2012

Phonic respiration and Its impact on carbon dioxide rebreathing in respiratory protective devices

Carmen L. Smith
University of Wollongong, cs847@uowmail.edu.au

Jane L. Whitelaw
University of Wollongong, jwhitela@uow.edu.au

Brian Davies
University of Wollongong, bdavies@uow.edu.au

Recommended Citation
Smith, Carmen L.; Whitelaw, Jane L.; and Davies, Brian: Phonic respiration and Its impact on carbon dioxide rebreathing in respiratory protective devices 2012, 63.
http://ro.uow.edu.au/hbspapers/3143
Phonic respiration and Its impact on carbon dioxide rebreathing in respiratory protective devices

Abstract
Abstract presented at the International Society for Respiratory Protection Sixteenth Biennial Conference, 23-27 September 2012, Boston, United States

Keywords
its, devices, respiration, protective, phonic, respiratory, breathing, re, dioxide, carbon, impact

Disciplines
Arts and Humanities | Life Sciences | Medicine and Health Sciences | Social and Behavioral Sciences

This conference paper is available at Research Online: http://ro.uow.edu.au/hbspapers/3143
Winner of the 2012 ISRP Americas Section Student Research Award for Best Abstract using the NIOSH Anthropometric survey data set:

Phonic Respiration and its Impact on Carbon Dioxide Re-breathing in Respiratory Protective Devices (Pilot Study)

Carmen Smith, Jane Whitelaw, and Brian Davies

University of Wollongong, Wollongong, New South Wales, Australia
cs847@uowmail.edu.au

Background: Carbon dioxide (CO2) re-breathing has been recognised as a key concern regarding respirator use and is related to increased respiration, heart rate, breathing discomfort, anxiety, headache, impaired cognitive function, and in higher amounts asphyxia or death. Several studies have examined CO2 levels in respiratory protective devices (RPDs), however no previous investigations have evaluated the relationship between CO2 inhalation and phonic respiration (breathing during speech).

Methods and Approach: A total of 22 participants (8 females) volunteered for the pilot study. Participants performed a graded exercise test on a cycle ergometer that increased in resistance every 5 minutes. During the third minute of each stage participants read aloud a prepared text. Measures of expired (PECO2) and inspired CO2 (PICO2) heart rate (HR), peak inspiratory air flow (PIAF) and dyspnoea (breathing discomfort) were monitored.

Results and Discussion: A paired sample t-test was performed to compare PICO2 within the two breathing conditions (normal and phonic respiration). The variables were calculated across all six workloads (rest, 75W, 100W, 125W, 150W and 175W) (alpha was set at 0.05). Significant differences between the two breathing conditions, at rest and each exercise workload were found (see Table 1). During normal respiration, PICO2 was generally below 2%, however was present at higher levels during phonic respiration. The highest PICO2 was obtained at rest, and was observed to decrease during increased oxygen uptake (workload) suggesting that the breathing frequency and flow rates are a decisive factor in CO2 re-breathing in RPDs.

Preliminary Conclusions: The results showed that phonic respiration in respirators contributed to significantly higher levels of CO2 re-breathing that was often beyond the design standards recommended by Standards Australia (1%). Further research into the occurrence of CO2 re-breathing in RPDs and its impact on workers who inevitably wear them for prolonged periods is in progress.

<table>
<thead>
<tr>
<th></th>
<th>Rest</th>
<th>75 Watts</th>
<th>100 Watts</th>
<th>125 Watts</th>
<th>150 Watts</th>
<th>175 Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=17)</td>
<td>(n=10)</td>
<td>(n=17)</td>
<td>(n=15)</td>
<td>(n=7)</td>
<td>(n=2)</td>
</tr>
<tr>
<td>PICO2</td>
<td>NS</td>
<td>S</td>
<td>NS</td>
<td>S</td>
<td>NS</td>
<td>S</td>
</tr>
<tr>
<td>SD</td>
<td>1.61</td>
<td>2.46*</td>
<td>1.25</td>
<td>2.02*</td>
<td>1.12</td>
<td>2.08*</td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td>0.51</td>
<td>0.37</td>
<td>0.63</td>
<td>0.27</td>
<td>0.56</td>
</tr>
</tbody>
</table>

PICO2, Percentage Inspired Carbon Dioxide, SD, Standard Deviation, NS, No Speech, S, Speech *p<0.05.