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Antarctic moss stress assessment based on chlorophyll content and leaf
density retrieved from imaging spectroscopy data

Abstract
The health of several East Antarctic moss-beds is declining as liquid water availability is reduced due to recent
environmental changes. Consequently, a noninvasive and spatially explicit method is needed to assess the
vigour of mosses spread throughout rocky Antarctic landscapes. Here, we explore the possibility of using near-
distance imaging spectroscopy for spatial assessment of moss-bed health. Turf chlorophyll a and b, water
content and leaf density were selected as quantitative stress indicators. Reflectance of three dominant
Antarctic mosses Bryum pseudotriquetrum, Ceratodon purpureus and Schistidium antarctici was measured
during a drought-stress and recovery laboratory experiment and also with an imaging spectrometer outdoors
on water-deficient (stressed) and well-watered (unstressed) moss test sites. The stress-indicating moss traits
were derived from visible and near infrared turf reflectance using a nonlinear support vector regression.
Laboratory estimates of chlorophyll content and leaf density were achieved with the lowest systematic/
unsystematic root mean square errors of 38.0/235.2 nmol g−1 DW and 0.8/1.6 leaves mm−1, respectively.
Subsequent combination of these indicators retrieved from field hyperspectral images produced small-scale
maps indicating relative moss vigour. Once applied and validated on remotely sensed airborne spectral images,
this methodology could provide quantitative maps suitable for long-term monitoring of Antarctic moss-bed
health.
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Summary 31 

• The health of several East Antarctic moss-beds is declining as liquid water 32 

availability is reduced due to recent environmental changes. Consequently, a non-33 

invasive and spatially explicit method is needed to assess the vigour of mosses spread 34 

throughout rocky Antarctic landscapes. Here, we explore the possibility of using near-35 

distance imaging spectroscopy for spatial assessment of moss-bed health.  36 

• Turf chlorophyll a+b, water content and leaf density were selected as quantitative 37 

stress indicators. Reflectance of three dominant Antarctic mosses Bryum 38 

pseudotriquetrum, Ceratodon purpureus and Schistidium antarctici was measured 39 

during a drought-stress and recovery laboratory experiment and also with an imaging 40 

spectrometer outdoors on water-deficient (stressed) and well-watered (unstressed) 41 

moss test sites. The stress-indicating moss traits were derived from visible and near 42 

infrared turf reflectance using a non-linear support vector regression. 43 

• Laboratory estimates of chlorophyll content and leaf density were achieved with 44 

the lowest systematic/unsystematic root mean square errors of 38.0/235.2 nmol dwg–1 45 

and 0.8/1.6 leaves mm–1, respectively. Subsequent combination of these indicators 46 

retrieved from field hyperspectral images produced small-scale maps indicating 47 

relative moss vigour.  48 

• Once applied and validated on remotely sensed airborne spectral images, this 49 

methodology could provide quantitative maps suitable for long-term monitoring of 50 

Antarctic moss-bed health. 51 

 52 

Key words: stress imaging spectroscopy, hyperspectral remote sensing, moss 53 

chlorophyll content (Cab), turf water content (TWC), leaf density (LD), Bryum 54 

pseudotriquetrum, Ceratodon purpureus, Schistidium antarctici. 55 
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 56 

Introduction 57 

Arctic polar regions are experiencing rapid and severe climatic shifts with major 58 

changes in the abundance, distribution, and phenology of plant species (MacDonald, 59 

2010). Corresponding changes have already been documented in maritime Antarctica 60 

and the sub-Antarctic islands, where temperature changes have been particularly 61 

pronounced (Turner et al., 2007). Less severe, but significant changes in air 62 

temperature, wind speed, and long-term fluctuations in concentration of stratospheric 63 

ozone have also been observed on the Antarctic continent (Turner et al., 2005; Clarke 64 

et al., 2008; Son et al., 2010; Robinson & Erickson, 2014; Williamson et al., 2014). 65 

Therefore, the Intergovernmental Panel on Climate Change recommended regular 66 

acquisitions and analyses of long-term Antarctic datasets (IPCC, 2007) and the 67 

Scientific Committee for Antarctic Research is proposing the establishment of an 68 

Antarctic Near-shore and Terrestrial Observing System (ANTOS) to provide baseline 69 

data for ecosystem health and to enable assessment of future changes.  70 

 Antarctic cryptogamic vegetation lacks vascular tissue and is poikilohydric, with 71 

plants only metabolically and photosynthetically active when hydrated (Schlensog et 72 

al., 2013). Mosses and lichens that dominate the Antarctic vegetation are found in ice-73 

free areas where sufficient summer snowmelt occurs (Wasley et al., 2006). Around 74 

the coast, where ancient penguin colonies or recent nesting birds have provided 75 

nutrients, well-established moss-beds have developed (Wasley et al., 2012). The 76 

Windmill Islands region of East Antarctica is one such area supporting some of the 77 

best-developed and most extensive moss ecosystems on the continent. However, since 78 

ice-free areas are also prime sites for polar stations and experience the largest visitor 79 

pressure in addition to the existing environmental stress, there is an urgent need to 80 
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develop effective ways to measure and monitor the health of these ecosystems. 81 

Because mosses are sensitive to mechanical damage (i.e. trampling) and their growing 82 

season is short, the method needs to be non-invasive, rapid, and covering large moss-83 

bed areas (i.e. spatially explicit). Given the unfavourable cold weather, a technique 84 

that allows data to be collected quickly and post processed later indoors is also 85 

preferable. An ideal solution would be an imaging remote sensing method that would 86 

allow fast spatial assessment of whole moss-beds, and thus enable repeated and 87 

standardized observations conducted under different climatic conditions of successive 88 

growing seasons. 89 

   A number of studies have demonstrated that remote sensing imaging spectroscopy, 90 

also referred to as hyperspectral remote sensing, can provide a qualitative description 91 

of vegetation (e.g. maps of plant functional types; Poulter et al., 2011), but also 92 

quantitative estimates of plant biochemical and structural physiological traits 93 

(Malenovský et al., 2009; Homolová et al., 2013; Serbin et al., 2014; Asner et al., 94 

2015). The special issue on imaging spectroscopy in Remote Sensing of Environment 95 

(Ustin & Schaepman, 2009) has shown various state-of-the-art techniques for 96 

bridging scaling gaps between foliar biochemical molecules and ecosystem canopies 97 

(Kokaly et al., 2009). It provides insights into empirical methods for retrieving 98 

quantitative vegetation traits using optical vegetation indices and statistical functions 99 

(Ustin et al., 2009), as well as physical inversion approaches based on coupled leaf 100 

and canopy radiative transfer models (Jacquemoud et al., 2009; Schaepman et al., 101 

2009). This demonstrates an increasing capability of this scientific field towards 102 

spatially explicit quantitative characterisation of vegetation. Remote sensing estimates 103 

as leaf chlorophyll and water content or leaf area index (Hu et al., 2004; Cheng et al., 104 

2006; Malenovský et al., 2013) can parameterize and validate vegetation production 105 

Page 4 of 54New Phytologist



Manuscript for New Phytologist – Methods                  20 May 2015 

 Page  |  5

models (e.g. yield predicting crop models; Clevers, 1997), but also indicate plant 106 

stress reactions (Zarco-Tejada et al., 2002). Having standardised physical units, they 107 

are site and method independent. Moreover, the accuracy assessment of the estimates 108 

can be included in subsequent analyses (Demarty et al., 2007). 109 

   The objective of this research is to test the hypothesis that the remotely sensed moss 110 

reflectance of visible and near infrared (VNIR) wavelengths (400–900 nm) can 111 

provide sufficiently accurate estimates of quantitative parameters indicating the 112 

physiological stress response (relative vigour) of Antarctic moss-beds to highly 113 

variable environmental changes. An acute stress load causes reorganisation of the 114 

moss pigment-bed, resulting in decline of leaf chlorophyll (Robinson et al., 2005). 115 

Water deficiency (i.e. desiccation) triggers reduction of moss photosynthetic 116 

production and induces shape changes and geometrical re-arrangement (i.e. ‘shrinking’ 117 

and ‘curling’) of moss leaves (Zotz & Kahler, 2007). We observed that long-term 118 

stress slows moss growth, which results in shorter shoots with smaller leaves at higher 119 

density, whereas optimal growing conditions produce less dense and larger moss 120 

leaves. Therefore, the stress assessment approach proposed in this study has 121 

foundations in estimates of moss chlorophyll a and b content (Cab), turf water content 122 

(TWC) and leaf density (LD) retrieved from spectroscopy data of high spectral 123 

sampling and resolution (i.e. hyperspectral data). The method is intentionally based on 124 

quantitative bio-indicators, which ensures its transferability to other moss ecosystems 125 

along the Antarctic coast and to polar and alpine regions. A machine-learning 126 

algorithm, support vector regression, was parameterized and trained using laboratory-127 

measured VNIR reflectance of moss and also continuum removal normalized 128 

reflectance to estimate Cab, TWC, and LD of three Antarctic moss species: Bryum 129 

pseudotriquetrum, Ceratodon purpureus and Schistidium antarctici. The successfully 130 
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validated Cab and LD estimating algorithms were further applied to near-distance 131 

hyperspectral images of S. antarctici moss-beds acquired on the ground. Cab and LD 132 

maps were normalised and averaged to reveal the spatial pattern of actual relative 133 

moss vigour. This method can be applied to imaging spectroscopy data collected over 134 

Antarctic moss-beds with hyperspectral piloted or unmanned airborne systems and 135 

successively scaled up to satellite observations.   136 

 137 

Materials and methods 138 

Study area 139 

The study was carried out in the vicinity of Australian Antarctic Casey station located 140 

in the Windmill Islands region, East Antarctica (66°17’S, 110°32’E; Fig. 1a). The ice-141 

free habitats of this region support some of the most extensive and best-developed 142 

moss-beds on Continental Antarctica. The summer melt provides water sustaining 143 

populations of four bryophyte species including the endemic moss Schistidium 144 

antarctici (Cardot) L.I. Savicz & Smirnova, and two cosmopolitan species, Bryum 145 

pseudotriquetrum (Hedw.) Gaertn., Meyer & Scherb., and Ceratodon purpureus 146 

(Hedw.) Brid. The moss samples for laboratory experimental work were collected 147 

near Casey station, whilst the field hyperspectral data were acquired in natural moss 148 

ecosystems within Antarctic Specially Protected Area (ASPA) 135, located 149 

approximately 300 m southwest of the station (Fig. 1b). 150 

 151 

Drought-stress rehydration experiment 152 

Liquid water availability is a more important determinant of cryptogamic productivity 153 

in Antarctica than temperature (Kennedy, 1993; Schlensog et al., 2013). Thus, a moss 154 

drought-stress rehydration experiment was designed and conducted in the Casey 155 
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laboratory during the 2012–2013 summer season to establish a link between 156 

reflectance and stress-indicating biochemical and physical traits of moss turf 157 

(Lovelock & Robinson, 2002). Sampling included the three Antarctic moss species (B. 158 

pseudotriquetrum, C. purpureus and S. antarctici) and was designed to capture the 159 

existing natural variability in composition and content of moss foliar pigments. Turf 160 

sections (approximately 50 cm2) of both visually red and green coloured moss turfs 161 

were collected from sites around the station on 26th December 2012 (n = 3 per 162 

species/colour except for green C. purpureus where n = 1). The 16 turf pieces were 163 

transferred to the laboratory and split in half (n = 32). Drought stress was applied to 164 

the first half, while the second half served as a stress-free control set. During clear 165 

days of the summer growth period the moss turf temperature reaches 20-30 °C 166 

(Bramley-Alves et al., 2015). All samples were, therefore, kept in a plant growth 167 

cabinet with a constant temperature of 25 °C (the optimum for their photosynthetic 168 

activity), and 16 h light (photosynthetic flux density of 150 µmol photons m–2 s–1)/8 h 169 

dark. This low light intensity was applied to prevent any confounding high irradiation 170 

stress. To induce acute drought-stress, the first half of the samples was kept without 171 

water supply for six days after collection, whilst samples of the control half were 172 

soaked (completely saturated) with water every second day. From day 7, all samples 173 

were watered every second day until the end of the experiment on 25th January 2013 174 

to observe drought stress recovery in the first half and growth under optimal 175 

conditions in the second half of samples (see examples in Fig. 2a). Every six days all 176 

samples were monitored for turf reflectance and total weight (a proxy of actual water 177 

content). Micro-photos were taken for assessment of shoot and leaf architectural 178 

changes and several shoot apices were collected from drought-stressed samples for 179 
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later determination of pigment quantities. At the end of the experiment, samples were 180 

oven dried at 80°C to determine their dry mass.   181 

   A second independent dataset of 73 S. antarctici samples, which was collected and 182 

measured at Casey station in 1999, was used to validate relationships established 183 

during the 2013 drought-stress rehydration experiment. These samples were also used 184 

to establish the link between moss leaf density measurements and reflectance 185 

signatures. For detailed information of the 1999 sampling design see Robinson et al. 186 

(2005).  187 

 188 

Laboratory spectral measurements of moss reflectance 189 

Spectral measurements of moss samples during the drought-stress rehydration 190 

experiment were performed with an ASD HandHeld-2 (HH2) spectrometer (ASD Inc. 191 

& PANalytical, USA): wavelength range 325 and 1075 nm, spectral resolution about 192 

1 nm, and the spectral band full width at half maximum (FWHM) about 3 nm. Since 193 

an optical integrating sphere was not available, the spectrometer was placed in a small 194 

dark chamber pointing downward at a zenith angle of 45°. Samples were illuminated 195 

with an external halogen Tungsten light source (power 50 W, field of view (FOV) 196 

about 24°) placed in nadir direction 45 cm from the sample and their reflected 197 

radiance was recorded from a distance of approximately 5 cm by the spectrometer 198 

optical fibres (FOV of 25°) (Fig. 2b). Six spectral measurements across each moss 199 

sample were recorded to account for turf spatial heterogeneity. Although 200 

microstructure of moss turf represents a near-Lambertian surface producing diffuse 201 

(i.e. hemispherically distributed) reflectance, samples for each measurement were 202 

rotated 45° clock-wise in order to compensate for any potential reflectance directional 203 
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effect. The final sample reflectance was obtained as the mean of the six measured 204 

reflectance factors (ρ) computed as: 205 

 206 

ρ =
Rsample − RDC

RREF − RDC

                Eqn 1 207 

 208 

where Rsample is the radiance of the sample, RDC is Dark Current radiance measured 209 

without any irradiation (sensor noise), and RREF is radiance of a 99% reflective white 210 

reference (barium sulphate Spectralon panel). This protocol guaranteed that final 211 

reflectance is comparable with directional-hemispherical measurements obtained with 212 

an optical integrating sphere (Schaepman-Strub et al., 2006). 213 

   The second validation dataset of moss reflectance between 200 and 900 nm was 214 

acquired in 1999 in an integrating sphere fitted to a scanning spectrophotometer GBC 215 

UV-Vis 918 (GBC, Dandenong, VIC, Australia) as described in Lovelock and 216 

Robinson (2002). Because the spectral datasets from 1999 and 2013 were acquired 217 

with two instruments of different spectral specifications, all measurements were 218 

spectrally unified to be compatible with field hyperspectral scans. The laboratory 219 

spectral datasets were resampled and convolved according to the actual spectral 220 

sampling, resolution, and FWHM of the outdoor imaging spectrometer observations 221 

(sensor technical specifications provided in field imaging spectroscopy section). 222 

 223 

Determination of chlorophyll content 224 

Several moss apices were cut from the top of drought-stressed samples after each 225 

spectral measurement in 2013. Samples were frozen at –80°C and transported to 226 

Australia for chlorophyll determination. There, they were freeze dried overnight 227 

Page 9 of 54 New Phytologist



Manuscript for New Phytologist – Methods                  20 May 2015 

 Page  |  10 

(Alpha 1-2 series freeze dryer, Fisher Bioblock Scientific, Illkirch, France) and 228 

homogenized for 2 minutes at 30 Hz in a tissue lyser (Retsch, Verder Group, Haan, 229 

Germany). Samples with a minimal dry weight of 8 mg were extracted in 600 µl of 230 

ethyl acetate/acetone (60% ETOAC and 40% acetone) with further homogenisation (2 231 

min at 30 Hz), followed by the addition of 500 µl of milliQ water and centrifugation 232 

(5 min at 3600 g) (Dunn et al., 2004; Förster et al., 2011). Supernatant was diluted 233 

with 20% acetone and chlorophyll absorption peaks at 646.6, 663.6, and 750.0 nm 234 

were measured with a Shimadzu UV-visible spectrophotometer (Model 1601, 235 

Shimadzu, Kyoto, Japan). Chlorophyll a and chlorophyll b in nmol per gram of dry 236 

weight (Cab; nmol gdw–1) were calculated using the equations published by Porra et 237 

al. (1989). Chlorophyll determination of 1999 samples followed a similar procedure 238 

(see Lovelock & Robinson, 2002). 239 

 240 

Moss water content and leaf density  241 

Moss turf water content (TWC; gH2O gdw–1), i.e. the difference between fresh and 242 

dry sample weights relative to a gram of dry turf weight, for both datasets was 243 

determined after oven drying (80°C) to a stable weight (see Robinson et al., 2000). 244 

   Leaf density was only measured for S. antarctici samples in the 1999 validation 245 

dataset. Five randomly selected gametophytes from each sample were carefully 246 

dissected and the number of moss leaves in the top 3.5 mm was visually counted 247 

using a binocular microscope Leica Wild (Leica Microsystems, Gladesville, NSW, 248 

Australia). Mean leaf density per 1.0 mm of shoot length (LD; leaves mm–1) was 249 

calculated according to Robinson et al. (2005). This time-consuming measurement 250 

was not repeated for samples from 2013. However, microscopic photos of each 251 

sample in natural colours were taken with a Dino-Lite AM 2111 digital microscope 252 
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(AnMo Electronics Corp., Taipei, Taiwan) on each sampling day to visually inspect 253 

shoot and leaf architectural changes during the experiment.   254 

 255 

Field imaging spectroscopy 256 

Two research plots of c. 10–15 m2, colonised dominantly by S. antarctici, were 257 

chosen at ASPA 135 to demonstrate transferability of the approach developed in the 258 

laboratory to field near-distance hyperspectral images. The first plot, evaluated as a 259 

dry (exposed, water limited, and considerably stressed) moss-bed of lower vigour, 260 

was located at the top of a hill above the ASPA 135 fresh water lake (Fig. 1c). The 261 

second plot, representing a wet (lengthily snow covered, well watered, and less 262 

stressed) moss-bed of higher vigour, was positioned in a local terrain depression with 263 

water supply originating from snowmelt and possibly from infiltration of lake water 264 

located above (see Supporting Information Fig. S1). 265 

    The imaging spectroradiometer used for field near-distance hyperspectral 266 

observations (Ač et al., 2009) was the Headwall Photonics Micro-Hyperspec VNIR 267 

scanner (Headwall Inc., Fitchburg, USA) attached to a computer-controlled 268 

rotating/tilting platform (Fig. 1d). The sensor unit was placed approximately 2.5 m 269 

above the ground on a single pole mounted to a geodetic tripod (Fig. 1c). The Micro-270 

Hyperspec is a push-broom scanner, which collects light passing through a lens 271 

objective with an aperture of f/2.8 (FOV of 49.8°) and through a slit entrance of 25 272 

µm. The spectral wavelengths are split by an aberration-corrected convex holographic 273 

diffraction grating and projected onto a charge-coupled device (CCD) matrix with a 274 

digital dynamic range of 12-bits and size of 1004 by 1004 pixel units. Each column of 275 

the CCD matrix records the projected spatial information, whilst each row records 276 

separate wavelengths between 361 and 961 nm. To build a hyperspectral image, the 277 

Page 11 of 54 New Phytologist



Manuscript for New Phytologist – Methods                  20 May 2015 

 Page  |  12 

rotating/tilting platform moves the spectrometer anticlockwise in a horizontal 278 

direction with the predefined speed and photon integration time preserving the 279 

quadratic shape of image pixels. The CCD registers the captured light split into 324 280 

(full spectral extent, FWHM of 4.12–4.67 nm) or 162 spectral bands (binning of two 281 

neighbouring spectral pixels as a single recording unit, FWHM of 4.75–5.25 nm). 282 

Every image row is placed next to the previous one, creating a hyperspectral image 283 

with 1004 across-track columns and as many along-track rows as defined by the 284 

operators (Fig. 1e). 285 

   To ensure a high signal-to-noise ratio and simultaneously prevent oversaturation of 286 

the CCD dynamic range, we applied spectral binning (162 bands) combined with an 287 

integration time of 40 milliseconds (ms) and collected oblique hyperspectral images 288 

(azimuth viewing angles of 44° and 60°) of the test sites at solar noon on the 10th and 289 

30th of January 2013. The image of the dry site was acquired under full overcast 290 

conditions, while the wet site image was taken under a clear sky. A distance of about 291 

3.5 m between the sensor and objects resulted in images of 3260 by 1004 pixels with 292 

varying across-track spatial resolution of less than 10 mm. The 12-bit spectral images 293 

were radiometrically calibrated into radiance (mW cm–2 sr–1µm–1) and transformed 294 

into relative hemispherical reflectance by applying an empirical line atmospheric 295 

correction as described in Lucieer et al. (2014). The short and long wavelengths with 296 

unstable signals (i.e. 361–495 and 849–961 nm) were truncated and a local mean filter 297 

with a moving window of 3 bands in the visible (VIS: 496–710 nm) and 7 bands in 298 

the near infrared (NIR: 710–848 nm) wavelengths was applied to the reflectance 299 

function of each pixel to remove residual random spectral noise. To assess image 300 

spectral quality, reflectance of four spatially homogeneous targets was acquired 301 

together with hyperspectral scans. Three reflectance signatures of three rocks with 302 
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varying brightness at the dry site and a green moss turf at the wet site were measured 303 

with ASD HH2 from a distance of about 150 mm (i.e. from a circular footprint of 66.5 304 

mm in diameter) and averaged as ground reference spectra. The targets were located 305 

on the hyperspectral images and their reflectance grids of 7x7 pixels (i.e. less than 306 

70x70 mm) were separated and averaged as remotely sensed spectra. The coefficient 307 

of determination for a linear relationship (r2), the root mean square error (RMSE), and 308 

the index of agreement (d) (see description below) were computed between reference 309 

and remotely sensed spectra to evaluate their similarities.  310 

  311 

Modified triangular vegetation index and reflectance continuum removal  312 

Optical vegetation indices (VI) are mathematical transformations of spectral 313 

reflectance designed to maximize their sensitivity towards particular biochemical or 314 

physical plant characteristics and simultaneously to minimize the confounding effects 315 

of other nearby surfaces (e.g. a negative spectral influence of bare soil surrounding or 316 

underneath a vegetation canopy) (Myneni et al., 1995). In this study, we applied the 317 

modified triangular vegetation index 2 (MTVI2; Haboudane et al., 2004) to detect 318 

photosynthetically active moss captured in hyperspectral images of both study sites. 319 

MTVI2 is as a successor of the triangular vegetation index (TVI; Broge & Leblanc, 320 

2001) exploiting systematic changes in the area of the triangle drawn between the 321 

reflectance amplitudes at 550, 670, and 800 nm (i.e. ρ550, ρ670, and ρ800): 322 

.                                                                   Eqn 2 323 

When stressed by insufficient water availability and elevated solar (including 324 

ultraviolet) irradiation, moss canopies change from a healthy fluffy, green turf to a 325 

stress-resisting dense yellow-brown pack, and ultimately a desiccated black mat 326 

MTVI2 = 
1.5 1.2 ρ800 − ρ550( ) − 2.5 ρ670 − ρ550( ) 

2ρ800 +1( )2
− 6ρ800 − 5 ρ670( ) − 0.5
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(Robinson et al., 2005; Clarke & Robinson, 2008; Turnbull & Robinson, 2009; 327 

Wasley et al., 2012). Since these stress reactions are followed by changes in the 328 

reflectance function causing a decrease of MTVI2, we could apply the threshold of 329 

MTVI2 ≥ 0.25 to separate the photosynthetically active green moss from moss in this 330 

latest dormant stage together with lichens, bare soil, and rocks. The threshold of 0.25 331 

was derived as a breakpoint of the MTVI2 frequency histograms of hyperspectral 332 

scans. It corresponds with our observation that high frequencies of low MTVI2 values 333 

indicate presence of rocks, bare soil, lichens, and desiccated black moss. The MTVI2 334 

histograms of both hyperspectral scans are provided in Supporting Information Fig. 335 

S2.  336 

   The reflectance continuum removal (CR) transformation (Clark & Roush, 1984) has 337 

been applied in several studies to enhance and normalise the specific absorption 338 

features of certain vegetation foliar biochemical constituents (Broge & Leblanc, 2001; 339 

Curran et al., 2001; Kokaly, 2001), including xanthophyll and chlorophyll pigments 340 

(Malenovský et al., 2006; Kováč et al., 2012; Kováč et al., 2013). Similarly to 341 

Malenovský et al. (2013), we applied CR to reflectance of photosynthetically active 342 

moss between 650 and 720 nm to normalize and enhance modifications in the shape 343 

of the reflectance function that are induced by varying red light absorption due to 344 

changes in chlorophyll content. Secondly, we applied CR to the reflectance curve 345 

between 710 and 780 nm in order to capture and standardise systematic reflectance 346 

changes caused by differences in NIR photon scattering and absorbance among moss 347 

shoots and leaves (i.e. turf architectural modifications) emerging as a consequence of 348 

varying water content (Lovelock & Robinson, 2002). Principles of the CR 349 

transformation are depicted for examples of both a drought stressed and an unstressed 350 
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B. pseudotriquetrum spectrum in Fig. 3. The continuum removal is computed 351 

according to the equation: 352 

CR
j∈ λ1,λ2

=
ρ j

ρ ji









−1                  Eqn 3 353 

where ρ j
 is the measured reflectance of a band j and ρ ji

 is the reflectance of the 354 

same band linearly interpolated within the predefined wavelength interval of ⟨λ1, λ2⟩ 355 

(i.e. 650–720 nm or 710–780 nm) (Fig. 3). 356 

 357 

Support vector regression and retrieval error assessment 358 

Support vector regression (SVR) is a widely used machine learning technique 359 

belonging to the family of support vector machines (SVMs) and designed specifically 360 

for a function estimation (Smola & Schölkopf, 2004). SVMs are linear or nonlinear 361 

algorithms firmly grounded in the framework of statistical learning theory (Vapnik, 362 

1998) that has been developed since the 1960s (Vapnik & Lerner, 1963). These 363 

methods use a training optimisation technique to construct a hyperplane or set of 364 

hyperplanes in a high- or infinite-dimensional space, which can separate feature-365 

classes for classifications, or quantitative estimates for regressions. The SVR models, 366 

proposed originally by Drucker et al. (1997), were recently employed in numerous 367 

quantitative predictions of biochemical and structural parameters of oceanic and 368 

terrestrial vegetation ecosystems from spectral remote sensing observations (Camps-369 

Valls et al., 2006; Camps-Valls et al., 2009; Tuia et al., 2011; Pasolli et al., 2012). In 370 

our study, we applied the epsilon-SVR learning machine based on the nonlinear 371 

Gaussian radial basis function (RBF) kernel (Vapnik, 1998) to estimate moss 372 

chlorophyll a and b content (Cab), turf water content (TWC) and leaf density (LD). 373 
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The RBF kernel for two samples x and x', represented as feature vectors in an input 374 

space, is defined as: 375 

RBF(x, ′x ) = exp −
x − ′x( )2

2σ 2











,               Eqn 4 376 

where (x – x')2 is the squared Euclidean distance between the two feature vectors and 377 

σ is a free parameter related to the width parameter of the RBF kernel γ through: 378 

γ = −
1

2σ 2
.                  Eqn 5 379 

We used the epsilon-SVR algorithm available in the C++ Library for Support Vector 380 

Machines (LIBSVM; Chih-Chung & Chih-Jen, 2011). All training inputs were scaled 381 

between zero and one, by assigning the mean of each set to zero and its standard 382 

deviation to one. To find the optimal regression model, we presented each epsilon-383 

SVR with a training dataset containing either moss reflectance or CR reflectance 384 

values and applied a dual optimisation grid-search combined with a 5-fold cross-385 

validation to identify the best values for the cost parameter C (i.e. a penalty parameter 386 

of the error term) and for the width parameter γ of the RBF kernel. The cross-387 

validation prevents overfitting of the regression model. In 5-fold cross-validation, the 388 

training set is divided into five subsets of equal size and only one selected subset is 389 

used to test regression models obtained during the C and γ optimization performed on 390 

the remaining four subsets. The optimal parameters C and γ are selected based on a 391 

minimal mean square error (MSE). The SVR is then trained again with the most 392 

optimal C and γ to generate the best performing prediction model. Our Cab estimating 393 

SVR models were trained on: i) the reflectance of wavelengths influenced by 394 

photosynthetically active foliar pigments (496–719 nm), ii) the reflectance of the 395 

strong absorption wavelengths (648–719 nm) of chlorophyll a and b, and iii) the CR 396 
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reflectance of spectral interval in ii) excluding the first and last bands that after the 397 

CR transformation give null values (i.e. 652–715 nm). For TWC and LD, the SVR 398 

machines were trained on: i) the reflectance of all available NIR wavelengths 399 

influenced by turf architecture and water content (708–848 nm), ii) the reflectance of 400 

a selected NIR interval (708–782 nm), which excludes redundant bands of a flat 401 

vegetation spectral response called the NIR plateau, and iii) the CR reflectance of the 402 

spectral interval in ii) without the first and last bands of null CR values (i.e. 711–778 403 

nm). The optimal C and γ values and related MSEs of all trained SVRs are available 404 

in Supporting Information Table S1.     405 

   Once successfully trained, the SVR models were applied in a prediction mode on 406 

independent testing datasets to validate their accuracy and to assess suitability of 407 

tested spectral inputs. For Cab and TWC we used data of 2013 as the training datasets 408 

and data of 1999 as the testing dataset. Since LD was measured only in 1999, the 409 

input dataset was split into training (two-thirds, n = 49) and validation subsets (one-410 

third, n = 24), while preserving the Gaussian distribution of both datasets. RMSE, 411 

including its systematic (RMSES) and unsystematic (RMSEU) components, r2, and d 412 

were calculated between measured and estimated values to assess the SVR prediction 413 

accuracy. Under the assumption of a one-to-one linear relationship between the 414 

number (N) of error-free observations (O) and predictions (P), Willmott (1981) 415 

postulated RMSE and its systematic and unsystematic components to be computed as: 416 

 RMSE = 

Pi − Oi( )2

i=1

N

∑
N

,               Eqn 6 417 

RMSES =
P̂i − Oi( )

2

i=1

N

∑
N

, and                Eqn 7 418 
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RMSEU =
Pi − P̂i( )

2

i=1

N

∑
N

,                          Eqn 8 419 

where P̂i = a + bOi , and a and b are the coefficients of an ordinary least squares 420 

regression between O and P. The systematic and unsystematic components are related 421 

to the RMSE as follows: 422 

RMSE = RMSES
2 + RMSEU

2( ) .              Eqn 9 423 

The RMSE components offer a deeper error assessment of SVR retrieval methods. If 424 

RMSES prevails over RMSEU, it means that the retrieval errors originate from the 425 

predictive model and that this model will always yield systematically biased estimates. 426 

In the opposite situation, when the RMSE is composed mostly by the RMSEU, the 427 

model is as good as it can be and the retrieval inaccuracy originates from random 428 

measurement errors caused by limited precision and noise of the applied methods and 429 

devices. Finally, the index of agreement (d) complements the RMSE assessment and 430 

the coefficient of determination (r2). It is defined as: 431 

d =1−
Pi − Oi( )2

i=1

N

∑

'Pi − 'Oi( )
2

i=1

N

∑



















,             Eqn 10 432 

with 'Pi = Pi – Ō and 'Oi = Oi – Ō. The index indicates the degree to which the 433 

observed deviations of the mean observations Ō correspond in magnitude and sign to 434 

the predicted deviations of Ō. It is a dimensionless indicator gaining values between 435 

0.0 and 1.0, where d = 1.0 signals perfect agreement between estimates and 436 

corresponding observations, whereas d = 0.0 denotes their complete mismatch 437 

(Willmott, 1981). 438 

 439 
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Spatial assessment of relative moss vigour 440 

The ultimate goal is to develop a method for assessing actual moss health spatially 441 

and quantitatively from remotely sensed near-distance VNIR hyperspectral data. To 442 

fulfil this objective, the best performing SVRs were applied per-pixel on the 443 

hyperspectral images of the dry and wet moss sites, resulting in quantitative maps of 444 

Cab and LD. Spatial estimation of TWC could not be accomplished, because the 445 

strength of the TWC signal in NIR moss reflectance was insufficient to train a 446 

satisfactory performing SVR. To provide a single moss health indicator we merged 447 

the Cab and LD maps into a synthetic map of a relative vigour indicator (RVI). RVI 448 

was computed as the mean of Cab and inverted LD, both scaled between zero and the 449 

largest value measured in laboratory, i.e. Cab = 1500 nmol gdw–1 and LD = 15 leaves 450 

mm–1. The final map represents relative vigour, where 100% indicates optimally 451 

growing healthy moss, and 0% indicates moss highly stressed by unfavourable 452 

environmental conditions. Ground-based imaging spectroscopy data and maps 453 

resulting from this study are publically available at the Australian Antarctic Data 454 

Centre (Malenovský et al., 2015). 455 

 456 

Results 457 

Moss reflectance changes induced by water stress 458 

The crucial changes in moss reflectance during the drought-stress rehydration 459 

experiment are demonstrated by three examples in Figures 4 to 6. At the beginning of 460 

the experiment C. purpureus (Fig. 4) was rather dry (indicated by the lack of water 461 

absorption at 900–1000 nm) and contained predominantly red pigments (denoted by 462 

reflectance at 550 nm (ρ550) < reflectance at 625 nm (ρ625)) in small undeveloped and 463 

densely packed leaves (MTVI2 = 0.36). After growing for 6 days under optimal 464 
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conditions with regular irrigation, this species produced new green leaves resulting in 465 

ρ550  = ρ625, but without any significant change in the NIR region (besides increased 466 

water absorption at 900–1000 nm) (MTVI2 = 0.39). Over the next three weeks, it 467 

produced a canopy of larger leaves with higher Cab, reflecting more NIR light (ρ550  > 468 

ρ625) (MTVI2 = 0.67). Similarly, S. antarctici (Fig. 5) was rather red coloured and dry 469 

at the start (MTVI2 = 0.26). Six days in the growth chamber without additional water 470 

supply (drought stress) did not trigger much change in foliar pigment quantity and 471 

composition, indicated by almost no change in the VIS wavelengths, but did induce 472 

architectural turf changes. As turf dried out, the leaves ceased photosynthesis (no 473 

chlorophyll fluorescence was detected) and curled up, which effectively enhanced leaf 474 

density per mm of shoot length. These changes allowed NIR photons to penetrate and 475 

to be absorbed deeper into the turf, which lowered turf NIR reflectance. The area of 476 

triangle delineated between ρ550, ρ670, and ρ800 became smaller (MTVI2 = 0.17) than 477 

the one measured after 21 days of regular watering (MTVI2 = 0.39), when fresh larger 478 

leaves full of chlorophyll stimulated a significant increase in ρ550 and ρ800 (Fig. 5). 479 

These spectral changes justify our use of the MTVI2 threshold as a separator of 480 

spectrally dark, desiccated, and photosynthetically inactive turf (together with soil and 481 

stones) from brighter, wet, and actively growing moss. Finally, B. pseudotriquetrum 482 

(Fig. 6) was moist and had green open leaves (i.e. ρ550  > ρ625, high ρNIR, and MTVI2 483 

= 0.92) when collected. The drought-stress treatment applied for 6 days caused 484 

similar spectral changes as seen for S. antarctici above, with ρNIR becoming strongly 485 

diminished by shoot shrinking and leaf curling due to the low TWC (MTVI2 = 0.49). 486 

The B. pseudotriquetrum canopy flourished during the following three weeks in 487 

optimal growing conditions, as demonstrated by the substantial increase in area above 488 

the reflectance curve between 650 and 715 nm due to a higher Cab, and also by an 489 
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expanding area under the curve between 710 and 780 nm (MTVI2 = 1.46) caused by 490 

larger and less dense leaves at the top of the canopy.    491 

 492 

Spectral estimation of turf chlorophyll, water content and leaf density  493 

Unfortunately, about 40% of the drought-stress rehydration experiment samples had 494 

to be excluded either because the weight of collected apices was too low after drying 495 

for reliable Cab determination (less than 8 mg), or because desiccated moss turfs 496 

occasionally fell apart and their reflectance could not be properly measured. Despite 497 

these losses, Table 1 shows a sufficiently high coefficient of dispersion and an 498 

acceptable coefficient of variation (close to one) computed for 54 Cab training 499 

samples of all species from 2013. Both coefficients computed for TWC of the pilot 500 

species S. antarctici training dataset from 2013 indicate that the TWC variation and 501 

dispersion originated mainly from samples under drought stress. Although TWC 502 

variation was suboptimal, dispersion of TWC values appeared to be adequate, i.e. 503 

close to one (Poisson distribution). The same is true for the LD training data from 504 

1999 (Table 1). 505 

   Because absorption of chlorophyll molecules a and b is species independent, the 506 

Cab estimating SVR was trained with inputs of all three species together. The SVR 507 

trained with reflectance of 496–719 nm systematically underestimated the Cab 508 

content (Fig. 7a). Estimates with RMSES two-times larger than RMSEU suggest an 509 

insufficient performance of the model. The performance was significantly improved 510 

(RMSES < RMSEU) after training the SVR with reflectance of specific chlorophyll 511 

absorption wavelengths between 648 and 719 nm (Fig. 7b). The best results were, 512 

however, obtained with the CR reflectance of the same spectral region (RMSE = 513 

238.3 nmol dwg–1, r2 = 0.54, and d = 0.85) (Fig. 7c). 514 
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   Unlike Cab, the estimation of TWC strongly depends on the turf (shoot) structural 515 

characteristics of each species (Stanton et al., 2014) and must be performed per 516 

species. We attempted to train SVR for TWC estimation of S. antarctici using 517 

reflectance of two spectral intervals (708–848 and 708–782 nm) and CR reflectance 518 

of the latter interval. Validation results revealed that reflectance-based SVRs were 519 

unable to predict TWC, producing negative estimates in many cases. Although all 520 

TWC estimations of the CR-based SVR gained positive values, they were inaccurate 521 

and significantly different from the laboratory measurements (RMSE = 3.0 gH2O 522 

gdw–1, r2 = 0.01, and d = 0.43). Finally, LD of S. antarctici was estimated with SVR 523 

models trained with the same spectral inputs as TWC. Fig. 7d,e,f shows that all three 524 

SVRs retrieved reasonable LD predictions (RMSE ≤ 2.3 leaves mm–1, RMSES < 525 

RMSEU, r2 ≥ 0.35, and d ≥ 0.78), but the best results were achieved with SVR based 526 

on reflectance between 708 and 782 nm (RMSE = 1.8 leaves mm–1, r2 = 0.55, and d = 527 

0.86). These outcomes suggest that Cab and LD moss parameters are retrievable from 528 

VNIR reflectance with acceptable accuracy, whereas estimation of TWC is not 529 

feasible with the available VNIR wavelengths.  530 

 531 

Maps of relative moss vigour 532 

Before conducting the moss health assessment of wet and dry research sites, spectral 533 

quality of their field hyperspectral images was tested using four spatially 534 

homogeneous natural targets. Results provided in Supporting Information (Fig. S3) 535 

demonstrate that the reference and remotely sensed spectral signatures are in close 536 

agreement (RMSE ≤ 0.0156, r2 ≥ 0.89, and d ≥ 0.90), especially within the spectral 537 

range of 600–848 nm. This confirms that the radiometric and atmospheric corrections 538 
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applied were effective and that retrievals will not be affected by errors originating 539 

from hyperspectral data processing.   540 

   Pixels of hyperspectral images with MTVI2 < 0.25 representing stones, soil, and/or 541 

desiccated moss were masked out and the best performing SVRs (Fig. 7c,e) were 542 

applied per pixel to estimate Cab and effective LD of photosynthetically active moss 543 

pixels (Fig. 8a,b and Fig. 9a,b). Subsequently, the relative moss vigour indicator was 544 

computed as the mean of Cab and LD maps scaled between zero and one (Fig. 8c and 545 

Fig. 9c). Visual comparison of the maps confirms our expectation that moss turf of the 546 

wet site has generally greater relative vigour than the dry site, caused by higher Cab 547 

and lower LD. The relative distribution of dry site Cab is shifted towards lower values 548 

when compared to the wet site (Fig. 10a,d), while the opposite trend is seen for LD 549 

(Fig. 10b,e). Although these results clearly depend on the actual spatial extent of 550 

photosynthetically active moss captured in each hyperspectral scan, the spatial 551 

patterns and assessments of the relative moss vigour (Fig. 10c,f) correspond well with 552 

our visual in-situ observations.    553 

 554 

Discussion 555 

Interpretation and validation of quantitative retrievals 556 

The method described here allows spatial quantitative evaluation of moss vigour at 557 

sub-centimetre resolution over an area of several square metres, which represents a 558 

significant advance compared to the earlier laboratory-based sampling methods 559 

(Lovelock & Robinson, 2002; Robinson et al., 2005; Schlensog et al., 2013). 560 

However, traditional ground-sampling approaches are still crucial for calibration and 561 

accuracy assessment of this novel indirect method. While the laboratory validation of 562 

Cab and LD estimates confirmed that our SVR models with RMSE originating mainly 563 
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from measurement inaccuracies (RMSES < RMSEU) are robust predictors (Fig. 7c,e), 564 

TWC prediction appeared to be unfeasible. This was because the NIR spectral region 565 

used for TWC retrieval did not encompass wavelengths with sufficient water 566 

absorption (Curcio & Petty, 1951). The minor water absorption features centred 567 

around 970 and 1200 nm are more suitable for estimating canopy water content 568 

(Clevers et al., 2010; Ollinger, 2011), but these wavelengths were either too noisy or 569 

unavailable in our spectral data.  570 

   Our observations indicate that LD can, to some extent, be used as an indirect 571 

measure of TWC. Physical and optical relationships between LD, TWC, and NIR 572 

reflectance are illustrated in Fig. 11. The top of a sufficiently watered moss canopy 573 

with expanded leaves reflects significantly more NIR light than a desiccated canopy. 574 

The shrunken shoots and curled leaves of dry moss (Fig. 6) allow photons to travel 575 

deeper inside the turf where they are absorbed (Fig. 11a,b). Zotz and Kahler (2007) 576 

observed the same phenomenon for canopies of the moss Tortula ruralis. Their fibre 577 

optic probe measuring photosynthetically active radiation revealed light penetration of 578 

c. 0.8 cm in a dry moss canopy (TWC 27%), whereas in fully hydrated moss turf 579 

(TWC 95%) light reached a depth of only 0.4 cm. Small leaves with high LD, typical 580 

in stress-impacted mosses, increase NIR light scattering and consequently also photon 581 

absorbance probability, which in turn decreases moss reflectance (Fig. 11c,d). Leaves 582 

contracted and curled by actual water shortage effectively enhance LD, which further 583 

amplifies these optical effects (Fig. 11e,f). Hence, physically and/or effectively high 584 

LD retrieved from moss turf NIR reflectance can be considered as a synthetic 585 

indicator of acute low TWC combined with a long-term environmental stress load. It 586 

must be noted that changing shoot density also affects NIR reflectance independently 587 

from LD and occurrence of curling. Thus, a dedicated experiment investigating 588 
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architectural canopy changes caused by desiccation of different moss species is 589 

required to confirm this conclusion and to investigate species-specific relations.   590 

   Finally, despite the successful validation of hyperspectral images (Fig. S3), the Cab 591 

and LD maps should be still compared with in-situ observations and laboratory 592 

measurements. Although the SVR models proved to be robust, limited variation in our 593 

training datasets contributes to high RMSEU (Fig. 7) and potentially causes inaccurate 594 

estimates of underrepresented Cab and LD values. Consequently, SVRs re-trained on 595 

extended datasets of increased variation might provide more accurate results with 596 

lower RMSEU.  597 

 598 

Method expansion and remote sensing application  599 

Although only two stress indicators were combined in this study, more quantitative 600 

predictors could be incorporated in future moss vigour assessments. For example, 601 

green and red moss reflectance (i.e. wavelengths around 530 and 600 nm) can be used 602 

to reveal the content of xanthophyll and anthocyanin pigments (Francis, 1982; 603 

Gilmore & Yamamoto, 1991) indicating the level of photoprotection required by moss 604 

in response to solar irradiation stress (Gamon & Surfus, 1999; Kováč et al., 2013). 605 

Since microhabitat light and moisture gradients also influence moss photosynthetic 606 

traits (Waite & Sack, 2010; Bramley-Alves et al., 2015), certain stress-indicative 607 

photosynthetic parameters (e.g. non-photosynthetic quenching or light use efficiency) 608 

measured remotely from a distance of several meters using laser-induced chlorophyll 609 

fluorescence transient (LIFT) techniques (Kolber et al., 2005; Pieruschka et al., 2014) 610 

could also be included to complement the monitoring approach presented here.  611 

   By scaling up moss sample-based laboratory spectroscopy measurements to field 612 

hyperspectral scans, our study paves the way for future imaging spectroscopy of 613 
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entire moss-beds sensed from piloted or unmanned aircraft systems (Lucieer et al., 614 

2014; Turner et al., 2014). Yet, to fully address scientific questions related to the 615 

impact of a changing Antarctic climate on the dominant cryptogamic vegetation, local 616 

ground and airborne surveys need to be scaled further to regional satellite 617 

observations of low spatial, but high temporal resolutions. 618 
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Supporting Information  858 

Fig. S1 Illustration of dry and wet research plots at the Antarctic Specially 859 

Protected Area 135. 860 

Fig. S2 Establishment of the modified triangular vegetation index 2 (MTVI2) 861 

threshold. 862 

Fig. S3 Spectral quality validation of ground-based hyperspectral images 863 

acquired at both plots. 864 

Table S1 Optimised input parameters and mean square errors of support vector 865 

regressions. 866 

 867 

Tables 868 

 869 

Table 1 Statistical description of chlorophyll a and b (Cab) and turf water content 870 

(TWC) for moss training samples (C. purpureus, S. antarctici, B. pseudotriquetrum) 871 

from 2013 and leaf density (LD) of 1999 S. antarctici training input samples. 872 

Variable Species n Trea-

tment 

Mean Std. 

Dev. 

Coef. of 

Var.
1 

Coef. of 

Disp.
2 

Cab – 2013 C. purpureus 19 DRY3 386.8 420.0 1.09 456.0 
[nmol gdw–1] S. antarctici 19 DRY 278.7 266.7 0.96 255.2 

 B. pseudotri-

quetrum 
16 DRY 549.5 309.5 0.56 174.3 

 Total 54  All 397.0 351.0 0.88 310.5 

TWC – 2013  S. antarctici   19 DRY 3.77 2.23 0.59 1.32 
[gH2O gdw–1]  19 WET4 5.75 1.49 0.26 0.39 
  38 Both

5
 4.79 2.11 0.44 0.93 

LD – 1999 
[leaves mm–1] 

S. antarctici 49 N/A6 8.62 2.60 0.30 0.78 

1 Coefficient of Variation ~ Standard Deviation-to-Mean ratio (<1 ~ low variation, ≥1~ high variation)  873 
2 Coefficient of Dispersion ~ Variance-to-Mean ratio (0 ~ not dispersed, <1 ~ under-dispersed, ≥1 ~ 874 
well-dispersed) 875 
3 DRY treatment ~ sampled moss was kept for 6 days without water supply and then regularly irrigated. 876 
4 WET treatment ~ sampled moss was irrigated regularly during whole experiment. 877 
5 Both ~ DRY and WET treatments merged together. 878 
6 N/A ~ Not Applicable. 879 
 880 

881 

Page 36 of 54New Phytologist



Manuscript for New Phytologist – Methods                  20 May 2015 

 Page  |  37 

Figure legends 882 

 883 

Fig.1 884 

Geographical location of Antarctic Specially Protected Area (ASPA) 135 study sites 885 

close to the Australian Antarctic station Casey (a, b); the ground-based hyperspectral 886 

instrumentation in field (at the dry test site) (c); the Micro-Hyperspec imaging 887 

spectroradiometer (Headwall Inc., Fitchburg, USA) mounted on rotation and tilt 888 

platform (d); and a false-coloured near-distance hyperspectral image of a Schistidium 889 

antarctici moss bed at the dry test site (e). Red colour indicates photosynthetically 890 

active mosses, whereas grey and black colours represent rocks, bare soil, lichens, and 891 

desiccated black turf. 892 

 893 

Fig. 2 894 

Examples of laboratory drought-stress rehydration experiment samples of the three 895 

Antarctic moss species (Ceratodon purpureus, Bryum pseudotriquetrum and 896 

Schistidium antarctici) collected on 26 December 2012 (a). Half of the samples 897 

serving as controls were kept in optimal growing conditions and irrigated during the 898 

whole experiment (see example of red-coloured C. purpureus; blue tap icon 899 

symbolises regular irrigation every 2nd day), while the other half was kept without 900 

water until 1 December 2013 and then irrigated regularly until the end of the 901 

experiment on 25 January 2013 (see examples of green B. pseudotriquetrum and red-902 

coloured S. antarctici; red crossed tap icon symbolises water-stress). Reflectance of 903 

all moss samples was measured every 6th day in a dark chamber with an ASD 904 

HandHeld-2 (HH2) spectrometer (ASD Inc. & PANalytical, Boulder, USA) coupled 905 

with a halogen tungsten irradiation light source (b).      906 
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 907 

Fig. 3 908 

Mathematical explanation of the continuum removal (CR) transformation for spectral 909 

ranges of 650–715 and 710–780 nm, demonstrated on reflectance functions of a 910 

water-stressed and an unstressed Bryum pseudotriquetrum (a). Linearly interpolated 911 

values (ρi) are first computed for the given spectral intervals (dotted lines) and then 912 

applied per wavelength to normalize the original reflectance (ρ). The absolute value 913 

of this ratio subtracted from one results in the continuum removed (CR) reflectance of 914 

both spectral intervals: 650–715 nm (b) and 710–780 nm (c). 915 

 916 

Fig. 4 917 

Reflectance signatures and corresponding micro-photographs of Ceratodon purpureus 918 

collected and measured on 26 December 2012 (MTVI2 = 0.36), kept in optimal 919 

growing conditions (sufficiently irrigated) and re-measured on 1 January 2013 920 

(MTVI2 = 0.39) and 25 January 2013 (MTVI2 = 0.67). The green background 921 

highlights the spectral range influenced mainly by actual composition and amount of 922 

foliar pigments, whereas the blue background indicates the spectral range influenced 923 

mainly by effective turf foliar density and actual turf water content. 924 

 925 

Fig. 5 926 

Reflectance signatures and corresponding micro-photographs of Schistidium 927 

antarctici collected and measured on 26 December 2012 (MTVI2 = 0.26), kept in a 928 

growth chamber without water and re-measured on 1 January 2013 (MTVI2 = 0.17), 929 

then rehydrated (sufficiently irrigated) and measured again on 25 January 2013 930 

(MTVI2 = 0.39). Dashed lines delineating triangles between reflectance amplitudes at 931 
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550, 670 and 800 nm indicate increase in the area inside of the triangle with 932 

decreasing stress load. Declining MTVI2, caused by shrinking and curling of leaves 933 

indicates low water content on 1 January 2013. Green and blue backgrounds are 934 

explained in Fig. 4.  935 

 936 

Fig. 6 937 

Reflectance signatures and corresponding microscopic photographs of Bryum 938 

pseudotriquetrum collected and measured on 26 December 2012 (MTVI2 = 0.92), 939 

kept in a growth chamber without water and re-measured on 1 January 2013 (MTVI2 940 

= 0.49), and then rehydrated and measured again on 25 January 2013 (MTVI2 = 1.46). 941 

Dotted lines denote spectral regions used for the continuum removal transformation. 942 

They show that both areas under the curve at 650–715 nm and at 710–780 nm 943 

increase as the stress load decreases and as the moss turf produces more chlorophyll 944 

and leaves open up. Declining MTVI2, caused by shrinking and curling of leaves and 945 

shoots, indicates low water content on 1 January 2013. Green and blue backgrounds 946 

are explained in Fig. 4.  947 

 948 

Fig. 7 949 

Accuracy assessment of chlorophyll a+b content (Cab) and mean leaf density (LD) 950 

estimates from Schistidium antarctici spectral measurements. Cab was estimated by 951 

support vector regression from samples collected in 1999 (n = 80) using their 952 

reflectance between 496 and 719 nm (SVR–R496–719) (a), reflectance between 648 and 953 

719 nm (SVR–R648–719) (b), and continuum removed reflectance of the latter spectral 954 

interval without the edging wavelengths gaining zero values (SVR–CR652–715) (c). LD 955 

was also estimated by support vector regression from samples of 1999 (n = 24) using 956 
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sample reflectance between 708 and 848 nm (SVR–R708–848) (d), reflectance between 957 

708 and 782 nm (SVR–R708–782) (e), and continuum removed reflectance of the latter 958 

spectral interval without the edging wavelengths gaining zero values (SVR–CR711–778) 959 

(f). Estimates are plotted against Cab content and LD measured in laboratory. Solid 960 

line indicates the expected one-to-one linear relationship and dashed line is the linear 961 

regression function computed between measured and estimated Cab (r2 ~ coefficient 962 

of determination, d ~ index of agreement, RMSE ~ root mean square error, RMSES ~ 963 

systematic component of RMSE, RMSEU ~ unsystematic component of RMSE).  964 

 965 

Fig. 8 966 

Maps of quantitative stress indicators: chlorophyll a+b content (a), effective moss turf 967 

leaf density (b), and a synthetic map of relative moss vigour indicator (c) derived for 968 

the dry test site of the ASPA 135 Schistidium antarctici moss bed from the field 969 

hyperspectral image acquired on 10 January 2013 using the best performing support 970 

vector regression models trained with moss laboratory measurements. The maps were 971 

generalised with a median filter of 7 by 7 pixels for easier interpretation. Grey and 972 

black colours represent rocks, bare soil, lichens, and desiccated black moss turf. 973 

 974 

Fig. 9 975 

Maps of quantitative stress indicators: chlorophyll a+b content (a), effective moss turf 976 

leaf density (b), and a synthetic map of relative moss vigour indicator (c) derived for 977 

the wet test site of the ASPA 135 Schistidium antarctici moss bed from the field 978 

hyperspectral image acquired on 30 January 2013 using the best performing support 979 

vector regression models trained with moss laboratory measurements. The maps were 980 
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generalised with a median filter of 7 by 7 pixels for easier interpretation. Grey and 981 

black colours represent rocks, bare soil, lichens, and desiccated black moss turf. 982 

 983 

Fig. 10 984 

Frequency histograms displaying relative abundance of chlorophyll a+b content (Cab) 985 

(a, d), effective moss turf leaf density (LD) (b, e), and the relative vigour indicator 986 

(RVI) (c, f) integrating both quantitative characteristics for all photosynthetically 987 

active moss pixels captured in the hyperspectral scan of the ASPA 135 dry test site 988 

(a–c, see Fig. 8) and wet test site (d–f, see Fig. 9). 989 

 990 

Fig. 11 991 

Schematic interactions between shoot structure and photons of near infrared (NIR) 992 

light demonstrating the link between turf water content (TWC), effective leaf density 993 

(LD) and resulting NIR reflectance. Leaves of hydrated moss are fully expanded (a, c, 994 

and d), which means that the upper canopy reflects a significant portion of incident 995 

NIR light (up to 50%; e.g. Fig. 6, 25/01/2013). Contrary to this, shoots of desiccated 996 

moss are shrunken with curled leaves (b, e, and f), allowing NIR photons to penetrate 997 

and be absorbed deeper inside the canopy, which reduces NIR reflectance (sometimes 998 

by more than half; e.g. Fig. 6, 01/01/2013). Smaller leaves of higher LD, typical for a 999 

moss impacted by a chronic stress (d and f), trigger more interactions between NIR 1000 

photons and moss shoots (i.e. a higher multiple scattering), which increases the 1001 

probability of NIR transmission and/or absorption by the canopy. This diminishes the 1002 

NIR reflection, even when turf is wet and leaves are expanded (d). Upon desiccation, 1003 

mosses shrink and their leaves curl, which simulates increased shoot LD and produces 1004 

NIR photon-leaf interactions similar to those inside a moss turf with expanded leaves 1005 
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of a higher density (c.f. c and d vs. e). The desiccation-induced structural changes 1006 

enhance diffusion and absorbance of NIR light in lower turf layers, which further 1007 

reduces amount of NIR photons reflected by dry moss gametophytes with small 1008 

curled leaves of a high LD (f). 1009 
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Geographical location of Antarctic Specially Protected Area (ASPA) 135 study sites close to the Australian 
Antarctic station Casey (a, b); the ground-based hyperspectral instrumentation in field (at the dry test site) 

(c); the Micro-Hyperspec imaging spectroradiometer (Headwall Inc., USA) mounted on rotation and tilt 
platform (d); and a false-coloured near-distance hyperspectral image of a Schistidium antarctici moss bed at 
the dry test site (e). Red colour indicates photosynthetically active mosses, whereas grey and black colours 

represent rocks, bare soil, lichens, and desiccated black turf.  
320x231mm (300 x 300 DPI)  
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Examples of laboratory drought-stress rehydration experiment samples of the three Antarctic moss species 
(Ceratodon purpureus, Bryum pseudotriquetrum and Schistidium antarctici) collected on 26 December 2012 
(a). Half of the samples serving as controls were kept in optimal growing conditions and irrigated during the 
whole experiment (see example of red-coloured C. purpureus; blue tap icon symbolises regular irrigation 
every 2nd day), while the other half was kept without water until 1 December 2013 and then irrigated 

regularly until the end of the experiment on 25 January 2013 (see examples of green B. pseudotriquetrum 
and red-coloured S. antarctici; red crossed tap icon symbolises water-stress). Reflectance of all moss 

samples was measured every 6th day in a dark chamber with an ASD HandHeld-2 (HH2) spectrometer (ASD 

Inc. & PANalytical, USA) coupled with a halogen tungsten irradiation light source (b).  
160x106mm (300 x 300 DPI)  
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Mathematical explanation of the continuum removal (CR) transformation for spectral ranges of 650–715 and 
710–780 nm, demonstrated on reflectance functions of a water-stressed and an unstressed Bryum 

pseudotriquetrum (a). Linearly interpolated values (ρi) are first computed for the given spectral intervals 

(dotted lines) and then applied per wavelength to normalize the original reflectance (ρ). The absolute value 
of this ratio subtracted from one results in the continuum removed (CR) reflectance of both spectral 

intervals: 650–715 nm (b) and 710–780 nm (c).  
388x212mm (300 x 300 DPI)  
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Reflectance signatures and corresponding micro-photographs of Ceratodon purpureus collected and 
measured on 26 December 2012 (MTVI2 = 0.36), kept in optimal growing conditions (sufficiently irrigated) 
and re-measured on 1 January 2013 (MTVI2 = 0.39) and 25 January 2013 (MTVI2 = 0.67). The green 
background highlights the spectral range influenced mainly by actual composition and amount of foliar 

pigments, whereas the blue background indicates the spectral range influenced mainly by effective turf foliar 
density and actual turf water content.  

320x239mm (300 x 300 DPI)  
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Reflectance signatures and corresponding micro-photographs of Schistidium antarctici collected and 
measured on 26 December 2012 (MTVI2 = 0.26), kept in a growth chamber without water and re-measured 
on 1 January 2013 (MTVI2 = 0.17), then rehydrated (sufficiently irrigated) and measured again on 25 
January 2013 (MTVI2 = 0.39). Dashed lines delineating triangles between reflectance amplitudes at 550, 
670 and 800 nm indicate increase in the area inside of the triangle with decreasing stress load. Declining 
MTVI2, caused by shrinking and curling of leaves indicates low water content on 1 January 2013. Green and 

blue backgrounds are explained in Fig. 4.  
320x239mm (300 x 300 DPI)  
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Reflectance signatures and corresponding microscopic photographs of Bryum pseudotriquetrum collected 
and measured on 26 December 2012 (MTVI2 = 0.92), kept in a growth chamber without water and re-

measured on 1 January 2013 (MTVI2 = 0.49), and then rehydrated and measured again on 25 January 2013 

(MTVI2 = 1.46). Dotted lines denote spectral regions used for the continuum removal transformation. They 
show that both areas under the curve at 650–715 nm and at 710–780 nm increase as the stress load 

decreases and as the moss turf produces more chlorophyll and leaves open up. Declining MTVI2, caused by 
shrinking and curling of leaves and shoots, indicates low water content on 1 January 2013. Green and blue 

backgrounds are explained in Fig. 4.  
320x240mm (300 x 300 DPI)  
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Accuracy assessment of chlorophyll a+b content (Cab) and mean leaf density (LD) estimates from 
Schistidium antarctici spectral measurements. Cab was estimated by support vector regression from 

samples collected in 1999 (n = 80) using their reflectance between 496 and 719 nm (SVR–R496–719) (a), 

reflectance between 648 and 719 nm (SVR–R648–719) (b), and continuum removed reflectance of the latter 
spectral interval without the edging wavelengths gaining zero values (SVR–CR652–715) (c). LD was also 

estimated by support vector regression from samples of 1999 (n = 24) using sample reflectance between 
708 and 848 nm (SVR–R708–848) (d), reflectance between 708 and 782 nm (SVR–R708–782) (e), and continuum 

removed reflectance of the latter spectral interval without the edging wavelengths gaining zero values 
(SVR–CR711–778) (f). Estimates are plotted against Cab content and LD measured in laboratory. Solid line 
indicates the expected one-to-one linear relationship and dashed line is the linear regression function 

computed between measured and estimated Cab (r2 ~ coefficient of determination, d ~ index of agreement, 
RMSE ~ root mean square error, RMSES ~ systematic component of RMSE, RMSEU ~ unsystematic 

component of RMSE).  
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Maps of quantitative stress indicators: chlorophyll a+b content (a), effective moss turf leaf density (b), and 
a synthetic map of relative moss vigour indicator (c) derived for the dry test site of the ASPA 135 

Schistidium antarctici moss bed from the field hyperspectral image acquired on 10 January 2013 using the 
best performing support vector regression models trained with moss laboratory measurements. The maps 
were generalised with a median filter of 7 by 7 pixels for easier interpretation. Grey and black colours 

represent rocks, bare soil, lichens, and desiccated black moss turf.  
279x331mm (300 x 300 DPI)  

 

 

Page 51 of 54 New Phytologist



  

 

 

Maps of quantitative stress indicators: chlorophyll a+b content (a), effective moss turf leaf density (b), and 
a synthetic map of relative moss vigour indicator (c) derived for the wet test site of the ASPA 135 

Schistidium antarctici moss bed from the field hyperspectral image acquired on 30 January 2013 using the 

best performing support vector regression models trained with moss laboratory measurements. The maps 
were generalised with a median filter of 7 by 7 pixels for easier interpretation. Grey and black colours 

represent rocks, bare soil, lichens, and desiccated black moss turf.  
279x330mm (300 x 300 DPI)  
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Frequency histograms displaying relative abundance of chlorophyll a+b content (Cab) (a, d), effective moss 
turf leaf density (LD) (b, e), and the relative vigour indicator (RVI) (c, f) integrating both quantitative 

characteristics for all photosynthetically active moss pixels captured in the hyperspectral scan of the ASPA 
135 dry test site (a–c, see Fig. 8) and wet test site (d–f, see Fig. 9).  

407x372mm (300 x 300 DPI)  
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Schematic interactions between shoot structure and photons of near infrared (NIR) light demonstrating the 
link between turf water content (TWC), effective leaf density (LD) and resulting NIR reflectance. Leaves of 
hydrated moss are fully expanded (a, c, and d), which means that the upper canopy reflects a significant 
portion of incident NIR light (up to 50%; e.g. Fig. 6, 25/01/2013). Contrary to this, shoots of desiccated 
moss are shrunken with curled leaves (b, e, and f), allowing NIR photons to penetrate and be absorbed 
deeper inside the canopy, which reduces NIR reflectance (sometimes by more than half; e.g. Fig. 6, 

01/01/2013). Smaller leaves of higher LD, typical for a moss impacted by a chronic stress (d and f), trigger 
more interactions between NIR photons and moss shoots (i.e. a higher multiple scattering), which increases 

the probability of NIR transmission and/or absorption by the canopy. This diminishes the NIR reflection, 
even when turf is wet and leaves are expanded (d). Upon desiccation, mosses shrink and their leaves curl, 
which simulates increased shoot LD and produces NIR photon-leaf interactions similar to those inside a moss 
turf with expanded leaves of a higher density (c.f. c and d vs. e). The desiccation-induced structural changes 

enhance diffusion and absorbance of NIR light in lower turf layers, which further reduces amount of NIR 
photons reflected by dry moss gametophytes with small curled leaves of a high LD (f).  

277x209mm (300 x 300 DPI)  
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Fig.	  S1	  Illustration	  of	  dry	  and	  wet	  research	  plots	  at	  the	  Antarctic	  Specially	  Protected	  Area	  135.	  

Fig.	  S2	  Establishment	  of	  the	  modified	  triangular	  vegetation	  index	  2	  (MTVI2)	  threshold.	  

Fig.	  S3	  Spectral	  quality	  validation	  of	  ground-‐based	  hyperspectral	  images	  acquired	  at	  both	  plots.	  

Table	  S1	  Optimised	  input	  parameters	  and	  mean	  square	  errors	  of	  support	  vector	  regressions.	  

	  

	   	  



 

Fig.	   S1	  Photographs	  of	  dry	   (whole	   season	  exposed,	  water	   limited,	   and	   considerably	   stressed)	  

site	  (a)	  and	  wet	  (lengthily	  snow	  covered,	  well	  watered,	  and	  less	  stressed)	  research	  site	  (b)	  at	  the	  

Antarctic	  Specially	  Protected	  Area	  135	  (ASPA	  135)	  colonized	  predominantly	  by	  moss	  Schistidium	  

antarctici.	  	  

	   	  



 

Fig.	   S2	   Establishment	   of	   the	   modified	   triangular	   vegetation	   index	   2	   (MTVI2)	   threshold	  

separating	   rocks,	   bare	   soil,	   and	   desiccated	   dormant	  moss	   from	   the	   photosynthetically	   active	  

moss	  using	  frequency	  histograms	  of	  all	  pixels	  recorded	  in	  hyperspectral	  images	  of	  the	  ASPA	  135	  

dry	  (a)	  and	  wet	  (b)	  test	  sites.	  Dashed	  lines	  indicate	  the	  actual	  MTVI2	  threshold	  of	  0.25.	  
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Fig.	  S3	  Spectral	  quality	  validation	  of	  hyperspectral	  reflectance	  acquired	  with	  the	  ground-‐based	  

Micro-‐Hyperspec	  imaging	  spectroradiometer	  (Headwall	  Inc.,	  Fitchburg,	  USA)	  for	  two	  study	  plots	  

in	   the	  vicinity	  of	   the	  Australian	  Antarctic	   station	  Casey	  during	   the	  summer	  2012–2013.	  Mean	  

ground-‐based	  reflectance	  signatures	  (±	  SD,	  n	  =	  3,	  black	  lines)	  collected	  with	  the	  ASD	  HandHeld-‐

2	   spectrometer	   (ASD	   Inc.	   &	   PANalytical,	   Boulder,	   USA)	   for	   dark	   (a),	   medium	   bright	   (b),	   and	  

bright	   stones	   (c),	   plus	   green	  moss	   (d)	   surfaces	   are	   plotted	   over	   the	  mean	   reflectance	   (±	   SD)	  

computed	  from	  49	  image	  pixels	  of	  the	  same	  targets	  located	  in	  the	  hyperspectral	  images	  (white	  

and	  grey	  lines)	  (r2	  ~	  coefficient	  of	  determination	  for	  established	  linear	  regression,	  RMSE	  ~	  root	  

mean	  square	  error,	  and	  d	  ~	  index	  of	  agreement	  between	  target	  reflectance	  of	  all	  wavelengths).	  
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Table	  S1	  Optimised	  cost	  and	  kernel	  width	  parameters,	  with	  affiliated	  mean	  square	  errors	  (MSE)	  

of	  the	  epsilon	  support	  vector	  regression	  (SVR)	  models	  trained	  for	  estimation	  of	  chlorophyll	  a+b	  

(Cab),	  turf	  water	  content	  (TWC),	  and	  leaf	  density	  (LD)	  using	  moss	  reflectance	  (R)	  and	  continuum	  

removed	   reflectance	   (CR)	   of	   four	   investigated	   spectral	   regions:	   498–719,	   648–719,	   708–848,	  

and	  708–782	  nm.	  	  	  	  

	  	  	  	  	  	  Model	   Cost	  parameter	  C	   Kernel	  width	  γ	   Mean	  square	  error	  

	  	  	  	  	  	  Cab	   	   	   	  

SVR–R496–719	  nm	   1048576	   0.00003	   4.2608	  

SVR–R648–719	  nm	   32768	   0.00780	   4.3767	  

	  	  SVR–CR496–719	  nm	   1024	   0.01560	   3.9337	  
	  	  	  	  	  	  TWC	   	   	   	  

SVR–R708–848	  nm	   8192	   0.00390	   3.2173	  

SVR–R708–782	  nm	   512	   0.00780	   2.2979	  

	  	  SVR–CR708–782	  nm	   4096	   0.03130	   3.7921	  

	  	  	  	  	  	  	  LD	   	   	   	  

SVR–R708–848	  nm	   32768	   0.00200	   3.3243	  

SVR–R708–782	  nm	   16384	   0.00390	   3.5814	  

	  	  SVR–CR708–782	  nm	   4	   0.12500	   3.0493	  
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