Evidence for effects of oat [beta]-glucan on satiety and weight control

Eleanor Beck
University of Wollongong, eleanor@uow.edu.au

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Evidence for effects of oat β-glucan on satiety and weight control

A thesis submitted in fulfilment of the requirements for the award of the degree

Doctor of Philosophy

from

University of Wollongong

by

Eleanor Jane Beck

BSc. (University of Queensland)
Honours I (University of Queensland)
Grad. Dip. Nutr. & Diet. (Queensland University of Technology)
Advanced Accredited Practising Dietitian

School of Health Sciences

2009
DECLARATION

I hereby declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Health Sciences, University of Wollongong, is my own work unless otherwise referenced or acknowledged. This document has not been submitted in whole, or in part, for qualifications at any other academic institution.

Eleanor J. Beck

Date:
DEDICATION

To

Mum, Dad and Craig
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisors who have helped me along this path. Professor Linda Tapsell has at all times encouraged and supported my career both throughout this thesis and throughout my time at the University and I am greatly appreciative of her time, support and friendship. I would also like to thank Professor Xu-Feng Huang who has opened my eyes to a whole new world of research outside dietetics, and provided wonderful academic guidance and support.

I would like to make special thanks to Dr Marijka Batterham who not only helped with my research through learned statistical advice but has also been a true friend as we procrastinated over our research, teaching and children. I would also like to thank Associate Professor Peter Williams for his encouragement and friendship over the past 10 years which has been of untold benefit to me.

I would also like to thank the research teams at the Centre for Translational Neuroscience and the Smart Foods Centre who have created a happy workplace over the last years. In particular, I would like to thank Serina Faraji for assistance in the intervention trial within this thesis and Greg Teuss for his assistance with the many blood samples my studies always seemed to collect and require analysis of.

I would like to acknowledge the financial support of an Australian Research Council Scholarship which has made research and study a viable option. I would also like to thank Kirsten Grinter from Nestle for invaluable guidance on commercial aspects of this thesis and some great conversations in between. I would also like to acknowledge Melissa Toh for her input in the early product development phases of my research and the assistance of John Pitcher in ensuring trial products were always available as required, no matter how huge the deliveries became and no matter how much storage space this meant I required.

Dr Susan Tosh from Agriculture and Agri-Food Canada has not only helped physically with the β-glucan analyses in this thesis, but her expertise in all things β-glucan has been shared at all times and her friendship has been greatly valued. Ideally the AACC will choose tropical locations for most conferences so we can continue our
friendship and work in beautiful surroundings. Similarly, Ruedi Duss has been at all
times helpful in advice on β-glucan, oats and regulations and I appreciate his support,
friendship and sometimes his Swiss humour.

Most importantly I wish to thank my family for their unwaivering support. This starts
with my parents who told me at a young age that I should be so excited to have the
opportunity to learn new things. I did not appreciate this back then, but my PhD has
given me many opportunities to learn and I am fully appreciative of this. My husband
Craig told me I could do this when the children were still aged 2, 4 and 6 and I
thought it ridiculous. He told me it would be fine and I should do it. His support,
encouragement, love and friendship never waivers, and for this I will always
appreciate how lucky I am. Kennedy, Lewis and Finlay are 9, 7 and 5 now and their
ability to constantly distract me from my work has made me appreciate them even
more. This thesis may not be perfect but it has been enjoyed and nurtured along with
my three beautiful cherubs as we have all learned and grown in the last three years.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AACC</td>
<td>American Association of Cereal Chemists</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of Official Analytical Chemists</td>
</tr>
<tr>
<td>AUC</td>
<td>Area Under the Curve</td>
</tr>
<tr>
<td>β-glucan</td>
<td>$(1\rightarrow3)(1\rightarrow4)$ Beta-D-glucan</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CCK</td>
<td>Cholecystokinin</td>
</tr>
<tr>
<td>DPPIV</td>
<td>Dipeptidyl peptidase IV</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ES1</td>
<td>Excellent Source of fibre under current regulation</td>
</tr>
<tr>
<td>ES2</td>
<td>Excellent Source of fibre under proposed regulation</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FSANZ</td>
<td>Food Standards Australia New Zealand</td>
</tr>
<tr>
<td>GI</td>
<td>Glycaemic Index</td>
</tr>
<tr>
<td>GIT</td>
<td>Gastrointestinal Tract</td>
</tr>
<tr>
<td>GLP-1</td>
<td>Glucagon-like-peptide-1</td>
</tr>
<tr>
<td>GS1</td>
<td>Good Source of fibre under current regulation</td>
</tr>
<tr>
<td>GS2</td>
<td>Good Source of fibre under proposed regulation</td>
</tr>
<tr>
<td>HBG</td>
<td>High β-glucan</td>
</tr>
<tr>
<td>HBGO</td>
<td>High β-glucan oat bran ingredient</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HBGX</td>
<td>High β-glucan extracted ingredient</td>
</tr>
<tr>
<td>HDL</td>
<td>High Density Lipoprotein</td>
</tr>
<tr>
<td>LBG</td>
<td>Low β-glucan</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoprotein</td>
</tr>
<tr>
<td>MBG</td>
<td>Medium β-glucan</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>NPY</td>
<td>Neuropeptide Y</td>
</tr>
<tr>
<td>P293</td>
<td>Proposal 293</td>
</tr>
<tr>
<td>PASSCLAIM</td>
<td>Process for the Assessment of Scientific Support of Health Claims on Food</td>
</tr>
<tr>
<td>PYY</td>
<td>Peptide Y-Y</td>
</tr>
<tr>
<td>PYY3-36</td>
<td>Peptide Y-Y 3-36</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised Controlled Trial</td>
</tr>
<tr>
<td>RMANOVA</td>
<td>Repeated Measures Analysis of Variance</td>
</tr>
<tr>
<td>RTE</td>
<td>Ready-To-Eat</td>
</tr>
<tr>
<td>S1</td>
<td>Source of fibre under current regulation</td>
</tr>
<tr>
<td>S2</td>
<td>Source of fibre under proposed regulation</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>TFEQ</td>
<td>Three Factor Eating Questionnaire</td>
</tr>
<tr>
<td>TG</td>
<td>Triglycerides</td>
</tr>
<tr>
<td>TIU</td>
<td>Trypsin Inhibitor Units</td>
</tr>
<tr>
<td>VAS</td>
<td>Visual Analogue Scales</td>
</tr>
</tbody>
</table>
PUBLICATIONS IN SUPPORT OF THIS THESIS

Published Papers

Accepted Papers

Submitted Papers

Published Abstracts from Oral Presentations

Other Presentations from 2006-2009

2.3 Food variables affecting satiety and satiation 41
2.4 Meal Test Studies ... 42
2.5 Randomised Controlled Trials ... 43
2.6 Hypothesis ... 44
2.7 Study Design ... 45
 2.7.1 Development of β-glucan enriched ready-to-eat cereal 45
 2.7.2 Meal-test study to measure acute satiety 46
 2.7.3 Satiety and weight control – 3 month human clinical trial 47
2.8 Outcome Measurements ... 48
2.9 Significance of research ... 49

CHAPTER 3 DEVELOPMENT OF β-GLUCAN ENRICHED CEREALS 50
 3.1 Introduction ... 51
 3.2 Methods .. 53
 3.3 Results .. 55
 3.4 Discussion ... 61

CHAPTER 4 ACUTE MEAL TEST STUDY WITH CEREALS CONTAINING β-GLUCAN ... 62
 PART 1 – Acute effects of β-glucan enriched foods 62
 4.1 Introduction ... 63
 4.2 Methods .. 65
 4.2.1 Recruitment ... 65
 4.2.2 Timeframes ... 65
List of Figures

Figure 2-1 Visual analogue scale questions... 38

Figure 2-2 Factors affecting satiety and satiation ... 42

Figure 3-1 Varied cereal samples dried overnight.. 56

Figure 3-2 The final product deemed acceptable for use in an acute feeding trial 56

Figure 4-1 Size exclusion chromatograms of β-glucan MW in the in vitro extracts..... 70

Figure 4-2 Postprandial insulin responses for control and high β-glucan cereal for subjects without obvious hyperinsulinaemia. ... 72

Figure 4-3 Postprandial glucose responses for control and high β-glucan cereal 73

Figure 4-4 CCK response to various levels of β-glucan.. 73

Figure 4-5 Average energy intake at lunch meal ... 77

Figure 4-6 PYY responses corrected for baseline.. 87

Figure 4-7 PYY netAUC for each test meal... 87

Figure 5-1 Flow diagram of participation in the study .. 94

Figure 7-1 Levels of evidence compared with measured food intake patterns......... 125
List of Tables

Table 1-1 Currently debated definitions of dietary fibre .. 5

Table 1-2 Comparison of health claim criteria between Australia and the European Union ... 10

Table 1-3 Outcome measures for weight control according to PASSCLAIM 11

Table 1-4 β-Glucan health claims ... 17

Table 1-5 Studies with measurements relating to satiety and weight control with consumption of β-glucan .. 22

Table 2-1 Outcome measurements in acute and long term studies 49

Table 3-1 Ingredients included in formulations for testing ... 53

Table 3-2 Proximate nutritional composition of cereal formulations 54

Table 3-3 Characterisation of β-glucan ingredients, cereal mixes prior to extrusion 58

Table 3-4 Characterization of β-glucan cereals varying temperatures and shear rates... 59

Table 3-5 Characterization of β-glucan cereals developed for acute meal test study 60

Table 4-1 Composition and analysis of test meals ... 66

Table 4-2 Physico-chemical characteristics of β-glucan in test meals 70

Table 4-3 Post prandial insulin responses for 2 and 4 hours for all subjects and excluding subjects with obvious hyperinsulinaemia ... 74

Table 4-4 Post-prandial glucose, ghrelin and CCK responses .. 74

Table 4-5 Visual Analogue Scales Score ... 76

Table 4-6 Dietary intake after each of the five test meals ... 76

Table 4-7 Mean PYY values for β-glucan doses over time ... 86
Table 5-1 Food serves for typical dietary study participant ... 96
Table 5-2 Nutrient composition of trial products ... 97
Table 5-3 β-glucan and total fibre content of study products. .. 98
Table 5-4 Baseline characteristics of study subjects... 101
Table 5-5 Reported energy and macronutrient intakes at baseline, mid-point and 3 months, .. 103
Table 5-6 Intake of study products calculated from food records. 104
Table 5-7 Average of mid and final results for contribution of β-glucan and total fibre by study products. ... 105
Table 5-8 Changes in Clinical indices over time .. 107
Table 5-9 Visual analogue scale P values for one way ANOVA 110
Table 6-1 Grams of fibre required for front of packet labelling of fibre sources. 118
Table 6-2 Comparisons of number of serves of breads and cereals 119
Table 7-1 Target functions and outcome measures affected by β-glucan 128
ABSTRACT

Making claims on the health effects of foods currently presents major challenges to nutrition science. As a case in point, oat β-glucan has been shown to deliver a number of health benefits, including an ability to lower cholesterol levels as well as reducing glucose and insulin responses to a meal. These physiological functions are related to the viscosity and solubility of the β-glucan, with the viscosity a function of concentration and molecular weight. Further, despite epidemiological evidence that high fibre diets are associated with lower levels of overweight and obesity in populations, and experimental evidence that fibre will “make you feel fuller for longer”, there is little evidence linking specific fibres with weight control. Changes to regulations governing health claims in Australia and New Zealand are currently under review, and while they reflect European and other regional positions in allowing claims for β-glucan and cholesterol, they do not address other health benefits such as weight loss. This thesis provides a novel approach to evidence based research in food by combining studies in food science, acute meal tests and longer term dietary interventions. The hypothesis examined in this thesis is that overweight individuals following a nutritionally-balanced, energy-restricted diet including oat β-glucan will experience increased satiety and lose more weight than if they followed the same diet without the added β-glucan.

Product development studies examined the effects of extrusion on the important physical attributes of β-glucan included in a ready-to-eat cereal product. It did not prove difficult to produce a cereal that maintained β-glucan at high molecular weight (>1 million) and was viscous at high concentration (up to 5g β-glucan/cereal serve). Extrusion improved solubility which means the effects of downstream processing in this manner are likely to improve the physiological effects of β-glucan in cereals.

Results of a meal-test study with fourteen subjects found that increasing doses of β-glucan up to 5.5 g, decreased insulin levels (P=0.011) and increased subjective satiety measured by visual analogue scales (P=0.039). Increasing doses of β-glucan were correlated with increased plasma concentrations of cholecystokinin (CCK) and peptide Y-Y (PYY) (R²=0.970 and 0.994 respectively). Food intake at a subsequent meal was decreased with inclusion of β-glucan in the earlier test meal, although the differences were not statistically significant.
A 3-month randomised controlled trial of 66 overweight women was then conducted to investigate the effects of two different doses of β-glucan (5-6g or 8-9g) on weight loss within an energy-restricted regimen. Outcome measures included weight loss and markers of appetite regulation (hormones) as well as changes in metabolic variables related to cardiovascular disease. All groups lost weight (approximately 5% of body weight) and showed a reduced waist circumference (P<0.001 for both). The study sample also showed reductions in total cholesterol, LDL, HDL, leptin, PYY, glucagon-like-peptide-1 (GLP-1) values and an increase in CCK levels. No significant differences were noted between the groups for all outcome values except fasting PYY levels (P=0.018) but levels did not correlate with increasing dose.

Thus, the addition of oat β-glucan did not enhance the effect of energy restriction on weight loss in mildly overweight women, although large standard deviations in observed results, suggested that individual responsiveness makes elucidation of significant changes difficult. Adding these results to the body of evidence, it seems that some evidence exists relating to β-glucan and satiety with the most likely mechanisms relating to changes in absorption of nutrients and resultant release of anorexigenic hormones. There appears to be insufficient evidence to suggest the validity of a claim related to β-glucan and weight control. Further research of this nature would build on the knowledge of the mechanisms of satiety elucidated here, and this would further investigate how β-glucan and other soluble fibres may help weight control over longer time frames.