand side of (3.18) is a quadratic and can be rewritten as:

m2c*(m —1)%*(c — 1)p? + 2¢(c — 1)(m — 1)(1 — p)?

(3.19)
+2(c— 1)2(1+ (m —1)p)* — 2(mec — 1)*(1 + (m — 1)p)* > 0.
Simplifying this inequality, we have

2(c—1)2+2c¢(m —1)(c—1) = 2(mc—1)*> + (4(m — 1)(c — 1)?
—4e(m —1)(c—1) —4(m — 1)(mc—1)H)p+ (2¢(m — 1)(c — 1)
+2(m — 1)*(c = 1)* + *m*(m — 1)*(c — 1)

9(m — 1)2(me — 1)) > 0

Expanding the constant term and the coefficients of p and p?, this inequality

simplifies to:

—2¢(m — 1)(mec — 1) —4e(m — 1)(me —2m + 1)p
+c(m —1)(2(2m? — 4m + 1) — me(3m? — 3m — 2) + m?c*(m — 1))p* > 0

Dividing by ¢(m — 1), we get

—2(me —1) —4(me —2m+ 1)p + (2(2m* — dm + 1) (3.20)
—mec(3m? — 3m — 2) + m*c*(m — 1))p* > 0 .

Setting the left hand side of (3.20) to zero, we obtain the following roots

of this quadratic equation:

. 2(m072m+1)+\/4(m072m+1)2+2(mcf1)(m202(m71)+2(2m274m+1)7mc(3m273m72))
pr = m2c?(m—1)+2(2m2—4m+1)—mc(3m2—3m—2)
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o 2(m072m+1)7\/4(m072m+1)2+2(m071)(m202(m71)+2(2m274m+1)7mc(3m273m72))
P2 = m2c?(m—1)42(2m2—4m+1)—mc(3m? —3m—2)

But 2m? — 4m + 1 is positive if and only if m > %ﬁ and 3m? — 3m — 2
is positive if and only if m > %. It follows that 2m? — 4m + 1 and
3m? — 3m — 2 are positive if and only if m > 2. Therefore, p; > 0 and py < 0
whenever m > 2. In practice, m would almost always be greater than or
equal 2. It follows that the Huber-White variance estimator has lower MSE

than the LM variance estimator when p > py, since p would almost always

be greater than or equal to 0.

Figure 3.1 shows the values of m, ¢ and p such that the Huber-White
variance estimator (M .S Ey) has lower mean squared error than the LM vari-
ance estimator (M SEp,,) for different values of p, m and ¢. The Figure
shows that for p = 0, M SFEy is larger than M SFEy), for all values of m and
¢, except when m=1 for all values of c. When m=1, the two estimators have
equal mean squared error for all p and ¢; this is clear from (3.21).

For p=0.01, the Huber-White variance estimator does better than the LM
variance estimator for values of m > 20 with ¢ > 17. In case of p=0.025, the
region such that the Huber-White variance estimator is better than the LM
variance estimator becomes larger. M SEy < MSEp,; for values of m > 8

with ¢ > 8.

For p = 0.05, the Huber-White variance estimator has lower mean squared
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Figure 3.1: The values of m and ¢ such that MSEy < MSEp
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error than the LM variance estimator for values of ¢ > 4 with m > 4. Finally,
in case of p = 0.1 the region such that the Huber-White variance estimator
has lower mean squared error than the LM variance estimator is bounded by
values of ¢ > 3 with m > 2.

The Figure shows that as the value of p increases the region such that
Huber-White variance estimator has lower mean squared error than LM vari-
ance estimator increases.

For large m and ¢, Equation (3.20) can be rewritten as:

—2¢ — dep + (4m — 3mPc +m*c?)p® > 0 (3.21)
2.

For large m and ¢, the quadratic term in (3.21) is dominated by m?c

therefore, (3.21) reduces to
—2—4p+mPcp® =0 (3.22)

Setting the left hand side of (3.22) to 0, we obtain the following roots:

2+ /2(24+ m2c)
m2c

P1 =

bl

2 — \/2(2 + m?c)
m2c

P2 =
It is clear that p; > 0 and p; < 0. Hence Huber-White variance estimator
does better than LM variance estimator whenever p > p;. We can further

approximate p; to be

L2 2 [
pleZC m2c  \ m2c
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So the Huber-White variance estimator generally does better than the LM
variance estimator when p > ,/%. This lower bound on p tends to 0 as ¢

and particularly m increase.

3.4 Simulation Study

3.4.1 Design of Simulation Study

A simulation study was conducted to compare the adaptive and non-adaptive
methods for estimating var(ﬁ). Data were generated from the normal dis-
tribution, with m; = m and an intercept only model (2.3). The values of p,
m and ¢ were varied. 1000 samples were generated in each case. The values
of o and o2 were set to ﬁ and 1 respectively, to ensure that the intraclass
correlation was p.

For each sample the estimated regression coefficients B and the estimators
of var(ﬁ) were calculated for the LMM and LM models using the Ime4 and
Im packages (Pinheiro and Bates, 2000) in the R statistical environment (R
Development Core Team, 2007). The true variance of B was determined by
calculating the variance over all 1000 simulations.

The hypothesis Hy : 67 = 0 was tested as described in Subsection 2.3.2.
The two adaptive strategies ADM and ADH are defined by (3.1) and (3.2).

90% confidence intervals were calculated for the LMM method using the

method of Faes et al. (2009) as described in Subsection 2.2.3. Huber-White

54



CHAPTER 3. ADAPTIVE ESTIMATORS BASED ON TESTING THE
VARIANCE COMPONENT IN A MULTILEVEL MODEL

confidence intervals were calculated as discussed in Subsection 2.2.5, and the
adaptive confidence intervals were calculated as discussed in Section 3.2. The
hope is that the adaptive procedures give shorter confidence intervals as they
will use the LM when Hj is not rejected and for small sample sizes these cases
still have p away from zero. As the sample size increases, Hy will only be not

rejected when p is close to zero.

Two methods were evaluated for testing Hy : 07 = 0: a t-test (as described
in Subsection 2.3.1) and the restricted likelihood ratio test (as described in

Subsection 2.3.2).

The values of p, m and ¢ were varied. The parameter p was varied over
a range of values of 0, 0.01, 0.025, 0.05 and 0.1; ¢ was varied over 2, 5, 10
and 25; and m was varied over 2, 5, 10, 15, 25 and 50. So the design effects

varied from 1 to 5.9.

The estimated regression coefficients B and the estimators of var(B) were
calculated for the LMM and LM models using the Ime4 and Im packages
(Pinheiro and Bates, 2000) in the R statistical environment (R Development
Core Team, 2007). The t-test for Hy : 07 = 0 was applied by coding Equation

(2.26) in R.

25



3.4. SIMULATION STUDY

3.4.2 Simulation Results on Testing Hj: 07 =0

This subsection will summarize the performance of the t-test and the RLRT
for testing Hy : 07 = 0. Results for the intercept-only model with equal-sized

PSUs will be used, with p=0 and 0.05.

Table 3.1: Non-coverage of testing Hy : 07 = 0 using RLRT and t-test with
p=0 and p = 0.05.

PSUs Obser P(Reject Hp : 07 = 0) when
vations p=0 p=0.05
c m t-test (%)  RLRT (%) t-test (%)  RLRT (%)
2 2 0.0 10.5 0.0 10.2
2 5 0.0 5.8 0.0 8.6
2 10 0.0 5.2 0.0 11.5
2 15 0.0 5.0 0.0 11.7
2 25 0.0 3.8 0.0 19.4
2 50 0.0 4.5 0.0 29.2
5 2 0.9 10.5 1.0 10.9
5 5 0.0 8.0 0.1 13.1
) 10 0.0 7.5 0.3 22.7
5 15 0.0 6.4 1.3 27.8
5 25 0.0 7.4 4.4 43.6
) 50 0.0 7.2 16.8 62.7
10 2 11.1 10.1 14.7 11.2
10 5 11.3 8.5 23.9 19.7
10 10 11.1 6.3 37.0 32.2
10 15 10.7 8.6 52.8 47.4
10 25 9.3 9.7 71.6 66.1
10 50 9.7 6.7 90.7 89.3
25 2 14.4 10.9 20.9 14.4
25 5 12.9 9.4 379 30.0
25 10 10.2 7.6 58.2 57.4
25 15 12.3 10.9 77.8 73.0
25 25 10.2 8.7 93.3 92.2
25 50 16.0 8.0 99.9 99.3

Table 3.1 shows the probability of rejecting Hy : 07 = 0 based on the t-
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test using the derived standard error defined by Equation (2.27) as well as the
rejection probability based on the restricted likelihood ratio test using two
different values of p of 0 and 0.05. We expect that the probability of rejecting
Hj should be close to 0.1 when p=0, while the probability of rejecting H,
should be as high as possible when p > 0.

The t-test performed very poorly as the proportions of samples where
Hy : o} = 0 is rejected were very small, in general, when there where small
number of PSUs (5 or less) for both values of p. Proportions of samples
where Hy : 02 = 0 is rejected were close to the nominal rate when p=0 and
unacceptably high when p=0.05. For example: This is an important finding,
because the t-test is the method used by the SPSS statistical software.

The RLRT proportions of samples where Hy : 07 = 0 was rejected were
closer to the nominal rate when p=0. For p=0.05, the proportions of samples
where Hj is rejected were much better than the t-test when there small

numbers of sample PSUs. For example:

e When c=2 and m=5, the proportion of sample where Hj is rejected

were 5.8% when p=0 and 8.6% when p=0.05.

e When ¢=5 and m=15, the proportion of sample where H, is rejected

were 6.4% when p=0 and 27.8% when p=0.05.

e When ¢=10 and m=25, the proportion of sample where Hj is rejected
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were 9.7% when p=0 and 66.1% when p=0.05.

e When ¢=25 and m=2, the proportion of sample where Hj is rejected

were 10.9% when p=0 and 14.4% when p=0.05.

Therefore, the RLRT method used in this thesis.

3.4.3 Simulation Results on Adaptive Confidence In-
tervals for [ for Balanced Data

A simulation study based on equal sized PSUs, m; = m, and an intercept only
model was conducted to compare the adaptive and non-adaptive methods
for estimating var(@). Data were generated from the intercept-only model
(2.3). The values of p, m and ¢ were varied. 1000 samples were generated in
each case. In this study we used the parametric bootstrap to estimate V(T')
because the scale parameter ¢ relies on V(7)) (see Equation 2.16) and Faes
et al. (2009) did not specify how V(T') can be estimated.

To apply the parametric bootstrap method to estimate var(7"), 100 sam-
ples were generated from the intercept-only model (2.3) with variances 67

and 2. For each sample, we estimated 8 and var(3) to find the value of

T = £ —. The variance of the 100 values of T" was calculated and used to
\/ var(B)

estimate V(7).

~

Another way to estimate var(T) is to estimate var[var(5)], and then

substitute into (2.16), but Faes et al. (2009) also did not specify how to esti-
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mate this parameter, therefore we have tried to do that using the parametric
bootstrap. The same procedure above is used, but now we estimated var(ﬁ)
from the fitted model and then calculated the variance of the 100 estimated
values of var(f). Then var(T) was calculated by coding Equation (2.16) in
R. The LMM non-coverage rates were very small, specially for small number
of sample PSUs (5 or less).

In the end the method of estimating V(7T') by calculating the variance
of the 100 estimated values of T performed better than the method uses
var[var(f3)] to estimate var(T). Therefore, the first was used in the simula-
tion studies in Chapters 3-5 in the balanced design.

The hypothesis Hy : o7 = 0 was tested as described in Subsection 2.3.2
using the restricted likelihood ratio test defined in Equation (2.30). The
two adaptive strategies ADM and ADH were as defined in Section 3.2. 90%
confidence intervals were calculated for the LMM method using the method
of Faes et al. (2009) as described in Subsection 2.2.3. Huber-White confidence
intervals were calculated as discussed in Subsection 2.2.5, and the adaptive
confidence intervals were calculated as discussed in Section 3.2.

Tables 3.2 - 3.4 show the ratio of the mean estimated variance of B,
E(var(f3)) /var(f), using the four strategies of estimation (ADM, ADH, LMM

and Huber) with values of p of 0, 0.025 and 0.1. In all tables we used =0

and significance level o = 0.1 for testing o7 = 0. The tables show the non-
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coverage rates of 90% confidence intervals of 5 and the average lengths of
these confidence intervals. The proportion of samples where Hy : 07 = 0
was rejected are also shown. Results on non-coverage and 90% confidence
intervals average length are shown in graphical form in Figures 3.2 - 3.4. In
the graphs we also include the LM strategy of estimation so that the effect
of completely ignoring the clustered nature of the data can be examined.
The variance estimators were generally approximately unbiased, as all
ratios are approximately 1. There were some exceptions. The first was the
variance estimator using the LMM strategy; it tended to be biased when there
were 10 or less sample PSUs with approximately all numbers of observations
per PSU for p=0. For 0.025, it tended to biased when there were 2 sample
PSUs with 25 or less observations per PSU and when there were 5 sample
PSUs with 2 and 15 observations per PSU. It tended to be biased when there
were 2 sample PSUs with 5 observations or less per PSU in case of p = 0.1,
as well. In case of p=0, it also tended to be biased when there were 5 PSUs
with all numbers of observations per PSU. The other exception was the ADM
and the ADH variance estimators, they tended to be biased when there were
2 sample PSUs with 2, 5, 15 and 50 observations per PSU when p=0.
Non-coverage rates for confidence intervals for § were close to the nominal

rate of 10% when p = 0 for all methods.

60



CHAPTER 3. ADAPTIVE ESTIMATORS BASED ON TESTING THE

VARIANCE COMPONENT IN A MULTILEVEL MODEL

G600 9600 9600 9600 | 88 €01 €01 76 76 1.6'0  890'T  9¥0'T  G¥O'T | 09 qc
9€T°0  PET'0  GET'0 Q€TI0 | T'6 06 8'8 7’8 7’8 690'T LET'T  €CI'T  €2I'T | SC 54
€LT°0 TLT0  €LT0 ¥LT0 | 89 60T 80T 76 g'6 196'0 G¢0'T  €I0'T  €I0°T | GT qc
vic0 ¢Ie’0  vIg0 VIco | L8 gTr TTI 901 901 ¥86°0 T190°'T  8E0'T 8EO'T | OT qc
¢0€'0 860 ¢OE0 €00 | T8 T'IT 611 01 901 €160 €960 9960 9960 | ¢ qc
G870 €870 €8F'0  €8F'0 | T0T €er  LT1 N ! 0c6'0  ¥66'0 0960 0960 | ¢ 4
649T°0 9910 ¥ST°0  ¥ST°0 | 08 L0T 001 L6 L6 SY0°'T  60C°T  LET'T  LET'T | 09 0T
Gcc'0  61¢0 6160 61I¢0 | €38 76 6°L €L €L €0T'T 89¢'T €0¢'T €0CT | S¢ 0T
¢6c’0 98¢0  €8¢°0 ¢8CO | 98 1'6 6'8 1L ¢'L 9IT'T ©8¢'T  G0¢'T S0C'T | 4T 0t
19€°0 8¥€'0  8VE0  L¥EO | 9'8 90T 601 0Tt 80T ¢L6'0  S60'T  €E0'T  €EO'T | OT 0T
€090 ¢6v'0  06V0 6870 | 08 €6 16 18 18 1.00T  Tee'T  8vI'T  8YI'T | G 0T
76L°0  €6L°0  .8L°0 88L°0 | V'II 0TL 601 801 601 960  €0T'T  9€0'T 9€0'T | ¢ 0T
8G¢'0 ¢€gc’0  9g¢’0 Ve O | 0L L8 g 6°L 08 650'T P¥6C'T  LGT°'T  LST'T | 0§ g
09€'0  ¥c€'0  TcE€0 LIEO | 64 7ot 001 76 76 666'0 Vel VCI'l  ¥el'l | S¢ G
g9¥’'0  €ev'0  LT¥FO0  ¢IV0 | 6L 10T T°0T ¢'6 ¢'6 LT0'T  69¢'T  €E€T'T  €ET'T | 4T g
6950 €190 G090 00580 | 49 g6 8'8 08 08 ¥PO'T  €8¢'T  ¢ST'T  ¢SI'T | O g
108°0 ¢€L'0  Tel'0 91L0 | 94 g8 00T €6 €6 L80°T  88¢'T  €9T'T  €9T'T | & g
GG¢'T  06T'T  TI8T'T €LT'T | 66 7’6 4! ¢'6 7’6 986'0 €8T'T  ¥.L0T ¥.0T | G g
ST0°'T  9¢v'0  LLVO0 68€0 | 99 g'6 7’6 6°L 6°L L80°T I8G'T  BIET 8IET | 09 ¢
YT ¥8G'0 T¢90  8¢S0 | TV 6'8 e€TT 80T 80T 9L6'0 6IFV'T 99T'T 99T'T | GC ¢
¢LLT 6VL°0  ¥6L°0 €890 | 8¢ 70T 10T 86 86 Lc6'0  CIV'T  6LT'T  6LT'T | QI 14
0Lc’¢c ©96'0 €S0°T @980 | T'G L0T ¢6 6'8 6'8 Ge0°'T  €e9'T  69¢'T 692’1 | O1 ¢
orre  Le€'T V99T €VET | €9 €0T 16 06 ¢'6 ¢rO'T  LTGT  €8CT  €8C'T | § ¢
6cV'S  0€€'9  690°€  9.9'¢ | ¢TI 8L 9Tl 7’8 7’8 E8I'T  €99'T 06T 06T | © 4
qgH NWINT HAV WAV | TdTd qdH WINT HAV WAV | 9“"H WINT HAV WAV | W 2
18U [RAISIU] 9OUSPYUO)) (%) (o og)ig | (%) ¢ 10] 1D Jo 98rIaA0)-UON (g)4ma/((g)4pa)q sqO  sSNSd

0=d M TYTY Suisn () = 1o : Oy Sunysey
jo 1emod pue ‘g I10J S[RAISIUI 90USPYUOD 046 O} JO 93RISA0D-UOU pUR [[ISUS] 9FRIAR ‘SOIJRI 90URLIRA :7'C O[R],

61



3.4. SIMULATION STUDY

gyr’o  ¢vro  ¥wro vrro | Lce L0T 601 101 0Tt ¥96'0 €960 8¥6'0 L¥6'0 | 09 gc
GLT'0  ¢LT'0 6970 TLT0 | 099 L6 80T T'TT 80T 80T €90'T 6¥V0'T 6V0'T | 9¢ qc
90¢'0 00’0  L6T0 6610 | €CF 9'6 0Tt €11 €11 8€0'T  600T 0660 0660 | ST gc
¢re’0 ceg’'0 T€C0  ¢Ee’0 | 0°6¢ 101 T2l 911 LT ¥€0'T  800°'T 1660 1660 | OT 4
€ce'0  VIE0  VIEO0 9TI€0 | LT ¢or L0t 901 g0t LT0°'T  @e0'T  L00°T  LOO'T | G qc
I167°0  06¥'0 687’0 6870 | LI L6 66 L6 96 2660  990°T QIOT BIOT | @ qc
€vc0  L€C0  CEC0  T€CO0 | T'L9 €0T 87l €€l IR 7! 0€0'T 6¢0°T G660 9660 | 0G 0T
¢6c0 6.0  0L20 6920 | 90OV 9'8 [Nt g'TT 911 190'T  ¢L0'T  <¢00'T ¢00'T | S¢ 0T
¥Pe0  LCE0  8IE0 8IE0 | 8'9C gorT  VIT 0°€T T€1 GL6'0 800'T G€6'0 G€6'0 | ST 0T
86€°0 8LE'0  TLE0 0LE°0 | 9781 96 g'1T 60T 01T ¢90'T  Tel't  Gv0'T  S¥PO'T | OT 0t
1690 VIGO0 L0900 L0S0 | §CI ¢0r  0%ct 911 9Tl 8¥6'0  910'T  €96°0 €960 | § 0T
0E8°0 6180 IR0 6080 | 61T g'6 ¢'8 16 06 800°T GeI'T  ¥¥P0T  ¥WO'T | G 0T
9L£°0 6€€0 0€E€0 02E0 | T0OF 91T €91 €61 €61 198°0 8880 ¢I80 ¢I80 | 0§ G
¢9y'0 6070  C6ED  €8E0 | LT L0T  9%€I 861 86l G¥6'0  L00'T G680 G68°0 | S¢ g
6VS'0  L87°0  G9¥%°0 LGP0 | T'LT 8'8 T°0T1 €1l €11 8IT'T €€¢'T 080T 080T | 4T q
¥99°0  @L90  T99°0  €VS0 | LVI L8 Tct Tel g GL6'0 €60'T L2960 1960 | OT g
7980 0840 6940 T9L°0 | ¢TI 80T ¢TI 60T 80T I76'0  ¢OT'T 9860 9860 | G g
€cE'l  PSe'T  0€C'T  ¥ec'l | 6711 6 g'8 96 96 190°'T  Spc'T  €cl'T  €CI'T | ¢ g
697’1 €290  GE’'0 8¥S'0 | 691 €6 661 v'ee v'ee 116'0  9S90'T  988°0 9880 | 09 14
116'T  008°0  ¥SO'T  OTIL0 | ¥'¥I L8 191 981 981 8G0°'T  €L¢'T  ¥L0'T  VLOT | 9C ¢
J9T'c 0880  ¥#EO'T 08L0 | 98 g'8 6°€T g'ar1 g'ar1 Ly6'0 Lgg’T  SG00'T  GO0°T | 9T ¢
€y'c 6007  TICT GT16°0 | G4 9Tl 6°¢l ! Vit G86°0 99€'T  6ET'T 6¢1'T | O 14
0€€€ LEV'T  €69T 0€ET | G4 9¢r TTI 60T [Nt ¢IorT  SIV'T  @8T'T  e8T'T | § ¢
660G  ©99'¢  LL6C  TE6T | 66 6'8 0'ct ¢'8 ¢'8 PL0T  OPP'T  68T'T 68T | © 4
qnH ~ ININT  HAV ~ INdV | ITdTd 9dH WINT HAV WAV | 9“H WWINT HAV WAV | W 2
3SUST [BAIOJU] 9OUSPHYUO)) (%) (og lo)ag | (%) ¢ 10 1D JO 98eI0A0)-UON (g)4ma/((d)4na)g sqO  SnSd

'6z0°0=¢ Y [TY Swsn ( = o : 07 Supsoy

jo 1emod pue ‘g I0J S[RAISIUI 90USPYUOD 46 Y} JO 9FRISA0D-UOU pUR [[ISUS] 9FRISAR ‘SOIJRI 9DURLIRA :¢°C d[(R],

62



CHAPTER 3. ADAPTIVE ESTIMATORS BASED ON TESTING THE

VARIANCE COMPONENT IN A MULTILEVEL MODEL

¥we'0  ¥ve'0  vve0  ¥¥e’0 | 0°00T L8 06 L8 06 ¥60'T  PSO'T  ¥S0°'T  PSO'T | 0G qc
€9¢°0 ¥9¢0 €9¢0 ¥9¢0 | 666 76 86 76 86 ¥.6'0 V.60 VL6'0 V.60 | ST 54
G8¢’'0 8820 G8C'0 8820 | €96 6'6 66 00T 66 G86'0 €860 ¢86'0 @860 | ST qc
0T€'0 60€0 90€0 800 | 998 00T 801 VIl ¢'1l 6860 660 ¥.6°0 ¥.6°0 | OT qc
08¢0 TLE0 99€°0 69¢0 | 9€9 0T ¢€el 611 Tel Lc0'T  TO0'T  986°0 9860 | G qc
€E€G°0  9¢9'0 €590 ¢cS0 | 671¢ ¢0r 201 €01 gor1 €86'0 TcO'T  TL60 T.60 | G 4
800  91¥'0  80OF0 GIV'O | ¥'86 €6 00T 96 101 ¥66'0 ¥66'0 €66'0 €660 | 09 0T
0¥P'0 6670 TEV'O 9EV0 | ¥68 86 g0t T'TT €Tl 8T0'T LI0°'T  600°T 6001 | S¢ 0T
0L¥'0 G970  €SV'0 9S9¥0 | L€EL g'0rT  8'TI 61T ¢'cl I10°T  TTIO'T  ¥#86°0  ¥86°0 | ST 0T
619°0 1090  L8%V'0 98V'0 | €.LG 8'8 911 0°€T €€l 8¢0'T  Ge0'T  ¥.6°0 7¥L6°0 | OT 0T
7€9°0 1090 98¢0 ¥8G'0 | 9¢€€ 00T ¥¢l Tel €¢l €P0°'T  TS0'T  €86°0 €860 | § 0T
7280 998°0  TIP80 BER'O | €91 g6 86 66 86 6160  090°T 8L6'0 8L60 | C 0T
9%9'0 0990 <¢E90 VP90 | 98 86 61T ¢'1l 9¢l 2960 8960 6960 6960 | 09 g
769°0 @990 ¢8990 €V90 | T'L9 yor g€l 671 7at €66'0 6660 996°0 9960 | SC G
€8L°0 9¢L'0 60L0 ¢690 | €€9 06 81T 0°GT ¢art g60'T  TIT'T  €VO'T  €VO'T | G1 g
8¢80 G99L°0  LeL0  TIL0 | L'LE 0T 6°¢I L€T 0¥l 00T TIT'T  OT0'T OTO'T | OT g
7860 ¢88°0  T980 LE80 | G°0¢ 90T ¢¢€l T'€T Vel ¢96'0 ¢r0'T 6860 6¢60 | 9 q
VEV'T  GPET  OT€T  ¥6C'T | 991 L6 g'or1 60T 0Tt G90°'T  68T'T  €90T €901 | ¢ g
¢c9'c €9€'T 9¢l'c  I8C'T | 9G¥ ¢'IT 6°€C 9'8¢ 1°6¢ 0c6'0  G¥6'0  G68°0 9680 | 09 ¢
¢I8'¢ 6Vl 0c6'T O€T'T | T°6C | 6'1¢ 9'8¢ L'8¢ 966'0 8S0'T  67V6'0 6V6°0 | GC ¢
0€6'c 91T  TILT L90°T | L'ST 76 g'6T1 g'qe g'qe 6¢6'0 LEO'T €880 €880 | 4T 14
wre 99¢'1T  8pL'T 6111 | ¢4l 00T L'LT ¢'0¢ €'0¢ 006'0 G€S0'T L1880 1880 | OT ¢
Loy GQLLT  8€Ce  LO9'T | ¥EI 76 8'€T €41 LGT €0T'T Gee'T  COT'T <QOT'T | § ¢
8€G'¢  16L°9  Gyr'e  ¢CIT'S | ¢0I 0TT  8€I 76 7’6 910'T  ¢c€T 9607 960'T | ¢ 4
qgH NWINT HAV WAV | TdTd qdH WINT HAV WAV | 9“"H WINT HAV WAV | W 2
18U [RAISIU] 9OUSPYUO)) (%) (o og)ig | (%) ¢ 10] 1D Jo 98rIaA0)-UON (g)4ma/((g)4pa)q sqO  sSNSd

T0=0 qam 1Y Susn () = fo: 0 Surisey
jo 1emod pue ‘g I10J S[RAISIUI 90USPYUOD 046 O} JO 93RISA0D-UOU pUR [[ISUS] 9FRIOAR ‘SOIJRI 90URLIRA ¢ O[R],

63



3.4. SIMULATION STUDY

Figure 3.2: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and ¢, p=0
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Figure 3.3: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and ¢, p=0.025

25

Cl non-coverage
20
1
\D\
<
Cl non-coverage
20
1

a—
2 - v 3 a2
/ v /A,A I
o | eiu o | A_M//V/V v
— 7 v - V'V
&/
v
T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Obervations from each PSU (m) Obervations from each PSU (m)
c= 10 c=25
o _ [~
™ (3]
0 | w |
N N
Q (]
D j=2}
I o
2 R 5 9
Q Q
T T
= c
8 Q T A 8 3 .
5 A,A\A?v§ o 2
° SV —v ¢ . 7 Q/\\ /ﬁ\"
s &/ S & N,
v
T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Obervations from each PSU (m) Obervations from each PSU (m)

ADM
—4A  ADH

LM
—v LMM

Huber

65



3.4. SIMULATION STUDY

Figure 3.4: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and ¢, p=0.1
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Figure 3.5: Confidence interval average lengths using different variance esti-
mation methods and for various values of m and ¢, p=0
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Figure 3.6: Confidence interval average lengths using different variance esti-
mation methods and for various values of m and ¢, p=0.025
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Figure 3.7: Confidence interval average lengths using different variance esti-
mation methods and for various values of m and ¢, p=0.1
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For p # 0, Huber non-coverage was close to 10% in all cases. For p #
0, non-coverage rates for confidence intervals for 8 were generally close to
the nominal rate of 10% for all other methods of estimation. There were
some exceptions. The first was the non-coverage rates for the LMM, ADM
and ADH strategies; they tended to be much higher when there were small
number of sample PSUs (10 or less) with 10 or more observations per PSU
when p=0.025, in general. They also tended to be high when p=0.1, when
there were 2 and 5 sample PSUs with approximately 5 or more observations
per PSU. The ADM and ADH non-coverage rates tended to be high when
there were 10 sample PSUs with 10 or more observations per PSU. This may
be because of the difficulty in determining the appropriate degrees of freedom
in the LMM case.

For p =0.1, the LMM non-coverage rates were high when ¢ was small (10
or less) and m was large (5 or more), in general.

The ADH average lengths of confidence intervals for § were almost always
shorter than the Huber average lengths of confidence intervals for 5. When
there were 2 sample PSUs it was very clear that ADH average lengths of
confidence intervals for 5 were much shorter than Huber average lengths of
confidence intervals for 3, with orders 40-60% when p=0 and 0.025, and 30-
70% when p=0.1. When there were 5 sample PSUs, the average lengths for

the ADH were shorter with order of 15-25% for p=0 and 0.025, and 30-70%
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when there were 25 or less observations per PSU when p=0.1. When there
were 10 sample PSUs, the ADH average lengths were shorter for p=0.025
when there were 10-25 observations per PSU with order of about 15% and
when there were 5 and 10 observations per PSU for p=0.1 of order 10-15%.
There were no clear difference when there were more than 10 observations

per PSU.

Figure 3.2 shows that LM non-coverage was close to 10% when p = 0. It
was very high otherwise as shown by Figures 3.3 and 3.4. Hence, the use of

LM without at least checking Hy : 07 = 0 is not a viable strategy.

Figures 3.5 - 3.7 show the average lengths of confidence intervals for g
using the LM strategy were the shortest, however this strategy is not viable
because of its high non-coverage when p # 0. The Huber based approach
gave the widest intervals in general. The ADM average lengths of confidence
intervals for S were almost always shorter than the LMM average lengths of
confidence intervals for 5. When there were 2 sample PSUs it was very clear
that ADM average lengths of confidence intervals for § were much shorter
than LMM average lengths of confidence intervals for 3, with orders 7-15%
when p=0 and 0.025, and 10-20% when p=0.1. There were no clear difference

otherwise. For example:

e in case of c=2 and m=2 and p=0, ADM and ADH average lengths of

71



3.4.

SIMULATION STUDY

confidence intervals for § were 5.676 and 3.059, respectively, while the
average lengths of confidence intervals for § of LMM and Huber were

6.330 and 5.429, respectively.

in case of ¢=10 and m=>5 and p=0.025, ADM and ADH average lengths
of confidence intervals for § were 0.507 and 0.507, respectively, while
the average lengths of confidence intervals for § of LMM and Huber

were 0.514 and 0.537, respectively.

in case of c=25 and m=15 and p=0.1, ADM and ADH average lengths
of confidence intervals for [ were 0.288 and 0.285, respectively, while
the average lengths of confidence intervals for 8 of LMM and Huber

were 0.288 and 0.285, respectively.

3.4.4 Simulation Results on Adaptive Confidence In-

tervals for § for Unbalanced Data

A simulation study was conducted to compare the adaptive and non-adaptive

N

methods for estimating var(f) using PSUs with unequal sample sizes. Data

were generated from model (2.3), with different PSU sizes, m;. The value of

p was varied over a range of values of 0, 0.025 and 0.1. The number of PSUs,

¢, was also varied over a range of values of 2, 5, 10, 25 and 50. m; generated

randomly from uniform distribution. The average number of observations

per PSU, m was varied to be 3, 10 and 25 to be consistent with the balanced
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data case. For this purpose three cases were used. In case 1, the number of
observations was generated to be an integer between 2 and 4 with average
equal to 3 observations per PSU. In case 2, this number varied from 5 to 15,
with average equal to 10. Finally, in case 3, the average was 25, with m;
varying between 15 and 35. 1000 samples were generated in each case. The
hypothesis Hy : 07 = 0 was tested as described in Subsection 2.3.2 using the
restricted likelihood ratio test defined in Equation (2.31).

Tables 3.5 - 3.7 show the results for the unbalanced data case. They show
the ratio of the mean estimated variance of 3, E(var(f))/var(j3), using the
four strategies of estimation (ADM, ADH, LMM and Huber) with values of p
of 0, 0.025 and 0.1. In all tables we used § = 0 and significance level a = 0.1
for testing o7 = 0. The tables show the non-coverage rates of 90% confidence
intervals for S and the average lengths of these confidence intervals. The
proportion of samples where Hy : 07 = 0 was rejected are also shown.

The variance estimators were generally approximately unbiased as most
ratios were close to 1. There were some exceptions. The first was the LMM,
ADM and ADH variance estimators, which tended to be biased when there
were 2 sample PSUs with all average numbers of observations per PSU and
when there 5 sample PSUs with 10 or less average number of observations
per PSU for p=0. For p=0.025, it tended to be biased when ¢ was 2 with

m was (10 or less) and when there were 5 sample PSU with m was 3. For
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p=0.1, it tended to be biased when ¢ was 2 with m was 3 only.

Non-coverage rates for 5 were close to the nominal rate of 10% when p=0
for all methods except for the LMM method. The LMM non-coverage rates
were a bit smaller than the nominal rate when ¢=2 with all average numbers
of observations per PSU. The LMM non-coverage was good when there were
5 or more PSUs.

For p # 0, Huber non-coverage rate was close to 10% in all cases.

For p=0.025, the LMM and ADM non-coverage rates were much higher
than the nominal rate when there were (25 or less) sample PSUs with average
number of observations per PSU was large 25. The ADH non-coverage rate
was higher than the nominal rate when there were 2 sample PSUs with m=25.
In case of p=0.1, the LMM and ADM non-coverage rates were much higher
than the nominal rate when ¢ <10 and m=10 or 25, and when ¢=50 with
m=3. The ADH non-coverage rate was about the same as the nominal rate
in most cases except when ¢=5 with all values of m for p=0, when ¢=2 and
5 with m=25 and 3, respectively when p=0.025 and when c=2 with m=10
and 25, c=5 with m=25 and when ¢=50 with m=3 in case of p=0.1.

The ADM average lengths of confidence intervals for 5 were similar to the
LMM average lengths of confidence intervals for S for ¢ > 5 with all average
numbers of observations per PSU for all values of p. When ¢=2, the ADM

average lengths were about 6-12% shorter. The ADH average lengths of
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confidence intervals for 8 were similar to the Huber average lengths of con-
fidence intervals for g for all sample PSUs with all values of m and p except
when ¢=2, as the ADH average lengths were shorter than the Huber average

lengths of order about 30-65%.

The proportions of samples where Hy : o7 = 0 is rejected were generally
much higher than 10% when p=0, and was a very high 27% when ¢=5 and
m=3. They were much higher than for the balanced data case. This might
be because the PSU sizes in the unbalanced design case have a wide range,
for example; in case of m=25, the PSU sizes vary between 15 and 35. Or this
might be because of the distribution of the RLRT. It was assumed that the
distribution is a 50:50 mixture of x2 and x? following Chernoff (1954) in the
balanced and unbalanced designs. The 50:50 mixture of x? distribution of the
likelihood ratio test might not perform well in the unbalanced designs because
the response can not be divided into identically distributed sub-vectors as
in Stram and Lee (1994). This approximation may not be a very good
approximation in the unbalanced designs if the response is divided into small
or moderate number of sub-vectors, even if the responses are independent

(Scheipl et al., 2007).
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3.5 Conclusions

i.

ii.

Adaptive confidence intervals can perform poorly in designs with few
sample PSUs and large sample sizes in each PSU. In these designs, even
a small intraclass correlation will substantially inflate the variance of
the mean, however the PSU-level variance component is unlikely to be
statistically significant even if the intraclass correlation is as high as 0.1.
As a result, when the number of PSUs (¢) is 2 or 5, and the number
of observations per PSU (m or m) is 25 or more both of the adaptive
estimators have higher than desirable non-coverage when the intraclass
correlation is non-zero, of the order of 15-20%. It appears that for these
extreme designs, clustering must be allowed for in variance estimates,

even if it is not statistically significant.

In comparing the Linear Mixed Model (LMM) with the adaptive version

(ADM), we find that:

e Both the LMM and ADM approaches have close to nominal non-
coverage, except for extreme designs of the kind discussed in i.
For these designs, the adaptive and non-adaptive LMM methods
both have high non-coverage. In the case of the adaptive method,
this is presumably because there is not much power to detect the

PSU-level variance component, even when it is substantial. For
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the non-adaptive LMM, the problem seems to be that the LMM
confidence intervals are not exact and do not do well for small

sample sizes.

e The ADM confidence intervals are noticeably narrower (10-20%)
than the LMM for ¢ equal to 2 and 5, but there is not much to

choose between ADM and LMM for ¢=10 or more.

iii. In comparing the robust Huber-White approach with the adaptive ver-

sion (ADH), we find that:

e The Huber approach has close to nominal non-coverage in all
cases. So does the ADH approach, except for the extreme de-

signs mentioned in i.

e The Huber method gives wide confidence intervals when c is small
(2 or 5) with order of 10-80% eventhough the non-coverage is close
to the nominal 10%. This is because the degrees of freedom for
this method is equal to (¢-1). ADH has much narrower confidence
intervals (10-80%) , because its degrees of freedom are equal to
(n-1) rather than (c¢-1) if the PSU-level variance component is not

significant.

iv. This leads to the following recommendations:
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e Designs with fewer than 10 PSUs, and a large sample size in each
PSU should be avoided, even if the intraclass correlation is be-
lieved to be low. Hence, we recommend ignoring clustering if the

PSU-level variance effect is insignificant.
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Chapter 4

Robustness of Adaptive
Estimators based on Linear

Mixed Models to
Non-Normality

4.1 Introduction

In Chapter 3, the methods were based on fitting a linear mixed model. Data
were assumed to be normally distributed. In this chapter, the purpose is
to see if these methods still work well if the assumption of normality is not
justified. For this purpose, the same methods applied in Chapter 3 will be

applied to data that are log-normal rather than normal.

Log-normal distributions play a very important role in many sciences in-
cluding ecology and biology (Ott, 1995). A random variable Y is said to have
a log-normal distribution with parameters 1 € R and ¢ > 0 if the natural
logarithm of Y, X = In(Y), follows a normal distribution with mean g and
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standard deviation o (i.e. X ~ N(u,0?)) (Kapadia et al., 2005). Therefore,
it is equivalent to Y = e* where X is normally distributed with mean p and
standard deviation . The log-normal distribution is a continuous distribu-
tion which is typically used to model right-skewed variables. The log-normal
distribution is useful for many intrinsically positive variables, for example
residential property prices (Zabel, 1999) and household income (Longford
and Pittau, 2006), and organisms size and number of species in biology (Kr-
ishnamoorthy and Mathew, 2003).

The log-normal distribution will be denoted in this thesis by LN (u,o?).
Crow and Shimizo (1988) defined the probability density function (pdf) of
Y ~ LN (u,c?) by

1 (In(y)—p)?
T ZUp|: o 202 ]
fly) =3 Vo

0 y <0.

> 0,
Y (4.1)

Figure 4.1 shows the log-normal probability density function with different
values of ¢ - this parameter controls the skewness of Y.
Crow and Shimizo (1988) noted that the mean (E(Y')) and the variance

(Var(Y)) of the log-normal random variable Y as

1
BY) = ep(u+50%);

Var(Y) = exp(2u+ o®){exp(c?) — 1.} (4.2)

This chapter is divided into four sections. Sections 4.2 and 4.3 describe

the simulation studies conducted to evaluate the adaptive methods described
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Figure 4.1: Probability density function of the Log-normal distribution plot-
ted for a sample of size 10,000
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in Chapter 3 when data are log-normal rather than normal. Section 4.2
describes simulation of a balanced design and Section 4.3 covers unbalanced

designs. In Section 4.4, we will state the conclusions of this chapter.

4.2 Simulation Study of Log-Normal Data in
a Balanced Two-Stage Design

A simulation study was performed to compare the adaptive and non-adaptive

A~

methods utilized in Chapter 3 for estimating var(/5) and associated confi-
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dence intervals where data are log-normal rather than normal. This study
was based on equal sample sizes within PSUs. Data were generated from the
intercept only model (2.3) assuming that b; and e;; are normally distributed
with zero mean and variances equal to o7 = ﬁoQ and 0? = 0?2, respectively,
where o was %, % or % Then the Equation Y = X was applied to generate
log-normally distributed values.

The five procedures for estimating the variance of 3 used in Chapter 3
were used in this simulation as well. These strategies are the linear model
strategy (LM), the linear mixed model strategy (LMM), the robust Huber-
White variance estimator strategy (Hub) and the two adaptive strategies,
the LMM based and the Huber based adaptive strategies. 1000 samples were
generated in each case. All methods used in this chapter were identical to
those used in Chapter 3. The values of p, ¢, m and o were varied. The
parameter p was varied over a range of values of 0 and 0.025. The number
of PSUs, ¢, was varied over a range of values of 2, 5, 10 and 25 and the PSU
sample size was varied over a range of values of 2, 5, 10, 15, 25 and 50.

For each sample, the estimated regression coefficients B and the estimators
of var(f) were calculated for the LMM and LM models using the Ime4 and
Im packages (Pinheiro and Bates, 2000) in the R statistical environment (R

Development Core Team, 2007). The true variance of B was determined by

calculating the variance over all 1000 simulations.
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The hypothesis Hy : 07 = 0 was tested as described in Section 2.3.2 using
the restricted likelihood ratio test defined in equations (2.30) and (2.31). The
two adaptive strategies ADM and ADH were as defined in Section 3.2. 90%
confidence intervals for § were calculated for the LMM method using the
method of Faes et al. (2009) as described in Subsection 2.2.3. Huber-White
confidence intervals for § were calculated as discussed in Subsection 2.2.5,
and the adaptive confidence intervals for S were calculated as discussed in
Section 3.2. The approaches are applied to Y but the intraclass correlation,
p, applies to X.

The results for the simulation study using several log-normal distributions
with two values of o (5 and 2), and two values of p (0 and 0.025) are shown
in Tables 4.1 - 4.4. At this section we assumed that the PSUs have the same
number of observations, that is m; = m, for all :=1, 2, ..., c¢. Results for
other values of p and o are shown in Appendix C.

As in Chapter 3, the ratio of the estimated variance to the true variance
of B, E(var(B3))/var(3), was calculated. The tables also include the non-
coverage rates for 8 as well as the average lengths of the 90% confidence
intervals for 5. The restricted likelihood ratio test probabilities of rejecting
Hy : o = 0 are included in these tables as well. Four strategies of estimation

are included in the tables, ADM, ADH, LMM and Hub. The LM strategy of

estimation is not shown, because Chapter 3 showed that this method was
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4.2. SIMULATION STUDY OF LOG-NORMAL DATA IN A
BALANCED TWO-STAGE DESIGN

inadequate even for normal data.

Similar to the Huber variance ratios calculated in Chapter 3, Huber vari-
ance ratios were as close to 1 for all values of p and o.

The LMM variance estimators have approximately the same bias as the
LMM variance estimators in Chapter 3, when p=0 regardless of the skewness
level, 0. These biases were large when there were 5 or less sample PSUs.
They became smaller for larger numbers of sample PSUs (10 or more).

For p=0.025, the LMM variance estimators for log-normal data have
smaller bias than the LMM variance estimators for normal data when there
were 2 sample PSUs for o = % These biases were larger in the case of 0 = %
when ¢=2. The biases were approximately the same for other numbers of
sample PSUs (5 or more).

For p=0 and p=0.025, the ADM and ADH variance estimators for the
log-normal data with both skewness levels have approximately the same bias
as the ADM and ADH variance estimators in Chapter 3. The biases were
large when there was 2 sample PSUs and small otherwise. For the log-
normal as well as the normal data, the biases for the ADM variance estimator
were smaller than the biases of the LMM variance estimator, regardless the
intraclass correlation value, p, and the skewness level, o.

For p=0 and ¢ = %, non-coverage rates of confidence intervals of 5 using

the LMM, ADM and ADH methods were close to the nominal rate (10%) as
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well as the LMM, ADM and ADH non-coverage rates in Chapter 3. For p=0
and 0 = %, the LMM, ADM and ADH non-coverage rates differed signifi-
cantly from 10% when there were 2 or 5 sample PSUs with small number of
observations per PSU (15 or less). For p=0.025, the LMM, ADM and ADH
non-coverage rates differed appreciably from 10% for all values of ¢ and m,
in general, for both skewness levels. For all values of p and o the Huber
non-coverage rates were close to the nominal rate, as in Chapter 3.

For both values of p, the LMM non-coverage rates when o = % were closer
to the nominal rate than the LMM non-coverage rates when o = % for small
sample PSUs (5 or less). The average length of the 90% confidence intervals
for § using all methods of estimation were obviously shorter when o = %
than when o = % for all values of c.

The 90% confidence intervals for 5 were much shorter using the log-
normal data than those calculated using the normal data in Chapter 3, be-
cause Var(Y) = exp(2u + o?){exp(c?) — 1} less than the variance of the
simulated data in Chapter 3.

1

For p=0 with ¢ = 3 and 0 = %, when there were 2 sample PSUs the

wl

average length of the 90% confidence intervals for 5 using the ADM method
was 15-25% shorter than the LMM method. The ADM were 10-15% shorter
when there were 5 sample PSUs with large number of observations per PSU

(15 or more). The average length of the 90% ADH confidence intervals for 3
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were 65-80% shorter than the Huber when there were 2 sample PSUs, 15-30%
shorter when there were 5 sample PSUs, and 10-15% shorter when there were
10 sample PSUs with 5 or more observations per PSU. Differences between
the adaptive and non-adaptive confidence interval lengths were negligible in
all other cases.

For p=0.025 with ¢ = % and o = %, when there were 2 sample PSUs
the average lengths of the 90% ADM confidence intervals for S were 10-
25% shorter than the LMM method. The average lengths of the 90% ADH
confidence intervals for 5 were 65-85% shorter than the Huber when there
were 2 sample PSUs, and 10-20% shorter when there were 5 sample PSUs.
There were no relevant differences, otherwise.

The proportions of samples where Hy : 07 = (0 was rejected were similar

to those in Chapter 3.

4.3 Simulation Study of Log-normal Data in
an Unbalanced Two-Stage Design

A simulation study was conducted to compare the adaptive and non-adaptive
methods for estimating var(ﬁ) using PSUs with unequal sample sizes and
log-normal data. Tables 4.5 - 4.8 show the results of the simulation study.
Log-normal data were generated in the same way as described in Section

4.2. Data were generated assuming unequal sample within PSU sizes, m;.
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Results for other values of p and ¢ are shown in Appendix C. Two values of
p were used, 0 and 0.025. The number of sample PSUs, ¢, was also varied
over a range of values of 2, 5, 10, 25 and 50. The value of ¢ was varied
over % and % Results for other values of p and o are shown in Appendix
C. The average number of observations per PSU, m was set to 3, 10 and
25. The three cases used for this purpose are explained in Subsection 3.4.4.
The hypothesis Hy : 07 = 0 was tested as described in Subsection 2.3.2
using the restricted likelihood ratio test defined in Equation (2.31). In all
tables we used 8 = 0 and significance level a = 0.1 for testing o7 = 0.
The tables show the non-coverage rates of 90% confidence intervals for (3
and the average lengths of these confidence intervals. The proportion of
samples where Hy : 07 = 0 was rejected are also shown. The tables show the
ratio of the mean estimated variance of 3, E(var(3))/var(3), using the four
strategies of estimation (ADM, ADH, LMM and Huber) with values of p of
0 and 0.025 and skewness levels of o = % and o = %

For all values of p and o, the average length of the 90% ADM confidence
intervals for 8 was 10-15% shorter than the LMM confidence intervals for (3
when there were 2 sample PSUs with all values of m. For all values of p and
o, the average length of the 90% ADH confidence intervals for  was much

shorter than the Huber (50-65%) when there were 2 sample PSUs with all

values of m. For p=0 and o = %, the average length of the 90% ADH confid-
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ON LINEAR MIXED MODELS TO NON-NORMALITY
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4.3. SIMULATION STUDY OF LOG-NORMAL DATA IN AN
UNBALANCED TWO-STAGE DESIGN

ence intervals for  was shorter than the Huber (5-8%) when there were 5
sample PSUs with m=2 and 25. For p=0.025 and ¢ = %, the average length
of the 90% ADH confidence intervals for 5 was shorter than the Huber (about
6%) when there were 5 sample PSUs with m > 10. For p=0.025 and o = %,
the average length of the 90% ADH confidence intervals for 5 was shorter
than the Huber (5-8%) when there were 5 sample PSUs with all values of m
and when ¢=50 with m=10. There were no relevant differences, otherwise.

The proportions of samples where Hy : 07 = 0 was rejected were relatively
smaller for log-normal data than for normal data, regardless the value of the
intraclass correlation, p and the skewness level, o.

The Huber non-coverage rates were close to the nominal rate (10%) for
all values of p and o, as in Chapter 3.

For p=0, the LMM, ADM and ADH non-coverage rates were close to the
nominal rate for both values of o, as in Chapter 3, except when there were
small number of sample PSUs (5 or less) with 2 observations per PSU.

For p=0.025 with o = %, the non-coverage rates of the LMM, ADM and
ADH confidence intervals were close to 10%, except when there were 2 sample
PSUs with 10 or more observations per PSU, as in Chapter 3. The LMM
and ADM non-coverage rates were higher than the nominal rate when there

were 5 and 2 sample PSUs with average number of observations per PSU

equal to 25. When o = %, the non-coverage rates of the LMM, ADM and
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ON LINEAR MIXED MODELS TO NON-NORMALITY

ADH confidence intervals were close to 10%, except when there was a small
number of sample PSUs (5 or less) with all all values of m.

Similar to Chapter 3 all variance estimators for p=0.025 and both values
of o were approximately unbiased as all variance ratios were approximately
1, except that the LMM, ADM and ADH variance estimators tended to be
biased when there were small numbers of sample PSUs (5 or less) with all
average numbers of observations per PSU.

The proportions of samples where Hy : 07 = 0 was rejected were higher
than the nominal rate (10%), but they were lower for normal data in Chapter
3 for both values of p. Possible reasons why these proportions are higher than

10% are discussed in Subsection 3.4.4.

4.4 Conclusion

Huber variance estimators were unbiased regardless of ¢ and p.

Huber has close to the nominal non-coverage in all cases.

For p=0 with both values of ¢, LMM variance estimators have similar

biases to Chapter 3.

e LMM variance estimators have smaller bias than in Chapter 3 when

¢=2, 0 = 3, and p=0.025.
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4.4. CONCLUSION

e LMM variance estimators have larger bias than in Chapter 3 when ¢=2,

o= %, and p=0.025.

e ADM and ADH variance estimators have approximately the same bias

as in Chapter 3, regardless the values of p and o.

e When ¢ < 5 and for all values of p and o, ADM variance estimators
have smaller biases than the LMM variance estimators, similar to what

was in Chapter 3.

e In the unbalanced data designs, LMM, ADM and ADH variance esti-

mators tended to be biased when ¢ < 5 for all m.

e LMM, ADM and ADH non-coverage rates were

— close to the nominal rate when p=0 and ¢ = %.

w

— significantly larger than the nominal rate when ¢ < 5 with m < 15
when p=0 and o = %, in the balanced data design. They were
larger than 10%, in the unbalanced data designs when ¢ < 5 with

m = 2.

— were considerably different from 10% for all values of ¢, m and o
when p = 0.025, in the balanced data design. They were close to

the nominal rate except when ¢=2 with m > 10
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e Log-normal data with o

% gave shorter confidence intervals than

log-normal data with ¢ = % in all cases.

e In comparing adaptive and non adaptive confidence intervals when p=0

and for both values of ¢, in the balanced data designs:

— ADM was 15-25% shorter than the LMM when ¢=2, 10-15% shorter

when ¢=5 with m > 15.

— ADH was 65-80% shorter than the Huber when c¢=2, 15-30%

shorter when ¢=5 and 10-15% shorter when ¢=10 with m > 5.

e In comparing adaptive and non adaptive confidence intervals when

p=0.025 and for both values of o, in the balanced data designs:

— ADM was 10-25% shorter than the LMM when ¢=2, 10-15% shorter

when ¢=5 with m > 15.

— ADH was 65-85% shorter than the Huber when ¢=2 and 10-20%

shorter when c¢=5.

e In the unbalanced data designs

— the ADM confidence intervals were 10-15% shorter than the LMM

confidence intervals when c=2.

— the ADH confidence intervals were 50-65% shorter than the Huber
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4.4. CONCLUSION

confidence intervals when c=2, for both values of p and 0. They

were 5-8% when ¢=5, in general.

e Proportions of samples where Hy : 07 = 0 is rejected were similar to
those in Chapter 3 in the balanced data designs and relatively smaller

in the unbalanced data designs.
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Chapter 5

A Modified Adaptive Strategy
based on the Estimated Design
Effect

5.1 Introduction

The design effect is the ratio of the design variance of a statistic, B, to the
variance under simple random sampling with the same sample size (Kish,
1965, p.162). For two-stage sampling with equal probability of selection at
both stages, it can be approximated by deff = 1+ (m — 1)p, where m is the
average number of observations per sample PSU. One way of estimating the

design effect is
deff =1+ (m—1)p,

where p is obtained from a REML fit of the linear mixed model (2.3).
In Chapter 3, the adaptive strategies were defined based on the linear

A

mixed model. Clustering was allowed for in the estimation of var(3) only if
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5.1. INTRODUCTION

the PSU-level variance component (07) was statistically significant. However,
it is possible that the estimated intraclass correlation could be quite small,
even if o7 is significant. In this case, it may still be preferable to ignore
clustering when estimating var(,@). Then p could be large and m is small so

design effect is small. This chapter evaluates adaptive strategies along these

lines.

In this chapter the adaptive strategies are based on the linear mixed
model and normal data as in Chapter 3. The new adaptive strategies will be
defined based on testing the null hypothesis Hy : 07 = 0 and on comparing
the estimated design effect to a cutoff value, d. If we reject the null hypothe-
sis and, at the same time the estimated design effect cﬁf\f is larger than the
cutoff point, d, the variance estimators are extracted from the linear mixed
model or are estimated using the robust Huber-White variance estimator.
Otherwise, the variance estimators are extracted from the linear model. Sev-
eral cutoff points were evaluated. The flowchart in Figure 5.1 summarizes

~ ~ A

the two adaptive estimators of var(3): varapy(8) and varapy(B).

The two adaptive strategies (ADM) and (ADH) are defined as

WLMM(B) if Hy is not retained,

U/a\TADM(B) == and @Z d (51>
var .y (8) otherwise.
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v/cﬁHub(B) if Hy is not retained,
var apu(B) = and deff > d (5.2)

varp(B)  otherwise.
This chapter is divided into three sections. Section 5.2 will evaluate
the adaptive and other methods using cutoff values of d of 1.05 and 1.5
by simulation using balanced and unbalanced data cases. In Section 5.3 we

will draw conclusions.

Test Hy : of = 0

Calculate d ff(B) =

1L+ (m—1)p
Reject Hy and @“ >d
Otherwise
WADM(B) = var A)y U/CWAADM(B) =
or UCLTADH(/G) = UCW’Hub(ﬁ) WADH(B) = WLM(B)

Figure 5.1: Flowchart showing the adaptive procedure based on testing Hy :

o2 = 0 and comparing def f to a predetermined cutoff (d), using
LMM-REML variance estimator or Huber-White variance esti-
mator as an alternative
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5.2. SIMULATION STUDY

5.2 Simulation Study

The simulation study conducted in this chapter takes the balanced and un-
balanced designs cases into consideration. In this study data were generated
from intercept-only model defined in Equation (2.3). Hp : o7 = 0 is tested
using the restricted likelihood ratio test (2.30). The intraclass correlation
(p) is estimated using Equation (2.7). The estimated intraclass correlation is
then used to estimate the design effect for 3 defined by Equation (1.1). The
estimated design effect with the RLRT, simultaneously, are used to define
the adaptive strategies in equations (5.1) and (5.2). Values of d of 1.05 and

1.5 were used.
5.2.1 Simulation Study Using Balanced Data case

Similar to the simulation study conducted in Chapter 3, a simulation study
was conducted in this chapter to compare the adaptive and non-adaptive
methods for estimating Uar(B) based on testing whether the PSU-level vari-
ance component is zero and at the same time estimating the design effect and
comparing it to a cutoff value, d. The simulation study aimed to compare
the effect of using the estimated design effect on the adaptive methods for
estimating var(3). The intercept only model (2.3) was used to generate the

data for the simulation study, with m; = m. The values of p, ¢ and m were

varied. The parameter p was varied over a range of values of 0, 0.025, 0.05
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and 0.1; ¢ takes the values 2, 5, 10 and 25; and m takes the range of values
of 2, 5, 10, 15, 25 and 50. 1000 samples were generated in each case.

A

For each sample the estimated regression coefficients () and the estima-
tors of var(ﬁ) were calculated for the LMM and LM models using the ime4
and Im packages (Pinheiro and Bates, 2000) in the R statistical environment
(R Development Core Team, 2007). The Huber-White variance estimator of
3 was calculated as well by coding Equation (2.24) in R. The true variance
of B was determined by calculating the variance over all 1000 simulations.

The two adaptive strategies ADM and ADH were as defined in Section
5.1. 90% confidence intervals of § were calculated for the LMM method using
the method of Faes et al. (2009) as described in Subsection 2.2.3. Huber
confidence intervals of 3 were calculated as discussed in Subsection 2.2.5,
and the adaptive confidence intervals of B were calculated as discussed in
Section 3.2.

Tables 5.1 - 5.4 show the ratio of the mean estimated variance of 3 using
the four strategies of estimation (ADM, ADH, LMM and Huber) with values
of p of 0 and 0.025, and values of d of 1.05 and 1.5. Results for other
values of p and d are shown in Appendix D. In all tables we used § = 0
and significance level a = 0.1 for testing Hy : 0f = 0 and at the same

time checking if @ > d. The tables show the non-coverage rates of 90%

confidence intervals of 5 and the average lengths of these confidence intervals.
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5.2. SIMULATION STUDY

The proportions of samples where Hy : 07 = 0 is rejected are also shown, as
well as the proportions of samples where Hy : 07 = 0 is rejected and at the
same time @ > d, p[@ > d& Rej HO}, and the proportion of samples
where @ > d given that Hy : 07 = 0 is rejected, p[@f > d|Rej HO], are
also shown.

Tables 5.1 and 5.2 showed the simulation results for the cutoff d=1.05
with both values of p. They showed that p[@ > d|Rej Ho| was 100% for
all designs. They showed that the variance ratios, non-coverage rates and
average lengths of 90% confidence intervals were perfectly identical to the
variance ratios, non-coverage rates and average lengths of 90% confidence
intervals in Chapter 3.

Tables 5.3 and 5.4 showed the simulation results for the cutoff d=1.5
with both values of p. They showed that p[c%f\f > d|Rej Ho] was 100%
for designs with ¢ < 10, except in designs with ¢=10 with m=2. In these
designs they showed that p[cﬁf\f > d|Rej Hy] was 100% for all designs. They
showed that the variance ratios, non-coverage rates and average lengths of
90% confidence intervals were perfectly identical to the variance ratios, non-
coverage rates and average lengths of 90% confidence intervals in Chapter 3.
In designs with ¢=25, p[@ > d|Rej Ho} was less than 100% for both values
of p. Therefore, the variance ratios, non-coverage rates and average lengths of

90% confidence intervals were different from the variance ratios, non-coverage
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CHAPTER 5. A MODIFIED ADAPTIVE STRATEGY BASED ON THE
ESTIMATED DESIGN EFFECT

rates and average lengths of 90% confidence intervals in Chapter 3. There
was no relevant differences in these designs.

P[@ > d|rejHy| was 100% or close to it almost all the time because
Hj is only rejected when p is reasonably large. Also, H, tends to be rejected
when there is sufficient data on p, which occurs when neither ¢ nor m are
too small. As a result, the cases when Hj is rejected are also the cases when
@ is large, so that P[@ > d|rejHy] ~ 1. This means that applying the
cutoff to the design effect has no effect, so that the results are very close or

identical to those in Chapter 3.

5.2.2 Simulation Study Using Unbalanced Data case

A simulation study was conducted based on unequal PSU sizes to see the
effect of using the estimated design effect on the adaptive strategies of es-
timating the variances of 5. Data were generated from model (2.3), with
different PSU sizes, m;. The values of p and ¢ were varied. 1000 samples
were generated in each case. The values of m were varied to be 3, 10 and 25.
For this purpose three cases were used. In case 1, the number of observations
was generated to be between 2 and 4 with average equal to 3 observations per
PSU. In case 2, this number was varied from 5 to 15, with average equal to 10.
Finally, in case 3, the average was 25, therefore the number of observations

was varied from 15 to 35. Several cutoff values were used to define
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5.2. SIMULATION STUDY

the adaptive strategies as well as in the balanced data case, where d takes
the values of 1.05, 1.1, 1.2 and 1.5. The results related to values of d of 1.1
and 1.2 are shown in Appendix D.

Tables 5.5 - 5.8 show the results of the simulation study for the unbalanced
data case with two cutoff values, d=1.05 and 1.5. They show the ratio of the
mean estimated variance of 3 using the four strategies of estimation (ADM,
ADH, LMM and Huber) with a range of values of p of 0 and 0.025 for both
cutoff values. Similar to what was done in Chapter 3, in all tables we used
f = 0 and significance level o = 0.1 for testing o7 = 0 and comparing the
estimated design effect cgf\f to a cutoff value d. The tables show the non-
coverage rates of 90% confidence intervals for 3 as well as the average lengths
of these confidence intervals. The proportion of samples where Hy : 07 = 0
is rejected, Hy : 0 = 0 is rejected and at the same time cﬁf\f > d and the
proportion of samples where @ > d given that Hy : 0 = 0 is rejected are
also shown.

Tables 5.5 and 5.6 show the results for the cutoff value d=1.05 with both
values of p. They show that p[@ > d|Rej Hg] was 100% for all designs.
They showed that the variance ratios, non-coverage rates and average lengths
of 90% confidence intervals were perfectly identical to the variance ratios,
non-coverage rates and average lengths of 90% confidence intervals in Chapter

3.
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ESTIMATED DESIGN EFFECT

Tables 5.7 and 5.8 show the results for the cutoff value d=1.5 with both
values of p. They showed that all simulation results were identical to sim-
ulation results in Chapter 3 in designs with ¢=2 with all values of m and
for both values of p. When ¢ > 5, p[@ > d|Rej Ho} was less than 100%.
Hence the adaptive variance estimators were smaller than the adaptive vari-
ance estimators in Chapter 3. They were less biased in designs with ¢=5 and
10 with m < 10 and 25, respectively. The adaptive non-coverage rates were
close to the nominal rate as in Chapter 3 when p=0. The ADM non-coverage
rates were close to the nominal rate when p=0.025, except in designs with
c=5H, 10 and 25 with m = 25 and designs with ¢=50 with m < 10. The
ADH non-coverage rates were close to the nominal rate when p=0.025, ex-
cept in designs with c=5 and 25 with m = 25 and in designs with ¢=50 with
m < 10. In these designs there was no relevant difference in the average
lengths of the 90% adaptive confidence intervals from the average lengths of

the 90% adaptive confidence intervals in Chapter 3.

5.3 Conclusions

The variance ratios, non-coverage rates and average lengths of 90% confidence
intervals were perfectly identical to the variance ratios, non-coverage rates
and average lengths of 90% confidence intervals in Chapter 3 in all designs

when the cutoff value d=1.05, because p[@f > d|Rej Ho]zl in all of these
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designs. When the cutoff value d=1.5, the variance ratios, non-coverage rates
and average lengths of 90% confidence intervals were perfectly identical in
balance designs with ¢ < 10 and unbalanced designs with c=2.

In the unbalanced designs, the adaptive variance estimators were less
biased than the adaptive variance estimators in Chapter 3 in designs with
c=5 and m < 10 and designs with ¢=10 and m=25. For p=0.025, the
adaptive non-coverage rates were closer to the nominal rate than in Chapter
3 when c¢=5, 10 and 25 with m = 25 and when ¢=50 with m < 10. Lengths
of adaptive confidence intervals were relatively similar to lengths of adaptive
confidence intervals in Chapter 3.

For balanced sampling, including a cutoff of 1.05 or 1.5 for the estimated
def f has no effect on adaptive strategies. Larger values for the cutoff may be
worth evaluating in future research, but it seems unlikely that the approach
will give useful benefits. When there are unequal sample sizes, there is a
small benefit in including a cutoff of 1.5 for the estimated def f, perhaps
because the restricted likelihood ratio test has a high type-I error rate for

unbalanced data.
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Chapter 6

Adaptive Design Using a Pilot
Survey

6.1 Introduction

A pilot survey is a small survey conducted prior to a survey, in order to trial
the operations, instrument design and possibly sample design for the main

survey (Stopher and Metcalf, 1996, Chapter 4).

Pilot surveys are an important step in running a successful survey (Tei-
jlingen and Hundley, 2002). They can save time and money by giving ad-
vance warning about the points where the main survey could fail (Teijlingen
and Hundley, 2002). They should provide enough data for the researcher or
survey manager to decide whether to continue with the main survey. They
reduce the number of unexpected problems because there is an opportunity
to redesign the main survey to be conducted according to the results revealed
by the pilot survey (Skinner et al., 2007).
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6.1. INTRODUCTION

The number of units to select from each PSU is an important decision
that has to be made in developing the design of a two-stage survey. A
common approach is to assume a simple cost model such as (1.3). For two-
stage sampling designs, assuming equal sample sizes from each PSU and
simple random sampling at both stages, the optimal choice of number of
observations per PSU is mg, = ,/g—;% (Hansen et al., 1953, p.286) where
p is the intraclass correlation and C and C5 are the parameters of the cost
model (1.3).

To develop the design, a value of p has to be assumed or estimated.
One way to do this is to conduct a pilot survey. However, estimates of
p are often quite small, for example 0.01 or 0.02 in human studies (Killip
et al., 2004). When p is small even small changes to the assumed value can
affect m,,. The intraclass correlation is often quite small. It is 1 when
there is perfect homogeneity within PSU. It can be negative when there is
extreme heterogeneity within PSUs with smallest possible value of p equal
to —1/(M — 1) (Hansen et al., 1953, p.260). When PSUs are geographic
areas and final units are households in these areas, it is generally less than
0.1 (Verma et al., 1980). It is typically between 0 and 0.2, when PSUs are
households and final units are people in households (Clark and Steel, 2002).
Small values will lead to a large within PSU sample size (Steel and Clark,

2006). When the true p is small, the estimated p in multilevel analysis is
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CHAPTER 6. ADAPTIVE DESIGN USING A PILOT SURVEY

often equal to 0 (Muthén and Satorra, 1995). Estimates of p calculated from
a pilot survey would often be highly variable, given the small sample usually
selected for pilot surveys.

In this chapter, it is assumed that the intraclass correlation is estimated
from pilot survey data. It is then used to estimate the optimal sample PSU
size based on minimizing the variance of the sample mean subject for fixed

total cost.

Figure 6.1: Histograms of p from 1000 simulations when p=0.025
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Figure 6.1 shows how variable p can be for typical pilot sample sizes. The

distributions of p are shown for different numbers of sample PSUs, ¢,, and
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6.1. INTRODUCTION

units per sample PSU, m,, based on 1000 simulated data sets from model
(2.3) with no covariates and p=0.025. The Figure shows that p is zero more
than 70% of the time and even when nonzero is often much smaller than
0.025.

When p equals to zero, Equation (1.4) for m,,; cannot be applied. In this
case, the optimal design involves setting m to the largest possible value, i.e.
the PSU population size, M. The resulted number is truncated to be at least
2 to be able to estimate the intraclass correlation, and used as the number of
PSU observations to design the main survey. In this case we can obtain the
intraclass correlation. Even when p is positive, it may be very small, leading
to large values of m. To avoid very large values of m in the main survey,
truncation based on a maximum cutoff value A will be evaluated. The PSU

sample size for the main study will therefore be

. Gy 1—p )
Momain = Min({max — —2),A). 6.1
maa 1/ G =0 02) (6.1

It will be assumed that the objective of the main survey is to estimate a
regression coefficient 4. Simulations to evaluate the procedures will be based
on an intercept-only model, (2.3). Figure 6.2 shows the procedure of the
pilot survey performed in this chapter.

Example

The following example shows the effect of small value of p on the optimal
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CHAPTER 6. ADAPTIVE DESIGN USING A PILOT SURVEY

PSU sample size (mgy). It also shows the effect of the estimated intraclass

correlation and the PSU sample size on the design effect.

Pilot survey, with ¢, PSUs
and m,, units per PSU

Calculate p from
pilot survey data

. l )
e A ~
-
Calculate myqim = [1 /Tpg_; ]
o 2
- s
Cmain = Grmo—g, based on a fixed

budget, Co=1, C;=0.5, 2 and 10
and A=10, 20, 30, 40, 50 and 100

i

Conduct the main sur-
vey USINg Cmain and Myngin

Calculate statistics, such as 7.

Figure 6.2: Flowchart explaining the adaptive procedures based on a pilot
survey

Assume that the total cost, Cy is 5000, the cost of including an extra

element in the sample, (5, is 1 and the average cost of including an extra
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PSU in the sample, ', is 0.5, 2 or 10.

Table 6.1: The effect of estimated intraclass correlation, p on the optimal
number of PSUs, optimal number of observations per PSU and on
the design effect, where def f = 1+ p(m — 1), based on p = 0.025,
a budget of C';=5000 and different values of the cost of including
a new PSU in the sample, C, of 0.5, 2 and 10.

Est ICC C1=0.5 Ch=2 Cy =10
P | Mopt Copt def f Mopt Copt def f Mopt Copt def f
0.045 3 | 1429 1.05 7 | 667 1.15 15 | 323 1.35
0.025 4 | 1111 1.08 9 | 526 1.20 20 | 244 1.48
0.01 7 667 1.15 14 | 345 1.33 31 | 159 1.75

0.005 10 476 1.23 20 | 244 1.48 45 | 110 2.10

0.001 22 222 1.53 45 | 110 2.10 100 50 3.48

0.0005 32 154 1.78 63 79 2.55 141 35 4.50

0.0001 71 70 2.75 141 35 4.50 316 16 8.88

0.00005 100 50 3.48 200 25 5.98 447 11 | 12.15

0.00001 224 22 6.58 447 11 | 12.15 | 1000 5 | 25.98

0.000005 316 16 8.88 632 8 | 16.78 | 1414 4 | 36.33

0.000001 707 7 | 18.65 | 1414 4 | 36.33 | 3162 2 | 80.03

Table 6.1 shows that as p approaches zero, m,, becomes very large,
whereas the number of PSUs ¢,,; decreases. The value of m,,, is also larger
when the cost of including a new PSU increases. The design effect, calcu-
lated from Equation (1.1), with p of 0.025 is also very large as p approaches
zero. This demonstrates how small values of p, which can easily occur when

p=0.025, can lead to a very inefficient design.
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CHAPTER 6. ADAPTIVE DESIGN USING A PILOT SURVEY

This chapter is divided into 4 sections. In Section 6.2 a review of Brooks
(1955) is given. Section 6.3 describes a simulation study conducted to evalu-
ate the adaptive design based on a pilot, and to evaluate different settings for
A, ¢, and m,,. The parameters p, C; and Cy were also varied. It discusses the
best choice for A given p, C and C5 in order to minimize var(ﬁ). In practice,
however, p would not be known. Also, U(LT(B) is not the ideal measure for
choosing m, and c,, because it does not reflect the cost of increasing m,, and
cp- Section 6.4 introduces the “cost-adjusted design effect” to compare the
adaptive strategy where a pilot is conducted and used to design the main

survey, to the strategy of conducting a simple random sampling (SRS) with

no pilot, with same total cost.
6.2 Review of Brooks (1955)

Brooks (1955) described a very similar problem to the one covered by this

chapter. He used the model
Yy =Y. +bi+ey i=1,...,¢c,5=1,...,m, (6.2)

where Y _is the population mean.
Fixing the two-stage sample cost model (1.3) and minimizing the variance

of the sample estimate, he derived the optimal PSU sample size to be

Cl Oe¢

- 3
Coor’ (6.3)

Mopt =

129



6.2. REVIEW OF BROOKS (1955)

Mep could be estimated using a pilot sample to be

C’1 5-6

—_— 4
02 5'1, (6 )

Mopt =

But this estimate does not yield a fundamental value of 7, therefore an

integer k can be used such that
k(k —1) <ing, < k(k+1), (6.5)

k = oo is indicated whenever the variance ratio 67 /6% < 1, this means that
every sampled PSU will have all of its elements enumerated.

Brooks (1955) assumed the same cost ratios for the pilot and the main
samples. He varied the cost ratio C/C5y and the ratio of the within- and
between-PSU variance components, o2 /07, over ranges of values. Table 6.2
shows part of Brooks’ table I which was based on the pilot sample designs
corresponding to the value of M = oo. He used different cost ratios of 0.01,
2 and 8 and variance components ratios of 0.25 , 1, 2, 8, 16, 32 and 64.

In this chapter we used the procedure of truncation the value of m if it is
greater than a cutoff value, A. It also will be truncated below to be greater
than or equal to 2. Whereas Brooks (1955) considered a use of 7,,=1 in
some cases, but this case is not considered in our work in this chapter as in
this case we cannot estimate the intraclass correlation.

Brooks (1955) obtained approximate results, using an approximation

which ignored the possibility of 67/62 < 1. This was necessary given the
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CHAPTER 6. ADAPTIVE DESIGN USING A PILOT SURVEY

Table 6.2: Pilot sampling designs using cost ratio C/Cy and variance com-
ponents ratio o2 /o

C,/Cy  0.01 2 8

2/ 9
oiloy ¢ My ¢ My cp My

025 5 3 5 3 4 4
17 3 6 4 5 6
2 8 5 7 7 6 9
4 9 9 8 11 7 14
§ 10 14 10 15 9 18

16 10 25 10 27 10 28
32 10 46 10 47 10 49
64 10 92 10 93 10 100

computing technology available in 1955, but it means that Brooks’ results
could be substantially in error. In contrast, we obtained results by simula-

tion, so no such approximation was necessary in our case.

6.3 Simulation Study

A simulation study was conducted based on model (2.3). Different numbers
of pilot PSUs (¢,) with equal within-PSU sample sizes (m,) will be used.
The cost of including a new PSU in the sample (C}) was varied. The average
cost of including an extra element in the sample (C3) was fixed at 1.

The variance of B from the main survey was evaluated by calculating the
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6.3. SIMULATION STUDY

variance over all 1000 estimated values of 5.

The number of pilot sample PSUs (¢,) was varied over a range of values
of 2, 5, 10 and 25. The number of units per PSU (m,) was varied over a
range of values of 2, 5, 10, 15, 25 and 50. A range of values of the cutoff A
of 10, 20, 30, 40, 50 and 100 was evaluated.

The cost of including a new PSU in the sample (C}) was varied over a
range of values of 0.5, 2 and 10.

The value of p was estimated using Equation (2.7), using the estimated
PSU-level variance components extracted from the random effects variances
matrix (REmat) appeared in the summary of the imer() function in the lme4
package in R (R Development Core Team, 2007).

Table 6.3 shows the simulation results for p=0 and p=0.05 with C;=10
and various numbers of pilot PSUs, ¢,, and numbers of observations per PSU,
m,. The true variance of B (x10%) is calculated over the 1000 simulations.
Choice of A

For p=0, the minimum variance of B occurred at A=100 for almost all
the values of ¢, and m, with a few exceptions. The first exception appeared
when ¢, was small (10 or less) with m,=2, in this case the variance was
minimized at A=40. The other exception appeared at m, = ¢,=25, where in
this case the minimum variance occurred at A=50 because true m,, = oo.

When p=0.05, the best A was much lower at either 10 or 20 when there
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6.3. SIMULATION STUDY

Figure 6.3: Variance of  calculated from a main survey with budget
Cy=5000, designed using a pilot survey (C;=10 and Cy=1, p=0)
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Figure 6.4:
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were small number of sample PSUs (5 or less) and 20 or 30 when there were
large number of sample PSUs (10 or more). Table 6.4 shows the optimal A
for each m,, and c,.

Figures 6.3 and 6.4 show the plots of the variance of B versus the cutoff
A, for all values of ¢, and m,, with Co=1, ;=10 and p=0 and 0.05.
Choosing m,, and c,

For p=0 and A=10, the minimum variance of 3 occurred when m,=>50
for ¢, < 10 and when m,=25 for ¢,=25. For A=20 the minimum variance
of § occurred at m,=50 for ¢, < 5 and at m,=25 for ¢, > 10. For A=30
and 100, the minimum variance of 3 occurred at m,=50 for all values of c,.
For A=40, the minimum variance of B occurred at m,=>50 for ¢, < 10 and
at m,=15 for ¢,=25. For A=50, the minimum variance of 3 occurred when
m,=25 for ¢,=5 and when m,=>50 for other values of c,.

For p=0.05 and A=10, the minimum variance of B occurred at m,=10
when c,=2 and 10, at m,=25 when ¢,=5 and at m,=5 when ¢,=25. For
A=20, the minimum variance of B occurred at m,=15 when ¢,=2, at m,=50
when ¢,=5, at m,=25 when ¢,=10 and at m, >25 when ¢,=25. A=30 gives
minimum variance of B at mp=15 and 50 when ¢,=2, at m,=50 when c,=5
and 10 and at m,=15 when ¢,=25. A=40 gives minimum variance of B
occurred at m,=10 when ¢, < 5 and at m,=50 when ¢, > 10. For A=40, the

minimum variance of B occurred at m,=10 and 25 when ¢,=2 and at m,=>50
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Table 6.4: Optimal A when p=0.05 for various m,, and c,

mp

2 5 10 15 25 50

220 20 10 10 10 10
5 |10 20 10 20 10 10
10 120 20 20 30 20 30
25110 20 30 30 20 40

for other values of ¢,. For A=100, the minimum variance of B occurred at

m,=50 for all values of c,.

6.4 Analysis of Simulation Results Using a
Cost-Adjusted Design Effect

The discussion in the previous section was not enough to guide choice of
pilot sample size, because the costs attached to a bigger pilot sample were
not considered. In this section we will look at the total cost of the pilot
and the main survey, and the variance of B from the main survey. We are
comparing our strategy where a pilot is conducted and used to design the
main survey, to the strategy of conducting a simple random sampling (SRS)
with no pilot, with same total cost. For this purpose we defined the “cost-
adjusted design effect” !, cdef f, to be the ratio of the variance of an estimator

under a complex design, to the variance of an estimator under simple random

!This contribution suggested by my supervisor Robert Clark
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sampling with the same cost (or expected cost), according to a cost model.

That is

v

cdeff:V :

(6.6)

The difference between the cdef f and the usual design effect is that: in the
usual design effect the denominator is the variance from a SRS with the same
sample size, whereas in the cdef f the denominator is the variance from a
SRS with the same cost. The cdef f is useful for comparing the efficiency of
designs with different costs.

Under the linear mixed model, the variance of the sample mean for a

balanced two-stage design is given by

2 2
V= J—C’J+‘% (6.7)

The variance of the sample mean under a simple random sample is given by

2
% 4 e (6.8)

nSTS nST‘S

‘/;7’5 -

because under simple random sampling, the number of PSUs (¢) approxi-

mately equals the sample size (n), because provided the sampling fraction is

small, 1 unit will be selected from each selected PSU in almost all cases.
Now suppose the cost under simple random sampling, Cy.s = ng.sC7 +

ns-sCa, to be equal to the cost of the two-stage design, including the ... test

Ctat - (Cmain + Cp)cl + (nmain + np)c2-
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Therefore, the simple random sample size can be calculated to be

Ctot
Srs . 6.9
" Cy + C (6.9
Therefore, cdef f becomes
1% Vv
d = T 5 = lgrs Y5 . 5
cdef f EAEI <ag + ag>

C(tot V
= 1
(Cl“l_CQ) (O’g+0’g> (6 0)
1 1
- (C'1+02><0§+03>Ot0tv7

where V' = wvar(f) from the main study, designed using a pilot. In the

simulation study described in Section 6.3, the values of o7 and o2 were set to
ﬁ and 1, respectively, to ensure that the intraclass correlation was p. The
1

value of Cy was assumed to be 1. Therefore, 07 +02 = %, +1= ;5. Hence,

Equation (6.10) reduces to
1—p
Cdeff = —— Ctot V.
p

We will now find the best choice of A, m, and ¢, by minimizing cdef f
from the simulation study.

Table 6.5 shows the best choice of A, m, and c,, based on the cost-
adjusted design effect. For all values of C, the optimal A was generally
small, A=10, with some exceptions. The first exception was when C;=0.5

with p=0.05 and 0.1 the optimal A was 50 and 20 respectively. The second
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exception was when C=2 with p=0.1 as the optimal A was 40. Finally when
C1=10 with p=0 and 0.01 as the optimal A was 30 and 20 respectively. The
table shows that the “cost-adjusted design effect” values became smaller for
larger average cost of including an extra element in the sample.

Table 6.5: The best designs based on the cost-adjusted design effect based
on perfect knowledge of p

Optimal Design Setting Cost Adjusted

PSU Cost | ICC | PSUs ‘ Observations ‘ Cutoff | Design Effect
Ch ‘ p‘ cp‘ mp‘ A‘ cdef f
0 10 25 10 1.535

0.01 25 15 10 1.731

0.5 0.025 ) 50 10 1.951
0.05 25 50 50 1.965

0.1 10 50 20 1.965

0 10 50 30 0.790

0.01 10 25 10 0.931

2 0.025 10 10 10 1.039
0.05 10 10 10 1.196

0.1 25 25 40 1.442

0 10 50 50 0.241

0.01 5 25 30 0.329

10 0.025 10 10 20 0.417
0.05 5 25 10 0.509

0.1 10 5 10 0.669

Figures 6.5 - 6.7 show the plots of the variance of B calculated from a
main survey with budget Cy=5000, designed using a pilot survey for all costs
of including a new PSU in the sample, C, where C;=0.5, 2 and 10 and a

fixed average cost of including an extra element in the sample, Co=1 when
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Table 6.6: The best designs based on the cost-adjusted design effect based
on perfect knowledge of A, C1=10, p=0.05

Optimal Design Setting Cost Adjusted

Cost | PSUs ‘ Observations ‘ Cutoff | Design Effect
C’f‘ cp‘ mp‘ A‘ cdef f
500 5 50 10 1.49
1000 10 10 10 1.03
2000 2 50 10 0.741
5000 5 25 10 0.509

p varies over a range of values of 0, 0.01, 0.025, 0.05 and 0.1.

Table 6.6 shows the optimal A based on different values of the total cost
Cy of 500, 1000, 2000 and 5000 when the true p=0.05. It shows that the
optimal A was 10 for all values of Cy. The table shows that the “cost-
adjusted design effect” values became smaller for larger values of total cost.
Values of ¢, and m, changed by varying C}. For C;=500, c¢,=5 and m,=50.
For C;=1000, ¢,=m,=10. For C;=2000, ¢,=2 and m,=>50. For C;=5000,

cp=5 and m,=25.

6.5 Conclusions

When p=0, a large value of A (generally 100) was most efficient, not surpris-
ingly. When p=0.05, A=20 gave the best results in most cases. This suggests
in practice, PSU sample sizes should be forced to be 20 or less unless a very

large pilot is conducted to estimate p.
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Figure 6.5: Variance of B calculated from a main survey with budget
Cy=5000, designed using a pilot survey for different values of
p (C1=0.5 and Cy=1)
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Figure 6.6: Variance of ,@ calculated from a main survey with budget
Cy=5000, designed using a pilot survey for different values of
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Figure 6.7: Variance of 3 calculated from a main survey with budget
Cy=5000, designed using a pilot survey for different values of
p (C1=10 and Cy=1)
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For a fixed total cost of 5000, and based on the variance of 5’ , when p=0,
a small number of pilot PSUs (10 or less, in general) should be chosen with
large number of observations per PSU (generally 50), for all values of A,
in general. When p=0.05, the number of pilot PSUs should be 10 or less
with 25 or less observations per PSU, in general, for A < 30. For A=40,
the number of pilot PSUs should be 5 or less with 10 observations per PSU.
When A=50, 2 pilot PSUs with 10 or 25 observations per PSU should be
chosen. For A=100, a large number of observations per pilot PSU with any
number of pilot PSUs should be chosen.

Based on the cost-adjusted design effect, when C1=0.5 and C'y=5000, a
large number of pilot PSUs (10 or more, in general) should be chosen with
large number of observations per PSU (25 for p=0, 15 for p=0.01 and 50 for
p > 0.025. When =2, the number of pilot PSUs should be 10 in most cases
with 10 or 25 observations per PSU. While when C1=10, a small number of
pilot PSUs (5 or 10) should be selected with 25 or more observations per
PSU when p=0, 0.01 and 0.05. For other values of p, number of pilot PSUs
should be 10 with 5 or 10 observations per PSU.

For a fixed total cost of 5000 and C;=0.5, the best choice of A was 10
when p < 0.025. It was 50 when p=0.05 and 20 when p=0.1. For =2, the
best choice of A was 10 when p=0.01, 0.025 and 0.05, while it was 30 and

40, when p=0 and 0.1, respectively. For C;=10, A=10 was the best choice
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when p >0.05, and 20 or more otherwise.

For a range of values of C for fixed p of 0.05 and C;=10, the optimal A
was 10. The cdef f decreased by increasing the C'y value. The best choice of
¢, was b with 50 and 25 observations per PSU, when CY is fixed at 500 and
5000, respectively. When Cy=1000, the best number of pilot PSUs was 10
with 10 observations each. Finally, when C'y=2000, the best number of pilot

PSUs was 2 with 50 observations each.
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Chapter 7

Conclusions

7.1 Summary and Conclusions

Regression coefficients and the variances of their estimates can be estimated
using different methods when the intraclass correlation is believed to be small.
The linear mixed model (LMM) is one alternative. Another alternative, when
observations are assumed to be independent, is the linear model (LM). LMM
variance estimators can be larger than LM variance estimators when the PSU

sample size are large, and this leads to wider confidence intervals for .

A third alternative is to use an adaptive strategy. The strategy devel-
oped in Chapter 3 is to test the null hypothesis that the PSU-level variance
component, o7, is zero. The LM variance estimator is used if the null hypoth-
esis is not rejected. Otherwise, the LMM or alternatively the Huber-White

variance estimator is used.

Chapter 3 found that the adaptive confidence intervals in extreme designs
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with a small number of sample PSUs and a large number of observations
per PSU. In these designs, the variance of the mean will be significantly
boosted even when the intraclass correlation is small, however even with
high intraclass correlation, the PSU-level variance component is unlikely to
be statistically significant. Accordingly, for ¢ < 5 with m > 25, adaptive non-
coverage rates were 15-20% higher than the nominal rate when p # 0, where
¢ is the number of sample PSUs and m is the average number of observations
per PSU. Therefore, even if clustering is not statistically significant for these
extreme designs, it has to be allowed for in variances estimates.

The ADM, adaptive based on LMM as an alternative, confidence inter-
vals were shorter than the LMM confidence intervals in designs with 2 sample
PSUs with all average numbers of observations per PSU for all values of intr-
aclass correlation, p. In the balanced designs, the ADM confidence intervals
were a bit shorter for designs with 5 sample PSUs with m >25 when p=0 and
designs with ¢=>5 for all numbers of observations per PSU, m, approximately,
when p # 0. They were shorter in designs with number of sample PSUs, ¢=10
and m > 10 and m=>5 and 10 when p=0.025 and 0.1, respectively. Otherwise,
ADM and LMM confidence intervals performed similarly.

The ADH, adaptive based on Huber-White as an alternative, confidence
intervals were much shorter than the Huber-White confidence intervals in

designs with 2 and 5 sample PSUs with, approximately all average num-
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bers of observations per PSU for all values p. In the balanced designs, the
ADH confidence intervals were shorter for designs with 10 sample PSUs with
m >10, with m >15 and m < 15 for p=0, 0.025 and 0.1, respectively and
for designs with ¢=25 and m=10, 15 and 25 when p=0.025. There were no
relevant differences, otherwise.

The same adaptive strategies were applied in Chapter 4 for log-normal
data with two skewness levels, o = % and 0 = % Biases of adaptive variance
estimators were similar to biases of adaptive variance estimators in Chapter 3.
ADM variance estimators were less biased than the LMM variance estimators
for designs with ¢=2 and ¢=5 with m < 5. In the unbalanced designs,
ADM variance estimators were less biased than the LMM variance estimators

for designs with ¢ <5 when ¢ = % and in designs with ¢=2 when ¢ = %

5
ADH variance estimators were more biased than the Huber-White variance
estimators in designs with ¢ < 5 when p = 0 and in designs with ¢=2 when
p = 0.025. There were no relevant differences otherwise.

ADH non-coverage rates were larger than Huber-White non-coverage rates
except in designs with ¢=5, 25 with m=2 and ¢=10 with m=5. ADM non-
coverage rates were larger than LMM non-coverage rates except in designs
with ¢=2 and 10 with m=2 and 5, respectively; and designs with ¢=5 with

m < 10 and designs with c=25.

ADM confidence intervals were shorter than LMM confidence intervals
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in designs with ¢=2, whereas ADH confidence intervals were shorter than
Huber-White confidence intervals in designs with ¢ < 5 and designs with
c¢=10 with m > 5. In the unbalanced designs, the adaptive confidence inter-
vals were shorter than the non-adaptive confidence intervals in designs with
c=2 with all m similar to what was in Chapter 3 and unlike what was in
Chapter 3 in designs with c¢=2.

Rejecting Hy : 07 = 0 is possible even if the estimated intraclass correla-
tion and the estimated design effect are relatively small. It may be desirable
to use the linear model rather than the linear mixed model in these cases.
To assess this possibility a new adaptive strategy was used in Chapter 5. We
used the LMM or alternatively the Huber-White variance estimators were
used if Hy is rejected and @f > d, where d is a cutoff value. Otherwise,
the LM variance estimators were used.

A simulation study showed that for balanced designs, cutoffs of d=1.05
and 1.5 had no effect - results were identical to the adaptive strategy de-
scribed in Chapter 3. For unbalanced designs, a cutoff of d=1.5 slightly
improved adaptive confidence intervals and variance estimates.

In Chapter 6 we considered a pilot survey to estimate the intraclass cor-
relation assuming the intercept-only model. This estimator was used to esti-
mate the optimal within-PSU sample size for the main survey, for fixed cost

based on a simple cost model. The estimated value of p could be zero or close
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to zero and this might lead to a very large PSU sample size being calculated,
which could lead to very high variances from the main survey. To deal with
this problem, m was truncated above at a cutoff, A. The value of m was also
truncated below to be greater than or equal to 2. A range of values of the
cutoff A were evaluated by simulation. A range of values of the pilot sample
sizes of PSUs (¢,) and units per PSU (m,) were also evaluated.

Based on the variance of B when (=10, the best choice of A (out of

possible values) occurred at:

e A=100 when p=0 for all values of ¢, and m, except for the extreme

case ¢, = m,=2;
e A between 10 and 40 depending on the value of m,, and c,.

Based on the variance of B , when C1=10 and p=0, the best choice of m,,
was 50. When p=0.025, the best choice was at m,=10 if A is 10 or 50, at
m,=15 if A is 20, 30 or 40 and at m,=>50 if A is 100.

Designs were also evaluated in terms of their cost-adjusted design effect
(cdef f), a measure of efficiency reflecting both cost and variance. Based on

the cost-adjusted design effect, when C;=10, the optimal A was
e 50 when p =0 when ¢,=10 and m,=50;

e 30 when p =0.01 when ¢,=5 and m,=25;
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e 20 when p =0.025 when c,=m,=10;

e 10 when p =0.05 when c,=5 and m,=25;

e 40 when p =0.1 when ¢,=25 and m,=5.

Chapter 6 also gives results for other values of C; and Cy.

7.2 Further Research

Chapter 3 found that adaptive confidence intervals perform poorly in de-
signs with small numbers of PSUs and large numbers of observations per
PSU. ADM and LMM non-coverage rates are high for these extreme designs.
A possible reason is that there is not much power to detect the PSU-level
variance component in the adaptive approach, even when it is substantial.
One way to do this was the adaptive approaches developed in this thesis.
Another possible approach is model averaging of the LMM and LM models.
This would be more computationally intensive but would perhaps give better
results than adopting either the LMM or LM.

Another possible reason is that the LMM confidence intervals are not
exact and do not do well for small sample sizes. Confidence intervals rely
on the degrees of freedom and we do not have exact degrees of freedom
in the LMM case. We tried the approach suggested by Faes(2009). Other

approaches such as Kenward and Roger (1997) or Satterthwaite (1941) would
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be worth trying and might result in confidence intervals with better coverage
properties when the number of clusters is small.

Chapter 6 developed optimal design strategies for using a pilot study to
guide the sample design of a main study. Optimal choices of m,, ¢, and a
cutoff A for the within-PSU sample size for the main study, were obtained by
simulation, for given values of p and other parameters. In practice, however,
p would be unknown, and the pilot/main design strategy would need to be
developed in ignorance of p. Future research could focus on choices of m,,

¢, and A that perform well across a range of possibilities for p.
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Appendix A

Proofs for Chapter 2

A.1 Unbalanced Data Case

A.1.1 The Maximum Likelihood Estimators

Under H4y

The likelihood function for the sample observations y;;s from model 2.3 is

given by

where

1 1 yy—1
fly;) = (2m)mi/2[V,[1/2 exp{ ) Z(yz =BV (yi— 5)}

=1

Therefore, the likelihood function (A.1) is given by

c

L= (2m)ma/2 Hl?_l V172 efﬁp{ - %Z(yi — BV y; — 6)}. (A.2)

=1
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But

Vil = mi(ed)™

1 o?
v = =1, - —7J,..
(2 O_g 7 Th 0_3 03

where 1; = 02 +m;o?. Substituting for 8 = B1,,,, [V;| and V; ! in (A.2), we

obtain

ex —% ”UCMSE+ZZ 1—772_5)2
b p[@w){ TR I, (1) e

The natural logarithm of the likelihood function is determined by taking the

logarithm for both sides of (A.3), which is simplified to

(= —Zin(2r) - =—In(o?) - %l”(’?z‘)
(n—c)MSE mi(gi. — )’
T 4 Z (A.4)

The partial derivatives of (A.4) with respect to 3, o2 and 7; are obtained as

. c  my(gi.—B).

6_6 - Zi:l i )

o (n—c)MSE ',

oz = ng + e (A.5)
ol _ 1 c 1 m; (§i.—B)

o = 2| 2=y T 7,—]

Equating to zero the partial derivatives in (A.5) and solving with respect

2

to B, n; and o2 and denoting the solutions by B, 7; and ¢- and after some
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simplifications we obtain

)
A i (mz‘??z'./fh)
8 - =
62 = MSE;
c 1 _ ¢ mi(fi.—Puw)?
Zi:l N Zi:l a2 )

It is obvious that the system of equations (A.6) has no explicit solutions for

B and 7);, therefore there is no explicit solution for 7.

Under H,

Under Hy we have o7 = 0 therefore, the log-likelihood function (A.4) reduces

to
ly = —gln(27r) — H_Tc_lln(az)
_% [(n —)MSE+ Y my(ji. — 6)2] : (A7)
e =1

Differentiating (A.7) partially with respect to o2, we obtain

ol _n—c—l 1

2 - 207 207

E [(n —c)MSE + Z mi(i. — B)Q] (A.8)

2
e

Equating (A.8) to zero and solving with respect to o7 and denoting the

solution by 62, we find

~2 n—=c 1 ¢ B 9
= — MSE+ ——— (7. —
Oe n—c—1 S +n—c—1;ml(yz' p)
1 C my - B
= ——> > miliy ) (A.9)

i=1 j=1

157



A.1. UNBALANCED DATA CASE

A.1.2 Derivation of Equation (2.31)

A.1.3 The Restricted Maximum Likelihood Estimators
(RLRT)

Proceeding from the general case considered in Subsection 2.3.2, the re-

stricted log-likelihood function for the sample observations y;;s, from the

model defined in (2.3) is given as

lr —% (n = )in(o2,) + 3 in(m) — in Y 7;>
i=1 =1 "
(- ((:I)QWEA s M@/——yﬁ] | (A.10)
eA i=1 i

The partial derivatives of (A.10) with respect to o2 and 7; are given by

or — _1 |:n—c _ (n=c)MSE4 |.

BUEA 2 UgA (UgA)CZ ,’ (A 11)
op  _ _1 S Ly i I '

on; 2 =1 ;i 23:1 % 7]1.2 :

Equating to zero the partial derivatives in (A.11) and solving with respect

to o2 and n; and representing the solutions by 62, and 7);, we get

~2

Oca MSEA,
c mi (G; —Ta )2 ¢ 25:1 % (A12)
>ic1 % = >ia % — =k

i=1 7,

Therefore, there is no explicit form for 7;. Hence, 67 has no explicit form.

The restricted maximum likelihood under H 4 is given by

MAX

2 Hy lg = (n—c)In(MSEx)+ Y In(i;) + m( Z@‘))
+n—c+ Z i — B)2. (A.13)
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Under H,

Under Hy, we have o2 = 0 therefore, the log-likelihood function (A.10) re-

duces to

te, = —g|(n—Din(o%) +In(n) +

1
p~ ((n —c)MSE,
e0

Y maln — )?) | (A.14)
i=1
But, under Hy, ¥, reduces to 7., because

Gy = > (migii Jody)
v 25:1 (mi/ady)
> iy M,
D ey M
D et D Yig
n

= 7. (A.15)

Therefore, Equation (A.14) reduces to

lr, = —% [(n — Din(oZy) +In(n) + ) ((n — ¢)MSE,
+ 3 mita 5. (210

Differentiating (A.16) partially with respect to o2,, we obtain

g,  lrn—1 1
2 = 3l —op (- oMk
+> w507 ] (A17)
=1
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Equating (A.17) to zero and solving with respect to 02, and denoting the

solution by 62, we find

c

G2 = ni 1 [Z(ﬂij _gi.)2+zzmi<gi. -7.)°

i=1 i=1 j=1

(& m;

= D) DT Ak

i=1 j=1

— MSE,. (A.18)

The restricted maximum likelihood under Hj is given by

C

MAX c m.
—2 Hy lp = (n—c)ln(MSE)+ Y In(MSE) +in( > —
< <i:1 MSE0>
Z;'::l mz(gz - g>2
+n —c+ MSE,
- )in(MSEy) + ¢ In(MSEy) + 1 ( n )
= (n—o¢)ln o) +cln 0 n VISE
> i Ml — 9.)?
+n—c+ MSE,
= n—c+In(n)+ (n—1)in(MSEy)
c (s =2

MSE,

One way to define the restricted likelihood ratio test is to subtract Equa-

tion (A.19) from (A.13). Therefore, the restricted likelihood ratio test can
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be given as

MAX MAX
A = —2( Hy (q— H, zR)
_ _ Soiami(Ti —7.)°
= In(n)+ (n—1) In(MSEy) + VISE,
—(n— c)In(MSEy) — Z (i) = o 3 ()
=1
> A — B (A.20)
=1

Substituting m; = m into the unbalanced case, we get

—2lra =

[

(n—¢)in(MSE,) —i—Zln —i—ln(Z(X))

=1

+n—c+ Z Ny —

n—c+(n—c)n(MSE)+clin(n) + ln<n> + 2 %(Qz —¥.)
n—c+(n—c)n(MSE)+cin(MSA)+In(n) —In(MSA) + M%?A (c—1)MSA
n—1+(n—c)n(MSE)+ (c—1)In(MSA) + In(n). (A.21)

(n— 1)%%%) + (n — )In(MSE) + (c — 1)in(MSA) + In(n)
(n— l)ln<%> +In(n) + (c— 1)M5;;1E_‘+—5(;LA_ c)MSE

SSE + SSA (c—1)MSA+ (n— ¢)MSE
) + ln(n) + (n—c)MSE+(c—1)MSA
n—1

(n—c)MSE + (c—1)MSA
n—1 )

(n— 1)ln<

n—1

n—1+In(n)+ (n— 1)ln< (A.22)
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LIKELIHOOD RATIO TEST (RLRT) FOR TESTING Hy: 0% =0

Subtracting (A.21) from (A.22), we obtain

(n—c)MSE + (¢ — 1)MSA>

A = n—l—l—ln(n)—l—(n—l)l”( n—1

—n+1—(n—c)in(MSE) — (¢ —1)In(MSA) — In(n)

= —(n—1)In(MSE)+ (c—1)In(MSE) — (c — 1)In(MSA)

(n—c)MSE + (c — 1)MSA>

- —11(

+(n—1)in S
n—c+c—1
n—1 n-—1

— (- 1)ln( F> — (¢ — 1)in(F). (A.23)

where 77@ = 63 —l—ml&g, )\2 = %
T

A.2 Restricted Maximum Likelihood Method
Likelihood Ratio Test (RLRT) for Test-
ing Hy: 0} =0

Under model 2.1, the likelihood function using restricted maximum likelihood

is given by
1 1 1 2
lr = —5(n—1log(2m) — log(n) — 5(n — c)log(ae)
SSE SSA

kil (A.24)

1
— (e —1) —
5 (c —1)log(n) 207 2

Differentiating this likelihood Equation with respect to the parameters n and

o2, we get
olr n—c . SSE
o2 202 2(02)?
Olr c—1 SSA
R , A2
on o p (A.25)
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Equating the partial derivatives in (A.25) to zero and referring to the solu-

tions as /) and 62 we obtain

67 = S5 _ MSE;

(n—c)
A
n = 55 = MSA. (A.26)
c—1
Therefore
A2 1
y = E(MSA — MSE).

Hence, multiplying by 2 the restricted maximum likelihood Equation under
the full model

MAX
2 Hy lr = (1—mn)log(2me) —log(n)

—(n —c)log(MSE) — (¢ — 1)log(MSA).  (A.27)

A.2.1 Under the null hypothesis H,

We know that under Hy, o7 = 0, so in this case n reduces to o2. Therefore,

if we substitute this quantity in (A.24), we obtain

1 1 1
lr = —5(n—=1)log(2m) — Slog(n) — 5(n = 1)log(c?)
SSE + SSA
- A2
Differentiating Equation (A.28) with respect to o2, we get
-1 E A
or  n SSE + 5SS (A.20)

902~ 202 T 2002
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Equating to zero the partial derivative in (A.29) with respect to o2, and

representing the solution by 62, we obtain

,  SSE+SSA
O’ _—

€ n—1
= " CMSE+
n—1

- 11]\/[SA. (A.30)

n —

Therefore, -2 multiplied by the restricted maximum likelihood becomes

MAX

—2 Hy lr = (n—1)log(2me) + log(n)
SSE +SSA

Adding equations (A.27) and (A.31), we obtain the restricted likelihood ratio

(n—l)log("‘c—i-c_lF)—(c—l)log(F) if F>1,

test as
—1 n—1
Ap = "
0
_ MSA
where F = s

A.3 Proof of 2.11

~

var(p) =

(A.32)
if F<IL.

(X'VIX) X'V ar(Y)VIX(X'VIX) ™

= (X'VIX)'X'VIVVIX(X'VIX)T!

= X'V 'X)"'X'VIX(X'V'X)!

= (X'V'X)"L
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A.4 Proof of 2.23

Cc

1Yr—1
E ,Xsz X;
i=1

¢ A
1 52
21;712 |:A_2(Imz) A2(A2 b ,\2) ml]lml
=1 O-e O-e O-e +mZO_b
¢ A
1 &2
b /
PRt [—(I ) (10,1 )}1
mil 52 mi 52( 52 ~2 mi—m; m;
i=1 Te O¢ (Ue + TTLZO'b)
¢ A
1 &2
b / ’
Z [_ 1,1 ) 1 1,1 1 ]
A2( m my YD) ) m; m;Lm mi
=1 Te Ue<ae _'_ngb)
c 2292
2 : |:mz . m; oy }
52 52( A2 ~2
i1 e 62(62 + m;oy)
- 2 252 2.2
i[miae +m; o, —miab]
52 A9 ./\2
=1 Te e +mzab
c A
> alain
2| 52 —2
1 Oc "0 + m;oy
C
> )
A2 A2
oy "0 T M0}
C
DA (A.33)

=1 o? 52(62 + mo;,

< Alg () = 2352 igmla@( ) Pl

Z {00 - 7 j-gmi@ (L L) Jei,
X{%E(I"”) ~ 52(52 igmi&g) (L 15, L,

-1 62 mg 1 a_g(a_g_i_mza_g) m; = Mi—m; 1S5

g2 G2 (62 may)




A.5. PROOF OF 2.24

_ Cc ~2 A2
1y\2 m;oj, P m;oj,
- /\_2 1 - 2 ~9 mlelezlml 1_ ~9 ) .
oc/ Ly oz + m;o; oz +m;oyp
c A
1\27 m;o? 2 L
_ <_2) S {1 - % AQ} 1;me1;e;1m]
0./ Lo o; +m;o;
< 1 2 Cc ~9 2 . ,
p— e 1 A A
= (= €;e;1
YIS (e
o;/ L= Log + m;oy ‘
c A~
o 2
= ¢ (1, é)2
A ~ a2
— {03 + m;o} i
~9 2
o 5

Substituting (A.34) and (A.34) into (2.23) gives

—

var(

A.5 Proof of 2.24

In this case \; = A for all 7, therefore

—

var(

5)

(A.34)

B) = i M@ B (A.35)
(25:15‘1')

= var(y.) (A.36)

C

c(c—l—l) Z@i. —75.)%
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Appendix B

Proofs and Additional Tables
for Chapter 3

B.1 Derivation of the Multiplication Factor
Used to Correct the Huber-White Vari-
ance estimator in the Unbalanced Data
case, Equation (3.3)

—

E(var(3)) = = A)Q [;Azy - 37
) (zf )2{2”— - (3]
" o )Q[ZV{ o Bl -

~2B(5: — B)(B - B)H

= — Z szar )+ Z )\21)@7“
()

-2 Z )\?cov(gji,, B)} )
i=1
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B.1. DERIVATION OF THE MULTIPLICATION FACTOR USED TO
CORRECT THE HUBER-WHITE VARIANCE ESTIMATOR IN THE
UNBALANCED DATA CASE, EQUATION (3.3)

E(var(B))

var(B)

(ch : )2 [i Nvar(y;.) + i Xvar(B)

CoN~ e (- 2= A
2;)\3001;(%,, 2 ﬂ

25:1 )‘j
1 1
2 2 =)+ (war(3) ()
Sl >
—2; (Afvar(y )ij )\j)}
LIS (02 + (war(3) S202)
(Z%Mi) [;( WA ;
Ay ()
1 - 21 var A 2 2;1()‘ )
(Z:‘ZIA)J;(A )+ (BN 08 -2
! C 21 var(f 2
(Z;Mz[;(g)ﬂ (BN 30
~ar(3) 09
var(®) - var(3) 22 Y
var(ﬁA) [1 — (%:%jfi)é
(Z::I )‘i)Z - Zf:l()‘Q) A
S ERA
(Z::I )‘i)Q — 25:1()‘12)
o
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B.2 Extra Tables and Plots

Figure B.1: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and ¢, p=0.01
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Table B.1: Variance ratios, length and non-coverage of the 90% confidence intervals for [, and power of testing
Hy : 02 = 0 using RLRT in the balanced data case with p=0, using parametric bootstrap to estimate

5ar (7 ()
PSUs Obs 7 E(var(B))/var(B) Non-Coverage of CI for 8 (%) | Pr(reject Hy) (%) Confidence Interval Length
c m | ADM ADH LMM Hub | ADM ADH LMM Hub Lrt | ADM ADH LMM Hub
2 2| 1.236 1.236 1.460 1.028 8.0 8.0 3.6 9.3 10.1 | 15,519 2.962 17.119 5.098
2 5| 1.208 1.208 1.457 1.001 9.1 9.1 0.9 9.3 5.7 1.157 1.524 1.395 3.207
2 10 | 1.154 1.154 1.374 0.935 9.7 9.7 0.6 11.3 5.1 0.807 1.050 0.973 2.221
2 15| 1.184 1.184 1.444 0.983 10.7 10.7 0.4 10.3 4.5 0.649 0.812 0.790 1.830
2 25 | 1.162 1.162 1.418 0.941 8.6 8.6 0.2 10.6 4.7 0.502 0.637 0.610 1.399
2 50 | 1.272 1.272 1.546 1.017 9.2 9.2 0.3 10.5 3.4 0.346  0.419 0.417 0.969
5 2| 1.156 1.156 1.292 1.092 8.5 8.5 2.3 8.3 10.5 1.237 1.213 1.276 1.301
5 5| 1.141 1.141 1.266 1.044 8.7 8.5 4.1 9.2 7.2 0.711 0.728 0.750 0.812
5 10 | 1.101 1.101 1.225 0.985 9.6 9.6 5.2 10.1 6.4 0.492 0.504  0.526 0.565
5 15| 1.131 1.131 1.256 1.010 9.4 9.4 5.2 9.8 6.2 0.400 0.410 0.429 0.461
5 25| 1.140 1.140 1.249 1.004 10.0 9.9 5.3 9.3 6.6 0.310 0.318 0.331 0.357
5 50 | 1.125 1.125 1.254 1.011 9.8 9.7 5.6 9.6 5.8 0.217 0.222 0.234 0.253
10 2| 1.0567 1.0567 1.136 1.006 9.0 8.9 5.3 10.9 10.0 | 0.786 0.789  0.802 0.800
10 5| 1.065 1.065 1.118 0.977 9.2 9.1 7.6 11.6 9.5 | 0489 0495 0.500 0.502
10 10 | 1.021 1.021 1.089 0.965 9.4 9.4 7.8 10.4 7.5 0.341 0.344 0.354 0.358
10 15 | 1.071 1.071 1.130 0.994 9.6 9.4 7.8 10.6 8.7 0279 0.282  0.288 0.292
10 25| 1.077 1.077 1.142 0.991 8.5 8.4 7.2 9.8 7.9 0.216 0.218 0.224 0.225
10 50 | 1.016 1.016 1.077 0.954 10.2 10.2 8.4 10.4 8.2 0.153 0.1564  0.159 0.162
25 2| 1.038 1.038 1.080 0.995 9.8 9.8 8.2 9.4 10.7 | 0.483 0483 0487 0.480
25 5| 0980 0.980 0.990 0.946 11.3 113 11.1 11.7 8.9 | 0303 0304 0304 0.305
25 10 | 1.044 1.044 1.058 1.007 10.3 10.2 9.8 10.7 10.1 0.214 0.215 0.216 0.216
25 15 | 1.042 1.042 1.055 0.999 9.2 9.2 8.8 10.0 11.3 0.175 0.176 0.176 0.176
25 25| 1.164 1.164 1.177 1.108 7.4 7.3 7.0 8.3 8.5 0.134 0.135 0.136 0.135
25 50 | 1.117 1.117 1.151 1.073 8.1 8.1 7.5 8.3 9.1 0.095 0.096  0.097 0.096
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Table B.3: Variance ratios, length and non-coverage of the 90% confidence intervals for 3, and power of testing
Hy : o = 0 using RLRT with p=0.01.

PSUs Obs E(var(B))/var(B) Non-Coverage of CI for § (%) | Pr(Rej Ho) (%) | Confidence Interval Length
c m | ADM ADH LMM Hub | ADM ADH LMM  Hub RLRT | ADM ADH LMM  Hub
2 2| 1.056 1.056 1.245 0.919 9.8 9.8 13.1 10.1 9.5 | 4.376 2925 4.847 5.142
2 5| 1.183 1.183 1.429 1.027 11.2 10.9 11.1 11.3 6.6 | 1.313 1.615 1.430 3.298
2 10 | 1.091 1.091 1.312 0.925 10.4 10.4 11.4 8.2 6.1 | 0.894 1.112 0.983 2.369
2 15| 1.230 1.231 1.515 1.139 10.6 10.6 10.1 10.3 7.1 | 0.753 0964 0.853 2.065
2 25| 1.059 1.059 1.310 0.983 13.1 13.1 13.9 11.1 6.4 | 0.580 0.729 0.660 1.600
2 50 | 0.994 0994 1.231 0.975 170 17.0 15.6 10.8 10.3 | 0.443 0.610 0.507 1.236
5 210999 0999 1.106 0.938 10.6 10.3 10.8 10.8 11.2 | 1.190 1.202 1.219 1.291
5 51 0983 0983 1.083 0.886 11.8 11.8 11.6 11.9 8.0 | 0.723 0.728 0.737 0.805
5 10 | 1.038 1.038 1.161 0.980 10.6 10.6 10.5 9.8 10.2 | 0.519 0.525 0.541 0.597
5 15 | 1.128 1.128 1.267 1.085 9.2 9.2 9.6 9.0 9.9 | 0.423 0.427 0.440 0.494
5 251 0.969 0.969 1.088 0.944 12.0 12.0 11.8 10.4 12.1 | 0.334 0.340 0.349 0.395
5 50 | 1.077 1.077 1.211 1.119 12.5 12.4 11.8 9.3 222 | 0.263 0.268 0.279 0.315

10 2| 1.074 1.074 1.148 1.012 9.9 9.9 10.7 10.2 11.1 | 0.795 0.797 0.802 0.804
10 51 0982 0982 1.039 0.929 10.6 10.5 10.9 11.3 9.5 | 0.495 0.497 0.498 0.512
10 10 | 1.113 1.113 1.184 1.066 9.8 9.5 10.9 9.5 11.3 | 0.354 0.354 0.357 0.370
10 15| 0984 0.984 1.0563 0.970 10.4 10.4 10.3 9.9 11.9 | 0.289 0.289 0.293 0.308
10 25 | 0985 0.985 1.056 0.981 11.9 11.8 12.2 11.8 20.1 | 0.236 0.236 0.241 0.250
10 50 | 0.899 0.899 0.970 0.957 13.2 13.0 12.5 10.9 33.4 | 0.181 0.182 0.188 0.199
25 2| 1.086 1.086 1.136 1.049 8.0 8.0 9.1 8.7 9.4 | 0.480 0.480 0.481 0.478
25 5| 0985 0.985 0.995 0.965 10.7  10.7 11.0 10.8 11.9 | 0.306 0.306 0.304 0.310
25 10 | 0.983 0.983 0.999 0.988 10.2 10.3 11.0 9.3 15.5 | 0.220 0.219 0.218 0.225
25 15| 0.928 0.928 0.940 0.943 11.3 11.5 11.8 10.7 20.0 | 0.182 0.182 0.180 0.188
25 251 0985 0.985 1.003 1.017 11.5 11.4 11.4 9.7 30.5 | 0.147 0.146 0.146 0.152
25 50 | 1.001 1.001 1.033 1.042 11.3 11.3 10.9 9.3 54.0 | 0.113 0.113 0.115 0.117
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Figure B.2: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and ¢, p=0.05
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Figure B.3: Confidence interval lengths using different variance estimation
methods and for various values of m and ¢, p=0.01
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Figure B.4: Confidence interval lengths using different variance estimation
methods and for various values of m and ¢, p=0.05
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Table B.4: Variance ratios, length and non-coverage of the 90% confidence intervals for 3, and power of testing
Hy : 02 = 0 using RLRT with p=0.05.

PSUs Obs E(var(B))/var(B) Non-Coverage of CI for § (%) | Pr(Rej Ho) (%) | Confidence Interval Length
c m | ADM ADH LMM Hub | ADM ADH LMM  Hub RLRT | ADM ADH LMM  Hub
2 2| 1.218 1.218 1.447 1.083 7.7 7.7 12.4 8.8 10.5 | 5.365 3.066 5.864 5.350
2 5| 1.042 1.042 1.243 0.930 13.3 13.1 13.3 11.2 7.6 | 1.355 1.743 1.469 3.489
2 10 | 1.145 1.145 1.364 1.097 14.8 14.8 14.8 10.2 11.6 | 1.022 1.516 1.147 2.825
2 15 | 1.057 1.057 1.275 1.054 16.7 16.7 15.0 10.2 14.7 | 0.900 1.349 1.018 2.458
2 25 | 1.045 1.045 1.226 1.096 21.5 21.5 16.9 8.2 20.6 | 0.849 1.366 0.965 2.277
2 50 | 1.044 1.044 1.159 1.089 2.7 217 22.1 9.3 29.0 | 0.838 1.360 0.919 1.981
5 2| 1.129 1.129 1.255 1.070 8.9 8.8 9.0 9.8 11.9 | 1.215 1.221 1.249 1.307
5 5| 1.086 1.086 1.218 1.082 10.5 10.5 10.1 9.2 15.1 | 0.784 0.795 0.822 0.908
5 10 | 1.032 1.032 1.155 1.067 12.8 12.7 11.4 9.9 21.4 | 0.596 0.605 0.631 0.704
5 15| 1.020 1.020 1.140 1.076 13.4 13.3 11.0 9.0 27.1 | 0.520 0.528 0.554 0.615
5 251 0919 0919 1.001 0.977 16.1 15.5 13.8 9.3 42.3 | 0.468 0.480 0.497 0.546
5 50 | 0.999 0.999 1.031 1.023 14.5 14.1 12.4 9.2 66.5 | 0.450 0.457 0.463 0.485

10 21 0996 0.99 1.076 0.974 10.3 10.3 9.8 10.0 12.9 | 0.817 0.817 0.831 0.840
10 5| 1.033 1.034 1.110 1.058 9.7 9.7 9.8 8.7 18.6 | 0.527 0.529 0.539 0.566
10 10 | 0.986 0.986 1.060 1.039 10.2 10.0 10.0 8.8 32.8 | 0.406 0.407 0.420 0.441
10 15 | 0.987 0.987 1.052 1.045 13.2 12.7 11.8 9.1 46.8 | 0.363 0.364 0.378 0.392
10 25| 0.887 0.888 0.925 0.924 15.2 15.1 13.8 114 61.7 | 0.318 0.319 0.326 0.336
10 50 | 1.063 1.063 1.072 1.072 10.3 9.7 9.3 8.2 88.6 | 0.300 0.298 0.302 0.302
25 2| 0958 0.958 1.007 0.955 10.6  10.6 11.0 11.0 15.1 | 0.497 0.498 0.500 0.504
25 5| 1.045 1.045 1.059 1.074 8.8 8.7 9.5 8.3 29.6 | 0.331 0.329 0.330 0.340
25 10 | 0.950 0.950 0.970 0.995 11.4 11.7 11.5 9.9 53.5 | 0.256 0.254 0.259 0.265
25 15| 0943 0.944 0.954 0.972 11.0 11.1 10.7 9.7 72.5 | 0.230 0.227 0.231 0.233
25 251 0964 0.964 0.967 0.971 12.2 12.3 12.1 12.0 93.1 | 0.208 0.206 0.208 0.207
25 50 | 0.966 0.967 0.967 0.967 8.9 9.3 8.9 9.3 99.7 | 0.183 0.182 0.183 0.182
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Figure B.5: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and ¢, p=0.01
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Figure B.6: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and ¢, p=0.05
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Figure B.7: Confidence interval lengths using different variance estimation
methods and for various values of m and ¢, p=0.01
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Figure B.8: Confidence interval lengths using different variance estimation
methods and for various values of m and ¢, p=0.05
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Figure B.9: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and ¢, p=0
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Figure B.10: Confidence interval non-coverage using different variance esti-
mation methods and for various values of m and ¢, p=0.025
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Figure B.11: Confidence interval non-coverage using different variance esti-
mation methods and for various values of m and ¢, p=0.1
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Figure B.12: Confidence interval lengths using different variance estimation
methods and for various values of m and ¢, p=0
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Figure B.13: Confidence interval lengths using different variance estimation
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Figure B.14: Confidence interval lengths using different variance estimation
methods and for various values of m and ¢, p=0.1
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Figure D.1: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and ¢, p=0.025, using
adaptive using RLRT and defflel.05.
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Figure D.2: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and ¢, p=0.025, using
adaptive using RLRT and deff > 1.05.
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Figure D.3: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and ¢, p=0.025, using
adaptive using RLRT and deff > 1.1.
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Figure D.4: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and ¢, p=0.025, using
adaptive using RLRT and deff > 1.1.
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Figure D.5: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and ¢, p=0.025, using
adaptive using RLRT and deff > 1.2.
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Figure D.6: Confidence interval non-coverage using different variance estima-
tion methods and for various values of m and ¢, p=0.025, using
adaptive using RLRT and deff > 1.2.
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Figure D.7: Histograms for p and p when Hj is rejected and accepted and
def f when Hj is rejected (c=10, m=2, p = 0.025)
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Figure D.8: Histograms for p and p when Hj is rejected and accepted and
deff when Hy is rejected (c=10, m=10, p = 0.025)

Design of 6 Design of 6 When Hy is rejected
o
3
(=3
(=3 n
S
o o
3 [l
5] 5§ o
=1 i=3 3
g 8 g7
[ [
o o
8 —
o o
T T T T 1
000 005 010 015 0.0 005 010 015 020 0.25
A A
p p
. A . . - . .
Design of p When H, is accepted Design of deff When H, is rejected
o
3
o
o B
3
w0 o
oy ol
5] 5§ o
g 8 g °
I Y
8 g
o I - — ) o —}—}—l
T T T T 1
000 002 004 006 0.08 15 2.0 25 3.0
A —
p deff

220



APPENDIX D. EXTRA TABLES AND PLOTS FOR CHAPTER 5

¢8T°0 €8T°0 ¢8I0 €8T°0 |9°66 LEV'E 6°66 9°66 L66 |€6 68 €6 68 2960 L96°0 9960 9960 |0¢ G¢C
2£0¢°0 80¢'0 7020 9020 |88 L61°C 1°G6 G'88 1°€6 |0¢r T'el O€T Lel |T.6°0 1960 G96°0 9G6°0 |S¢ G¢
€€¢°0 TECO ¥¢C'0 9¢C'0 |L°€9 0991 6.8 L'€9 ¢¢cL L6 LOT ¢¢l 0%¢l |¢l60 796'0 0¢60 0¢6°0 ST GC
G9¢'0 69¢°0 87¢'0 6V¢0 |71V G071 VLl Vv G€e |66 GII V¢l ¢cal |966°0 0L6°0 €160 €160 |0T G¢
07€°'0 0€E°0 61I€0 0CE0 |C'ST 81T V19 9! 96c |€8 G6 L6 96 720°'T 6590'T 6860 68670 |G g¢
70S°0 005°0 S8F'0 S8¥°0 [9°0 €0T'T 0y 90 TST |OIT OTT  2TT ATT |§96°0 L00°T €160 €160 | ¢ 14
¢0€°0 ¢0€0 86¢°0 00€°0 |€C6 ¥8€'€ 0°00T 988 988 |¢®8 €6 L6 €0 |cL0'T ¢L0T €90°T €90°T |0G OT
9€€'0 9¢€°0 61€°0 8IE0 |V'IL 660°¢C 0°00T L'19 L'19 |PIT 8€T T'9T ¢'ST |¥86°0 G¢6'0 888°0 L8880 |SC OT
¢6€°0 8LED PIE0 €9€°0 | T LS 61L°T 0°00T 897 89y |16 ®TII Ll <C€I |[SP0'T ¢S0°T L86°0 L86°0 |ST OT
w90 0cv'0 LOP°0 907°0 | L'CP 0L7'T 0°00T 8'CE 8¢t |88 00T 00T ¢0r |6€0°T 090°T 9860 9860 |0T OT
99¢°0 6€9°0 6¢5°0 LTG0 |6°€C €6C'T 0°00T 98T 98T |.8 86 L6 L6 8G0°'T OIT'T ¥EO'T €EO'T |G 0T
0780 T€E8'0 7080 ¥08°0 |99 LVT'T (L 99 6'¢l |00T 86 60T 60T |746°0 90T 0460 0L6°0 |¢C 0T
G8%7°0 €970 LG¥'0 0G7°0 |&'8L e 0°00T G99 G99 |¢6 VeI T¥L Svl |€C0'T TE0'T 6660 6660 |08 G
9740 L67°0 08%°0 89%°0 | €19 ¥0¢'¢ 0°00T €av €cr €6 €T G4T T9T [2L6°0 TOO'T 6160 6160 |9C G
GT9°0 $99°0 8¢G'0 020 |0°LY €EL'T 0°00T 1°L¢ T'2¢ |06 OTT €€ ¥E€T |920T OVI'T 0¢0'T 0CO'T |ST G
70L°0 TE9'0 G090 96970 |88E Gyal 0°00T V'1¢ V'ic |66 ¥IT LCl 8¢l |L90°T GST'T ¢EO'T ¢€0'T (0T 9
8060 ¢¢80 G6L°0 ¥8L°0 |L0€ LEE'T 0°00T T°G1 ST |¢6 T0T 90T 90T [¢80°T 8I¢'T 980°T 980°T |G g
LOE'T 67¢'T Tco'T SICT |9°€T 681°T 0°00T 61T 6'TT |86 06 88 68 0L0'T S9¢'T 6¢I'T 6211 |G g
186°T 616°0 09€'T 8EY'0 |9°€S 0€g'€ 0°00T 062 06c |€6 T¢cc L'Lg L'Lg [680°T 6ST'T #9PO°T ¥P0°T [0S ©
LLE°C G96°0 99€°T 6780 | STV Viv'e 0°00T 9°0¢ 90¢ |¢8 691 G'1I¢ G'1¢ [960'T 9¢¢'T GPO'T GVO'T |GC¢ ¢
8G7'¢ 8I0'T 6¥€'T 0060 |67¢ L98°T 0°00T LT LyT |01 0°ST 29T 29T |PSO°T GL¢'T LGO'T LG0T |ST @
Gc8'¢ LVT'T 91G°T ¢cO0'T |8'1¢ 891 0°00T 911 911 ¢Or 8vI ®¥IL 8¥L |L60°T ¥9€'T SPI'T SVI'T (0T @
687°€ 6971 €VL'T GGE'T |€°GC 08€'T 0°00T 9. 9L ¢TIT €€ TE€r €€ [0€60 €vc'T ¢v0O'T V0T |G é
06€°S 798G 990°¢€ G9€°S |0°CC €¢C'1 0°00T 0T 90T |88 ¥l LL LA €80T L¥¥'T BICT BICT |C [4
QU NINT HAV NAV [op toy | [0H oy qQUH WIN'T HAV INAV |9H NN HAY NAV | W 9
YU [RAyu] [g1< [(ffop)a | m o1 <| lgT< |TMTY g 103 1D (g)wa/((g)4va)ag 40 snSd
90UepYUO)) ffopl|d Lfopld | [fapld JO 08BISA0)-UON

"osed 'Jep paour[eq ‘G 0=d ym ¢'1 < [ [op pue () = lo: 0f
8urso) jo 1omod pue ‘g I10J S[RAIOUL dOUIPYUOD ()G O JO 9FRIGA0D-UOU PUR sg ‘soryer oourLIBRA TT°(] 9[qel

221



G¥c’0 Gv¢'0 Sve0 G¥e’0 |0°00T | €98°G 0°00T 0°00T 0°00T |¢'0T T'0OT ¢O0T TO0T |[896°0 8960 8960 8960 |0¢ GT
€9¢°0 ¥9¢°0 €9¢°0 ¥9¢°0 |6°66 |99¢°€ 0°00T 6°66 666 |L'TT 911 L' IT 91T |¥¢6°0 ¥¢6'0 ¥¢6°0 ¥¢6'0 |9C¢ ST
G8¢'0 L8C'0 ¥8C'0 G8C'0 |676 |¥9€°C 8°L6 676 046 |00T G0T L0OT LOT |€86°0 ¢86°0 LL6°0 LL6°0 |ST GC
TT€0 TTE0 €0€0 90€0 |6°LL |€EL8T 1°¢6 6°LL 978 |68 86 ¥'0r 90T |¢v0'T ¥€0O'T OTO'T 600°T |0T G¢C
LLE°0 L9€°0 TGE0 €9€°0 |C'GE |€EPET ¢'89 (1S 9T¢ |0TT ¢TIT 8¢l &¢I |0L6°0 €760 8L8°0 8L80 |G 514
6¢S°0 7650 9670 9670 |60 |8ET'T 6°¢ 60 GEc |06 68 T°0T TOT |2Z60°T PET'T SG66°0 S66°0 | gc
2070 TIP'0 9070 TI¥'0 886 |VclG 0°00T 0°86 086 |90T 0T LOT L0T |P.6°0 760 €L60 €L6°0 |0G¢ OT
ver'0 €E7°0 8C¥'0 0EV0 |¥'C6 |€8CE 0°00T €68 €68 |¢0T €11 9TI &¢I |096°0 8460 0§60 0960 |G¢ OT
€LV'0 89¥°0 8GY'0 09v'0 |¢'¢8 |€CEC 0°00T 96 96L |T6 €0T 80T &Il |9%0'T G¥0°'T 0¢O'T 0cO'T |ST OT
1¢6°0 S0S°0 0670 6870 |¢'L9 |698'T 0°00T ¢'8% ¢8% |76 Tl G¢l T€L |0E0'T 660°T 0860 0860 |OT OT
7€9°0 €090 685°0 0650 |T°6€ |8OV'T 0°00T 6°€€ 6'¢€ |T'8 T'IT L0T 80T |80T'T 02I'T GSO'T GS0°'T |G 0T
G880 G98°0 6¢8°0 0€8°0 |06 |FLI'T 909 06 8.1 [€6 C6 ¢G0T €0T |[¥660 TL0T 7960 75960 |C 0T
099°0 099°0 ¥€9°0 ¢¥9°0 |¢06 | 169G 0°00T 9°€8 9°¢8 90T €¢I L2l TE€L |¢860 €860 €L60 €L6°0 (0§ ¢
60L°0 7290 ¥99°0 €990 |T'¢8 |cCS€'€ 0°00T €89 €89 6L ¥IL 0€r 9€L |P00'T LOO'T ¢L6°0 ¢L6°0|9C &
¢8L°0 G690 6190 ¢99°0 {089 |0O¥EC 0°00T ¥'04 70¢ |96 GE€T 9¢r T9T |I8°0 000'T G€6'0 G€6°0 |ST ¢
0€8°0 ¢GL°0 7¢L'0 80L°0 |9°99 |L68'T 0°00T €9¢ €9¢ 60T ¥¥I 99T 69T |LP6°0 8.L6°0 0680 0680 |0T &
€00°'T L68°0 8GR0 #7980 |T°LE |TEV'T 0°00T 161 L6T |48 G¢l L€ &€ |8L0T 6ST'T Ge0'T GCO'T |G g
88C'T GOE'T GLC'T €9¢'T | VAT |¥0C'T 0°00T (44! SV |LTT ¥'IT  LTT  L'TT |0S8°0 896°0 ¢80 ¢L80 |C g
6G9°¢ 8EE'T OVI'C 89C'T |09 |GETV'G 0°00T vy I'vy |€8 8¥%c TTE€ GT1€ |6¢0°T 950°'T ¥0O'T ¥0O'T [0S ¢
6€8°C GLC'T ¥86'T 6G9T'T |6°€S |TVECE 0°00T 8°6¢ 86¢ |L8 LTc 89C 89¢ |6¢0°T ¥60'T 8860 L86°0 |GC ¢
7€0€ 98¢'T OV6'T 8SGT'T |96V | 0GE€C 0°00T 1T°€¢ T'€c |80T 00c €€ €€ |VIOT SCI'T 0660 0660 ST ¢
861°€ 9LC'T 6V8'T 9€T'T |8 |€68'T 0°00T 791 79T (L8 98T L'I¢ L'T¢ |7€6'0 ¢60'T G€6'0 SG€6°0 |0T €
6V¢V 6781 OFF'¢ 6691 |€FE |TLGT 0°00T 8VI 8VI I'6 L¢l G¢l Lcl |LIST 0LV'T ¢S¢'T ¢Se'T |G ¢
00L°G 9899 €PC'E€ 09L°G |#'9C |99C'T 0°00T €¢I €¢Il |86 ¥dl 88 88 PPO'T 9T€'T 8L0'T 8L0'T |C 4
QUH__NINT_HAY_INAV [0 o | [0 oy qQuH IWINT HAV _NAV |9"H_NINT_HAV NQY | @2
[I8UoT [eAtoyu] (ffop)a |z c1<| |g1< |T9TH g 105 1D (g)ava/((g)na)ag |80 snSd
00UOPYU0)) T ffopld | [fop]d JO 98eI0A0))-UON

"0seD 'Yep paourreq ‘1-0=d yym ¢'T < ffop pue (= Jo: 0g
8urso) jo romod pue ‘g I0J S[BAIOIUL 9OUIPYUOD ()G O JO 9FRISA0D-UOU PUR ﬁw#qﬁ ‘soryer sourLIRA 7] (] 9[qe],

222



APPENDIX D. EXTRA TABLES AND PLOTS FOR CHAPTER 5

G8T°0 ¢8T°0 98T°0 ¢8T°0|0°00T 0°00T 000T |[¥6 86 ¥6 86 800°T 800'T 800O'T 8OO'T |SC¢ 09
T¢c'0 L1¢'0 1’0 L1E0 | 1°86 0°00T 1'86 |€0T O'TT G0T OTT |066°0 886'0 886°0 886°0 |OT 09
91€°0 S0€°0 90€°0 S0€°0|€8€ 0°00T €8¢ 60T ¢¢l ¢G¢l G¢l |296°0 916'0 9160 916°0 |€  0S
¥9¢°0 99¢°0 ¥9¢°0 95¢°0 | 866 0°00T 866 [0°0T L'0T 00T L0OT [8660 8660 8660 866°0 |SC ST
LTE0 90€°0 STE0 90€°0 (€16 0°00T €16 |68 €0T 06 €07 [€60°T L8O'T LSO'T LSO'T [OT S¢C
G&v'0 Tvi'0 SPP°0 TV 0 |T°EV 0°00T I'¢€v |96 €01 <0 ¥O0I |086°0 €960 €960 €960 |¢  GC
6€7°0 007°0 8E¥°0 00%7°0 |9V6 0°00T 9%6 |6°0T YL O TT 8¥IL [€L6°0 ¢L6°0 €L6°0 ¢L6°0 |SC OT
GcG'0 €87°0 614970 €8¥7°0|L9L 0001 L9, |¢0T ¥'¢I 901 ¥cl |¢S0°T GG0°'T SG0°T S9S0°T |0T OT
6vL°0 ¥¢L'0 ¥PL'0 €CL0|ETY 0°00T €vy |86 601 70T 60T |6¢0°T PLO'T €L0°T €L0°T|€  OI
¢69°0 LGS0 ¥89°0 LGS0 (€IS 0001 €18 |V'IT L'8T T'¢l L'S8T |9¢6°0 v€6'0 ¥€6'0 ¥€6°0 |SC S
€I8°0 L89°0 96L°0 989°0 |¥'6S 0001 769 €01 66T OTI 6°€T |€V6°0 6860 9860 986°0 |OT G
¢ec'l ¢vI'T GOT'T CET'T|6°6€ 0°00T ¢'6¢ (86 ¥OI €01 LOT |Lv0'T ¢9T'T 6VI'T 6¥I'T|E ¢
G¥8'C 9€6°0 98¢€°C L1670 |R'GY 0°00T 84y |I'6 ¢'I¢c €0¢ €¢¢ [L86°0 0G0'T 8¢0'T 8¢0°'T |SC €
GLE'E TCE'T 609°C G8C'T |L°CE 0001 Lce 196 €91 991 €91 |9c0°T 8ST'T S¥I'T S¥I'T |0T ¢C
0GT°G LI8'C 0LG°€ 8¥9°C |CVC 0°00T ¢ve |90T 9%  ¢0T €01 |00T'T 99€°T 8GC'T 8SC'1|€ ¢
QU WIN'T HAV INAV| (07 by |[0H by qQUH WIN'T HAV WAV |[90H WINT HAV AV | w2
13U [eAtopu] 2 C0T <| |S0'T< | THTH g 105 1D (g)ava/((g)40a)d 890 snSd
Q0uapPYUO)) @T« \/\W@Q JO 98vI0A0)-UON

T°0=0 {31 9SBD BJRp PodUR[RqUI OU) UL [ATY SUISn GO'T < Jop pue () = Jo : Off

Surse) jo remod pue ‘g I10J S[RAIOIUI 9OUSPYUOD 046 U} JO 9SRISAOD-UIOU pUR [)3US[ ‘SOIJRl 9dURLIBA €' (] O[(RL

223



Figure D.9: Confidence interval non-coverage using different variance esti-
mation methods and for various values of m and ¢, p=0.025,

deff =1.05
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Figure D.10: Confidence interval lengths using different variance estimation
methods and for various values of m and ¢, p=0.025, deff =

1.05
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Figure D.11: Confidence interval non-coverage using different variance esti-
mation methods and for various values of m and ¢, p=0.025,
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Figure D.12: Confidence interval lengths using different variance estimation
methods and for various values of m and ¢, p=0.025, deff = 1.1
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Figure D.13: Confidence interval non-coverage using different variance esti-
mation methods and for various values of m and ¢, p=0.025,
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Figure D.14: Confidence interval lengths using different variance estimation
methods and for various values of m and ¢, p=0.025, def f = 1.2
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Figure E.1: Variance of (3 calculated from a main survey with budget
C'r=5000, designed using a pilot survey (C;=0.5 and Cy=1, p=0)
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Figure E.2: Variance of § calculated from a main survey with budget
Cr=5000, designed using a pilot survey (C1=0.5 and Ch=1,
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Figure E.3:
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Figure E.4: Variance of (3 calculated from a main survey with budget
Cr=5000, designed using a pilot survey (C;=0.5 and Ch=1,
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Figure E.5: Variance of (3 calculated from a main survey with budget
Cr=5000, designed using a pilot survey (C;=0.5 and Ch=1,
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Figure E.6: Variance of (3 calculated from a main survey with budget
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Figure E.7:
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Figure E.8: Variance of § calculated from a main survey with budget
Cy=5000, designed using a pilot survey (Ci;=2 and Ch=l,
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Figure E.9: Variance of (3 calculated from a main survey with budget
a pilot survey (C1=2 and Chy=1,
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Variance of B calculated from a main survey with budget
Cy=5000, designed using a pilot survey (C;=2 and Ch=1,

Figure E.10:
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Figure E.11: Variance of B calculated from a main survey with budget
Cy=5000, designed using a pilot survey (C1=10 and Ch=1,
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