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Abstract. Across disciplines, and particularly in medicine, Cox’s proportional hazards 

model is one of the most popular models for analyzing survival. We use a Cox model 

with dynamic variables to estimate survival probabilities and make dynamic financial 

distress predictions for a large sample of Australian listed companies. This is one of 

relatively few studies to apply dynamic variables in forecasting financial distress. It is the 

first study to provide forecasts of survival probabilities using the Cox model with 

dynamic variables. In contrast to most bankruptcy studies using static models, our 

model’s predictive accuracy improves as the time horizon lengthens.  
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1. Introduction 

Much of the previous work in financial distress prediction focuses on static predictions 

and uses static variables in estimating the predictive model. In this study our goal is to 

make dynamic predictions, and to use dynamic variables in estimating the model. With 

dynamic predictions we allow the probability of financial distress to vary over the 

forecast period. With dynamic variables the model estimation allows for changes in the 

financial characteristics of a firm over time. 

The motivation for the paper is threefold. First dynamic forecasts of the probability 

vector for failure ft to ft+n (where ft is the probability of failure at time t) have been much 

less explored than the static forecast of a single failure probability f. Second relatively 

little use has been made of dynamic forecasting variables. In most applications including 

a data vector of say the last five years profitability in forming a forecast requires five 

separate profitability variables in the model and this is not commonly done.1 In the 

approach that we use the vector of data is represented by a single profitability variable. 

Third, one of the most popular techniques for survival analysis is Cox regression, Cox 

(1972). Unfortunately, for reasons we discuss later, forming forecasts is problematic 

when a Cox regression contains dynamic variables. We implement a procedure that 

overcomes this problem. 

The work on estimating models which allows for time varying probabilities of 

financial distress began in the mid 1980s (see for example Crapp and Stevenson, 1987). 

These models use the techniques of survival analysis, and have attracted increasing 

attention following the dynamic model of Shumway (2001). Despite the growing use of 

                                                 
1 A more common approach, as exemplified by Altman (1968,) is to estimate five separate models using 
data one year before the failure, two years before the failure and so on back to year five.  
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survival analysis in modeling financial distress, relatively little attention has been given 

to the use of dynamic variables in estimating these models. Initially this was because of 

computational difficulties in estimating models with time-varying (dynamic) variables, 

and even when this problem was overcome a problem remained in making forecasts when 

using the Cox regression model.  

A key element in forecasts using the Cox regression model is the baseline hazard. In 

making a forecast the baseline hazard is scaled up, or down, according to the firm’s risk 

factors and this scaled hazard is used to compute the probability of financial distress. 

When time-varying variables are introduced into the Cox model, forming estimates of the 

baseline hazard has been problematic. Consequently making forecasts have also been 

problematic with time varying variables.  

Cox’s model has had considerable use in medical studies. Chen et al. (2005) apply the 

Cox model with time-varying variables to find the effect of biochemical covariates on 

death attributed to liver cancer. They implement a method for estimating the baseline 

hazard and hence are able to make survival forecasts with time-varying variables. Chen et 

al. also published the code for implementation of these estimation procedures in SAS. 

Following the approach of Chen et al., we construct a time-dependent Cox’s regression 

model for the prediction of financial distress.  

Using firm specific data on Australian Securities Exchange (ASX) listed firms from 

1989 to 2006; a time-dependent Cox’s regression model is developed with seven 

predictor variables measuring profitability, leverage (book and market), liquidity, cash 

flow, size, and growth opportunities. Each variable captures the impact of fourteen years 

of data for firms that are in the estimation sample for the full fourteen years. Book 
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leverage, cash flow generating ability and market leverage are found to be significant 

predictors of financial distress. Receiver operating characteristic (ROC) curves show that 

the model has modest predictive power and unlike most bankruptcy models the 

performance of the model improves as the forecast period lengthens.  

The remainder of this paper is set out as follows. Section 2 reviews the literature in 

the area of bankruptcy prediction, introduces survival analysis, discusses Chen et al. 

(2005) and explains how predictive accuracy is evaluated. Section 3 presents the 

methodology to construct a Cox’s regression model with time-varying variables. Section 

4 describes the data. Section 5 presents the results of parameter estimates followed by 

assessment of predictive accuracy of the model. Section 6 concludes the paper and offers 

some possible future research directions. 

 

2. Bankruptcy Prediction Literature 

EARLY BANKRUPTCY PREDICTION STUDIES 

Research on bankruptcy prediction has been of substantial interest to accounting and 

finance academics and practitioners for the last four decades. A number of empirical 

approaches have been applied to the bankruptcy prediction problem since the pioneering 

work of financial predictive modeling by Beaver (1966), Altman (1968) and Ohlson 

(1980). The initial approach to predicting corporate bankruptcy has been to apply a 

statistical classification technique to a set of samples containing both bankrupt and non-

bankrupt firms. The principal tools for the early studies have been multivariate 

discriminant analysis (Altman, 1968) and logit analysis (Ohlson, 1980). The task of 

predicting bankruptcy of a firm can be posed as a classification problem: given a set of 
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classes (for example, bankrupt and non-bankrupt) and a set of input data vectors, the task 

is to assign each input data vector to one of the classes. Since the 1980s, the literature has 

progressed to non-parametric approaches such as recursive partitioning algorithms 

(Frydman et al., 1985), neural networks techniques (Odom and Sharda, 1990; Coats and 

Fant, 1992; Tam and Kiang, 1992; Wilson and Sharda, 1994) and survival analysis (Lane, 

Looney and Wansley, 1986; Crapp and Stevenson, 1987; Chen and Lee, 1993; 

Bandopadhyaya, 1994).  

 

SURVIVAL ANALYSIS 

In recent studies of financial distress (bankruptcy) prediction, the need to take the time 

dimension into account is increasingly being recognized. LeClere (2000) points out that 

qualitative response models such as logistic regression or probit models employ data 

from the time period directly preceding the occurrence of the event of bankruptcy. Hence, 

the model is static in that it ignores the entire time period preceding the event. 

Furthermore, the information provided by the estimated model is limiting as the data used 

to estimate the probability of financial bankruptcy may only be available immediately 

prior to the event. Shumway (2001) also points out the discordance between single-period 

bankruptcy prediction models and multiple-period bankruptcy data. He argues that the 

single-period classification models that have been commonly used for predicting 

bankruptcy yield biased and inconsistent estimates because they ignore the fact that the 

characteristics of firms change through time. Liu (2004) also observes that failure rates 

change with changes in the time-series of economic data. 
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Survival analysis is ideally suited to introducing a time dimension into financial 

distress prediction since the objective is to estimate )()( tTPtS >= , the probability that 

financial distress will occur at a time T which lies beyond the time horizon t, for a range 

of values of t. Thus, a time dimension is embedded in the dependent variable of the 

model. It is also possible to introduce a time dimension into the independent variables by 

making them time-varying. Thus, for example, a vector of ratios giving the return on 

assets for a firm over a ten year period would be treated as a single variable, but the value 

of that variable would be updated as we follow the firm through time in estimating the 

survival model. The problem with time-varying variables in the past has been in forming 

forecasts. Previous studies (e.g., Wheelock and Wilson, 1995; Kim et al., 1995) have not 

reported the baseline hazard estimates since estimates of the baseline hazard are difficult 

to obtain when covariates in the model are time-varying. Recent advances, however, have 

made this somewhat less difficult.     

Chen et al. (2005) estimate a time-dependent Cox’s regression model for deaths from 

liver cancer. Using a method from Anderson (1992), they estimate the integrated baseline 

hazard. Two SAS Macro programs for time-dependent Cox’s regression are introduced in 

Chen et al. The first program is for parameter estimates on risk factors, deriving the 

baseline hazard and the prediction of survival on the basis of time-dependent covariates. 

The second program is for model validation using receiver operating characteristic (ROC) 

curves. We use the SAS Macro programs in Chen et al., with some modifications, to 

estimate our financial distress models. 

 

EVALUATION OF PREDICTIVE ACCURACY 
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To assess the predictive accuracy of the models, we use the survival probabilities to 

classify each firm as failing or surviving, and then compare the classification with the 

actual outcome. Two questions arise in this process. First, which of the probabilities to 

select from the time profile and, second, what value to choose as a cut-off value to 

convert from a probability to the state forecast of failing or surviving. These are difficult 

issues to address. 

As Pacey and Pham (1990) point out, assessments of the accuracy of financial distress 

models are often misleading because of (i) the use of arbitrary cut-off points; and (ii) the 

assumption of equal costs of errors in prediction tests. The suggested corrective measures 

are as follows: (i) derive the optimal cut-off point based on minimizing the costs of 

misclassification; and (ii) define the cost of Type I and Type II errors explicitly.  

 Setting an optimal cut-off value requires knowledge of the costs of Type I and type II 

errors in the specific decision context. Given the greater seriousness of classifying a 

financially distressed firm as not financially distressed, it is assumed that the 

misclassification cost for such Type I Errors is far higher than that of Type II Errors 

(Altman et al., 1977). Based on this assumption, some researchers have attempted to draw 

an optimal cut-off point that yields the lowest Type I Error (Koh, 1992; Tan and Dihardjo, 

2001). However, non-failing firms are in the overwhelming majority. Consequently, as 

Pacey and Pham (1990) show even a small Type II error rate with a small cost per error is 

likely to lead to a large error cost in total because so many firms are involved. 

 Optimizing the cut-off probability therefore requires a clear understanding of the 

likely total cost of Type I and Type II errors. However, establishing what these costs 

might be is a difficult exercise. As will be shown in Section 5.2, the use of ROC curves to 
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evaluate predictive accuracy avoids the need to address the cut-off problem since all 

possible cut-off probabilities are considered. 

 

3. Time-dependent Cox’s regression model 

In Cox’s model the survival probabilities are obtained from a model of the hazard rate. 

The hazard rate is the rate of change in the probability that an event will occur in an 

interval of time, given survival until the start of that interval. Cox’s hazards model with 

time-dependent covariates can be expressed as: 

⎭
⎬
⎫

⎩
⎨
⎧

⋅= ∑
=

p

j

i
jji tzthtzth

1
0 )(exp)())(|( β .       (1) 

))(|( tzthi is the time-dependent hazard function for firm i at time t. )(tzi
j  denotes the 

value of the jth covariate at time t for the ith firm, jβ  is the corresponding coefficient for 

i
jz , while h0(t) is the baseline hazard representing the effect of duration on the hazard in 

the absence of covariates. Thus, the hazard at time t depends on the value of predictor 

variables at time t.  

In most of the previous bankruptcy literature, each annual observation of firms has 

been treated as an independent observation and so researchers could not take advantage 

of all the available multiple-year financial information. Using Equation (1), we are able to 

“exploit each firm’s time-series data by including annual observations as time-varying 

covariates” (Shumway 2001: p.102). That is, if a firm has been observed for twelve years 

in the set of firms potentially at risk of financial distress, the values of each covariate, 

)(tzi
j , for that firm are to be updated twelve times from year to year (t). Consequently, we 

are able to retain multiple-year time-series data for each firm according to its life time (or 
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duration) and make use of all the data within the periods to estimate the regression 

coefficients.  

In a time-dependent model, the value of covariates, )(tzi
j , changes with time, and 

therefore, the hazard ratio (HR) also varies with time and is defined as follows.2 
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PARTIAL LIKELIHOOD FUNCTION 

It is helpful to introduce some concepts in survival analysis in order to understand the 

estimation of the model. First, the risk set, R(t), is defined as the set of firms (individuals) 

which are observed at risk of event at time t. Firms are said to enter the risk set when they 

become at risk of experiencing the event and leave the risk set either when they are 

censored or when the event occurs to them (fail or become financially distressed). Being 

censored means that a firm leaves the risk set for some other reason than experiencing the 

event, for example the firm may be taken over, or may still survive at the termination of 

the study.  

Second, it is important to distinguish between calendar time and event time. A 

graphical demonstration of the difference between calendar time and event time is 

presented in Figure 1.  An event time approach looks to the duration (time spent in the 

risk set) of a firm and sorts observations according to their duration on study. The event 

time approach is used in our study as is commonly the case in other survival analysis 

studies.  

[Figure 1 about here] 
                                                 
2 When there are no time-varying variables the ratio of hazards for any two firms is constant over time and 
so traditionally the model has been known as Cox’s proportional hazards model.  
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After constructing the risk set at each event time, it is possible to estimate the 

likelihood of a firm’s failure. The probability that firm i fails at time t, conditional upon it 

having survived up until time t, is the ratio of the hazard rate of firm i to the sum of the 

hazard rates of all firms in the risk set for each time t: 
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The baseline hazard cancels in the numerator and denominator, and so the exact times 

of each failure are irrelevant, only the order of events is required.3 

Given Li, the partial likelihood function, with the incorporation of time-varying 

covariates, can then be obtained by taking the product of the probabilities across all 

observed failures, m, such that: 
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where i is the firm in the event of failure and k is the firm in the risk set at time t. The 

coefficient estimation process implies that the time-varying covariate values of every firm 

in the risk set should be recorded and measured at each ‘failure time’. However, in 

practice, it is highly unlikely to have the complete covariate measures for all firms at each 

point in time because the data set is likely to have missing observations, especially for 

                                                 
3 The estimation procedure has to be modified where more than one event occurs at the same time. In the 
present study, the Breslow method of handling tied data is used.This is the default method and is 
appropriate when ties are relatively few. 
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financially distressed firms. Figure 2 illustrates the arrangement of the data in forming the 

likelihood function of Equation (4).  

[Figure 2 about here] 

 

INTEGRATED BASELINE HAZARD 

To generate survival probabilities at each time t, we need to estimate the baseline hazard 

function, h0(t). We follow the approach of Chen et al. (2005), which estimates the 

integrated baseline hazard function following the equation of Cox’s proportional hazards 

model with time-dependent covariates from Andersen (1992). The integrated baseline 

hazard function )(ˆ
0 tH  can be estimated as follows. 

( )( )∑ ∑≤
∈

⋅
=

tT
TRj

ij

i

i

i

Tz
DtH

~

)~(

0 ~'ˆexp
)(ˆ

β
 .        (5) 

Di is the indicator for whether the firm i experiences the failure, iT~ is the failure time 

for the ith firm, β̂ is the vector of estimated coefficients, and ( )ij Tz ~  is the value of the jth 

covariate at the failure time of the ith firm. 

The integrated baseline hazard function H0(t) can also be written as: 

[ ]∑
∈

−− −×=
tt

mmm
i

ttthtH )()()( 1100 ,       (6) 

where )(0 tH is a step function, which is discontinuous at tm. This allows the baseline 

hazard h0(t) to be derived from the integrated hazard. 

 Using the estimated baseline hazard rate, )(0̂ th , computed from equations (5) and (6), 

the estimated hazard rate of firm i with covariates zi(t) at time t is derived as: 
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( ))(ˆexp)(ˆ)(ˆ
0 tzthth ii ⋅×= β  .         (7) 

It is noted that a time-dependent ‘risk score’ is defined as ( ))(ˆ tzi⋅β . The dynamic 

changes of the risk score over the time horizon studied and the corresponding survival 

probabilities will be presented in Section 5.  

 

4. Data 

SAMPLE SELECTION 

Our sample includes publicly listed companies on the Australian Securities Exchange 

(ASX) from 1989 to 2006. Firms which are in the financial sector, as indicated by their 

GICS code, are excluded from the sample. We obtain annual accounting data from 

FinAnalysis and annual market capitalization data from Datastream. There are 1,716 non-

financial firms with available accounting and market capitalization data.  

We have 1,596 non-failed firms and 120 failed firms in our sample. Following the 

approach of Jones and Hensher (2004), firms are classified as “failed” if (i) they were 

delisted due to the failure to pay their annual listing fee to the ASX, or (ii) there was the 

appointment of liquidators, insolvency administrators, or receivers. We note that these are 

failure events that happen at specific dates, but there may be varying lags between the 

failure event and the onset of financial distress. We do not have the data to model these 

lags, but the advantage of dynamic probability forecasts, which give a trajectory to failure, 

lies in the potential for early warning of problems as the trajectory changes.   

We collect annual accounting and market capitalization data for each company. The 

data contains yearly observations of financial performance for each company in the 

sample from 1989 through 2006. In total, we have 13,505 firm-year observations. Table I 
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shows the number of failed and non-failed firms for each year over the sample period of 

1989–2006. There are no failed firms between 1989 and 1993 and the sample sizes are 

small for 1989 to 1991. It may be that data on firms failing in this period has been deleted 

from our data sources and, if so, there is a survival bias problem here. 

[Table I about here] 

There are several extreme values among the variables observed. Following the 

approach of Shumway (2001), all values lower than the first percentile of each variable 

are set to that value, and analogous treatment is applied to all observations higher than the 

ninety-ninth percentile of each variable. The data after truncation is described in detail in 

Section 4.3. 

The entire sample period (1989–2006) is divided into two separate samples, an 

estimation sample (1989–2002) and a holdout sample (2003–2006) for tests of predictive 

accuracy. 

 

PREDICTOR VARIABLES 

Key predictors of financial distress were identified from previous bankruptcy studies, and 

we focus on variables used in the recent major studies by Sobehart and Stein (2000), 

Shumway (2001), and Campbell et al. (2005). As this study is being conducted using 

Australian data, we also include some of the variables found to be useful in Australian 

studies by Castagna and Matolscy (1981), Jones and Hensher (2004) and Gharghori, 

Chan and Faff (2006).  

A set of fundamental accounting-based and market-based variables initially 

considered is shown in Table II.  
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[Table II about here] 

The accounting-based variables reflect measures of profitability (Net Income/Total 

Assets (NI/TA)), operating liquidity (Working Capital/Total Assets (WC/TA)), book 

leverage (Total Liabilities/Total Assets (TL/TA)) and cash flow generating ability (Net 

Cash Flow from Operations/Total Assets (CF/TA)). As a group, these ratios capture the 

strength of the firm’s financial position.  

Shumway (2001)’s and Campbell et al. (2005)’s market-based variables are also used 

in model estimation. The market-to-book (MB) ratio is commonly used as a proxy for 

growth opportunities (Rajan and Zingales, 1995; Baker and Wurgler, 2002; Faulkender 

and Petersen, 2005). Campbell et al. (2005) demonstrate that MB has a positive effect on 

the risk of failure “when market value is unusually high relative to book value” (p.11). 

Following Shumway (2001) the size measure we use is the value of the company relative 

to the value of all companies listed on the ASX. We measure this variable as Log(Firm 

Market Capitalization i,t/Total ASX Market Value t), which is denoted as RSIZE. Market 

Capitalization/Total Liabilities (MC/TL) is used as a measure of market leverage. Bigger 

values of this variable represent lower levels of leverage and it is expected that this 

variable will have a negative relationship with the risk of failure. 

Shumway (2001) includes firms’ past excess returns and stock returns volatility in the 

covariate set. However these two market variables are excluded from our model as there 

is insufficient data on failed observations. There are only twenty four failed observations 

with sufficient data in Datastream to compute excess returns and volatility. 

 

SUMMARY STATISTICS 
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 Table III presents descriptive statistics for annual observations of the predictor variables 

after the data filtering process described in Section 4.1. The minimum and maximum 

values reported in the table are calculated after truncation. The financial characteristics of 

non-failed firms are a noticeable contrast to those of failed firms for most variables.4 For 

example, failed firms are found to have lower levels of profitability, operating liquidity 

and cash flow compared to those of non-failed firms. Meanwhile, non-failed firms have a 

lower level of book leverage and a higher market-to-book ratio. The dispersion of 

financial ratios among failed firms is also wider than that of non-failed firms, evidenced 

by higher standard deviations.  

[ Table III about here] 

The first panel shows descriptive statistics for all firm-year observations of the entire 

sample and the other two panels report descriptive statistics for the estimation and 

holdout sample. For the whole sample we have 1,716 non-financial firms’ information 

where 13,505 firm-year observations are obtained with 120 failure events. The second 

panel shows summary statistics for all firm-year observations of the estimation sample. 

There are a total of 1,278 firms and 8,815 firm-year observations in the estimation sample, 

of which 80 are failure events. For the holdout sample as shown in the third panel, we 

have 1,471 firms’ information with 4,690 firm-year observations, where there are 40 

failure events.  

Table III shows that on average profitability (NI/TA) was negative for the full sample, 

the estimation sample, and the holdout sample. This is not the result of poor profits in a 

                                                 
4 Wilcoxon-Mann-Whitney test is carried out for each variable to test the significance of differences of firm 
characteristics between failed and non-failed groups. The test shows the differences are statistically 
significant at the 1% level for all variables except for the WC/TA for the entire sample and the estimation 
sample, and at the 5% level for all variables, with the exception of WC/TA, for the holdout sample. 
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specific period. Panel D in Table III, shows that profitability, on average, has been 

negative in sixteen of the eighteen years studied. This result is surprising, but it is driven 

by small firms. The value weighted mean for NI/TA (not reported here) is positive. As 

shown in Panel E of Table III, if we restrict our sample to the top quartile of firms by size, 

the mean and median profitability are positive. If we limit the sample to the top half of 

firms by size, the mean is negative but the median is positive. 

It is noted that not all public firms have complete accounting and market information 

available for estimating the parameters of the model. In this study, any firm-year 

observations with incomplete data were eliminated from the final sample. Table III, 

therefore only contains statistics for variables where all values are non-missing. The 

elimination of missing value cases was done for two reasons. First, handling missing 

values causes substantial computational problems and second including missing value 

cases is likely to lead to informative censoring as we discuss below. 

In relation to defaulting firms Sobehart and Stein (2000) state, “…financial and 

market information are less likely to be complete or reliable in the time period leading up 

to default” (p.12). Thus missing data may be an indicator of failure.  

We compare cases with missing and non-missing values using the Mann-Whitney test. 

The result shows that the missing data is associated with firms that have more negative 

profits, higher leverage, and more negative cash flow. It appears that the cases with 

missing data are financially weaker than firms with complete data and therefore are more 

likely to fail.5 If this is true, and these firms were included in the study at the times when 

there was data and then treated as censored when data was not available, this would give 

                                                 
5 We note, however, that we did not find any information that these firms were liquidated, went into 
receivership, or were delisted for failure to pay fees. 
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rise to informative censoring. That is, the censoring substitutes for the failure event and 

this violates the assumptions underlying the analysis.  

Correlation matrices of the seven covariates in the model are constructed for the 

entire sample, the estimation sample and the holdout sample, respectively. The Pearson 

Product-Moment correlations are presented in Table IV. All of the correlations are 

statistically significant at the 1% level, but the correlations are not so large as to cause 

concerns about colliniarity. The highest correlation at about 0.65 is between Net 

Income/Total Assets and Net Operating Cash Flow/Total Assets.  

[Table IV about here] 

 

5. Empirical Analysis 

MODEL ESTIMATION 

The time-dependent Cox’s regression model for the hazard has been estimated using the 

estimation sample (1989–2002) of 1,278 firms, with 80 failure observations. Panel A in 

Table V shows the total number of firms used in estimating the model parameters, and 

each number of failed and censored firms. The resulting coefficient estimates of the 

model are shown in Panel B in Table V, with their expected signs and their respective 

chi-square, and p-values. 

[Table V about here] 

From Panel B in Table V we see that all of the variables have coefficients of the sign 

expected and three of the variables are statistically significant in explaining failure risk. 

Higher book leverage, less cash flow generating ability, and lower MC/TL increase the 

probability of failure as expected. RSIZE, which was a significant predictor in previous 
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studies (Shumway, 2001; Campbell et al., 2005) turns out to be not significant in this 

model. However, RSIZE is the only significant variable in the (unreported) model with 

untruncated data. 

Table VI shows the changes of risk scores and survival probabilities by time horizon. 

The time-dependent risk scores can be calculated for each firm as )(ˆ tziβ . Following the 

approach of Chen et al. (2005), β̂  is a vector of estimated coefficients shown in Table V 

and )(tzi  is a vector of values of covariates for firm i at time t. For example, the risk 

score of Firm 1 at time 2 is estimated using the estimated coefficients from Table V and 

the values of seven predictor variables for firm 1 at the second year of the firm’s life time.  

The survival probabilities are calculated using Equation (7) and taking the 

exponential of the negative integrated hazard. 

Panel A in Table VI presents the resulting risk scores and survival probabilities for 

ten randomly selected firms in the non-failed group and Panel B shows those for ten firms 

in the failed group.6 Comparing these survival probabilities for the failed firms with the 

those for the surviving firms at the same time horizons (Lifetime), the failing firms have 

lower probabilities in all cases except for the comparison at 14 years. However, in most 

cases the differences are not great and the survival probabilities for the failed firms are 

generally high, with several above 0.9. 

The explanation for the foregoing seems to lie in the interaction between the risk 

score and the baseline hazard. Since the incidence of failure in the estimation sample is 

small, the risk of failure for an average firm is small. Consequently, although the baseline 

hazard rises through time, it remains small. Thus, to obtain a small probability of survival 
                                                 
6 Risk scores and survival probabilities are presented for only twenty firms in our study sample due to 
limited space. 
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requires a substantial scaling up of the baseline hazard by the risk score. It appears in this 

analysis that the risk scores for failed firms are not often large enough to achieve the 

required scaling up.  

[Table VI about here] 

 

MODEL VALIDATION  

We now evaluate the ability of our time-dependent hazards model to predict failures. As 

discussed in Section 2, when the probability prediction is converted to a state prediction, 

picking the optimal cut-off value becomes an issue. Using ROC curves is one way to 

sidestep the problem of determining an optimal cut-off point, since it examines the 

predictive power of the model across the entire spectrum of possible cut-off points. The 

ROC curve for a particular model is determined by the hit rate (correctly predicting 

failures) and the false alarm rate (incorrectly predicting non-failures to failures). The 

ROC curves plot the combinations of the false alarm rate (X-axis) and hit rate (Y-axis) as 

the cut-off point is varied across all possible values. A detailed explanation of the ROC 

curve can be found in Hanley and McNeil (1982), Mason and Graham (1999), Sobehart 

and Keenan (2001), and Wong et al. (2007). 

We form ROC curves at one-year intervals through time for both the estimation 

sample and the holdout sample. Table VII shows the area under the ROC (AUROC) 

curve of the in-sample and out-of-sample survival functions. The AUROC measures the 

predictive accuracy of the model and the higher the AUROC, the better the model’s 

prediction. Predictions made at random have an AUROC of 0.5 and models that do not 

beat this benchmark have no predictive power.   
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[Table VII about here] 

For in-sample estimates (see Panel A in Table VII), the time-dependent hazards 

model appears to perform better than a randomly allocated prediction with the exception 

of 1-year (0.4612) and 2-year (0.4887) horizon. The poor performance at these short 

horizons is because there were no failures in the estimation sample within this period. 

Interestingly, the model’s estimates become better at longer horizons. For those firms that 

have been in the risk set for 14 years, our model has an accuracy of 81% in sample. This 

result is in direct contrast to most bankruptcy studies, where predictive accuracy 

deteriorates sharply as the time horizon lengthens. The model also has predictive 

accuracy out of sample (see Panel B in Table VII), but the time horizon is much shorter 

due to the much shorter time period covered by the holdout sample. Predictive accuracy 

improves from year 1 to year 3 but falls in year 4. 

While the model has some predictive power, there is plenty of scope for improvement. 

It is possible that there is a problem with untimely or less than reliable financial statement 

information, especially for those firms approaching financial distress. It may, therefore, 

be worthwhile to include more market-driven variables such as past stock returns, and 

stock returns volatility which can be observed more frequently than accounting data. The 

current model does not allow for changes in macroeconomic variables, so a possible 

extension is to introduce such variables, or alternatively control for the effect of such 

variables by estimating the model in calendar time rather than event time. There may also 

be problems arising from survival bias, and this may be more prevalent in the early years 

of the study. 
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6. Summary and conclusions 

Problems of time-varying predictor variables and baseline hazard estimates have been 

major obstacles to the application of survival analysis into multiple-period bankruptcy 

data. This study has taken a step towards solving these problems by applying the time-

dependent Cox’s regression model to Australian financial distress prediction. We use 

seven covariates, whose values are updated on a year by year basis from 1989 to 2006. 

The attractive feature of time-dependent survival modeling is that it allows for dynamic 

changes of firm’s risk levels and its corresponding survival probabilities through time.  

The results show that firms with higher book leverage, less cash flow generating 

ability and less market value relative to debt are more likely to fail, which is partly in line 

with the results found in Shumway (2001). However, the baseline hazard appears to have 

a strong effect on the estimated hazard rates relative to the risk factors for failing firms. 

An intriguing result in the study is the improvement in the accuracy of the financial 

distress probabilities as the time horizon lengthens. However, the predictive power of the 

model is modest and there is scope for considerable improvement. 

Suggestions for future research include extending the model to incorporate more 

timely market information such as stock return and volatility, and to include variables 

that capture macroeconomic changes through time.    
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Table I 
Data sample 

This table shows the total number of firms in our study sample, the number of non-failed firms, the number 
of failed firms and percentages of failed to non-failed firms for every year over the sample period of 1989 – 
2006. Our study sample includes financially distressed (failed) firm data of publicly traded companies on 
the Australian Securities Exchange (ASX) between 1989 and 2006. Firms which are in the financial sector, 
as indicated by their GICS code, are excluded from the sample. There are 1,716 non-financial firms and 
120 failed firms in our study sample. In total, we have 13,505 firm-year observations. 
 

Year No of firms 

No of non-failed 

firms 

No of failed 

firms 

Percentage of  

failed to non-failed firms 

1989 56 56 0 0.00% 

1990 67 67 0 0.00% 

1991 99 99 0 0.00% 

1992 462 462 0 0.00% 

1993 520 520 0 0.00% 

1994 622 621 1 0.16% 

1995 678 675 3 0.44% 

1996 735 730 5 0.68% 

1997 779 767 12 1.56% 

1998 812 806 6 0.74% 

1999 877 867 10 1.15% 

2000 999 979 20 2.04% 

2001 1,044 1,037 7 0.68% 

2002 1,065 1,049 16 1.53% 

2003 1,072 1,064 8 0.75% 

2004 1,137 1,124 13 1.16% 

2005 1,224 1,210 14 1.16% 

2006 1,257 1,252 5 0.40% 
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 Table III 

Descriptive statistics 
This table shows descriptive statistics for firm-year observations of the ASX listed firms. Each firm has 
multiple observations according to firm age (duration). The data is reported after truncation of the top and 
bottom one percent of the distribution for each variable. NI/TA is the firm’s net income divided by its total 
assets; WC/TA is the firm’s working capital divided by its total assets; TL/TA is the ratio of firm’s total 
liabilities to its total assets; CF/TA is the ratio of firm’s net operating cash flow to its total assets; MB is the 
market-to-book ratio of the firm’s market capitalization to its total equity; RSIZE is the firm’s relative size 
measured as the log ratio of each firm’s market capitalization to that of the ASX All Ordinary Index; 
MC/TL is the firm’s market capitalization divided by its total liabilities. Panel A shows descriptive 
statistics for all firm-year observations for the entire sample over the period of 1989 – 2006. There are a 
total of 1,716 non-financial firms and 13,505 firm-year observations in the sample. The description of Panel 
B is as for Panel A except that it applies to an estimation sample over the period of 1989 – 2002. There are 
a total of 1,278 non-financial firms and 8,815 firm-year observations in the sample. The description of 
Panel C is also as for Panel A except that it applies to a holdout sample for the period of 2003 – 2006. 
There are a total of 1,471 non-financial firms and 4,690 firm-year observations in the sample.  
 
Panel A: Descriptive statistics for the entire sample 

Variables 
Distress 

group 
N Mean1 Median Std. Dev. Minimum Maximum 

NI / TA Non-failed 13,385 -0.2044408 -0.0144001 0.6490058 -4.6944134 0.3698276 

 Failed 120 -1.4259877 -0.1818189 4.9484986 -36.621599 0.3667659 

WC / TA Non-failed 13,385 0.0498244 0.0136517 0.1990892 -0.7378846 0.6911081 

 Failed 120 -0.0992059 0.0078747 0.7655856 -4.2500000 0.7887640 

TL / TA Non-failed 13,385 0.3825350 0.3499641 0.3543285 0.0048285 2.3684211 

 Failed 120 1.0349375 0.5787598 2.0435304 0.0092766 14.322398 

CF / TA Non-failed 13,385 -0.0660576 0 0.3084523 -1.8497853 0.4167387 

 Failed 120 -0.4722762 -0.0597495 1.7888868 -10.618299 0.5881350 

MB Non-failed 13,385 2.4564399 1.5268424 3.7434954 -6.4046426 25.692266 

 Failed 120 1.5973045 0.9689144 6.9971732 -24.823141 27.223200 

RSIZE Non-failed 13,385 -4.2615247 -4.4209000 0.9229622 -5.8409512 -1.7255087 

 Failed 120 -4.5124554 -4.5851476 0.9716785 -6.2175435 0 

MC / TL Non-failed 13,385 22.596316 3.4666430 53.992915 0.0873250 368.65309 

 Failed 120 17.355549 1.2061581 75.842800 0 573.39857 
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Panel B: Descriptive statistics for estimation sample 

Variables 
Distress 

group 
N Mean1 Median Std. Dev. Minimum Maximum 

NI / TA Non-failed 8,735 -0.1890736 -0.0026044 0.6331541 -4.6944134 0.3698276 

 Failed 80 -0.7210438 -0.1230941 1.7651057 -10.924480 0.3667659 

WC / TA Non-failed 8,735 0.0616954 0.0255293 0.1993843 -0.7378846 0.6911081 

 Failed 80 -0.0573539 0.0393789 0.7473615 -4.2500000 0.7887640 

TL / TA Non-failed 8,735 0.3900234 0.3714161 0.3461527 0.0048285 2.3684211 

 Failed 80 0.8629750 0.5870555 1.6768221 0.0092766 14.322398 

CF / TA Non-failed 8,735 -0.0472258 0.0066185 0.2815238 -1.8497853 0.4168856 

 Failed 80 -0.3237540 -0.0421652 1.3332033 -10.588315 0.5881350 

MB Non-failed 8,735 2.2352357 1.3698105 3.4939221 -6.4046426 25.692266 

 Failed 80 1.6746397 0.8528784 6.7926516 -24.823141 27.223200 

RSIZE Non-failed 8,735 -4.1888888 -4.3521340 0.9305348 -5.8409512 -1.7255087 

 Failed 80 -4.4172784 -4.5148183 1.0420785 -6.2175435 0 

MC / TL Non-failed 8,735 20.976386 2.8993440 53.461274 0.0873250 368.65309 

 Failed 80 6.2985941 0.8307736 17.876830 0 118.89981 

Panel C: Descriptive statistics for holdout sample 

Variables 
Distress 

group 
N Mean1 Median Std. Dev. Minimum Maximum 

NI / TA Non-failed 4,650 -0.2333081 -0.0386126 0.6769085 -4.6944134 0.3698276 

 Failed 40 -2.8358756 -0.3663879 8.0839024 -36.621599 0.3667659 

WC / TA Non-failed 4,650 0.0275248 -0.0009020 0.1966263 -0.7378846 0.6911081 

 Failed 40 -0.1829101 -0.0120981 0.8038793 -4.2500000 0.7085983 

TL / TA Non-failed 4,650 0.3684681 0.3046126 0.3688246 0.0048285 2.3684211 

 Failed 40 1.3788624 0.5696045 2.6200512 0.0092766 14.322398 

CF / TA Non-failed 4,650 -0.1014330 -0.0230894 0.3508450 -1.8497853 0.4168856 

 Failed 40 -0.7693206 -0.1016838 2.4552539 -10.618299 0.5881350 

MB Non-failed 4,650 2.8719708 1.8390339 4.1407167 -6.4046426 25.692266 

 Failed 40 1.4426342 1.2268207 7.4760934 -24.823141 27.223200 

RSIZE Non-failed 4,650 -4.3979710 -4.5520429 0.8928262 -5.8409512 -1.7255087 

 Failed 40 -4.7028093 -4.7309524 0.7908544 -6.2175435 -3.1303092 

MC / TL Non-failed 4,650 25.639346 5.0722199 54.854289 0.0873250 368.65309 

 Failed 40 39.469459 1.8335542 127.08922 0.0239425 573.39857 
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Panel D: Descriptive Statistics of NI/TA grouped by Year 

Year N Mean Median Std. Dev. Minimum Maximum 

1989 56 0.0541701   0.0528488   0.0922714   -0.2753289   0.3163628 

1990 67 0.0199665   0.0517173   0.2000937   -1.2635262   0.3698276 

1991 99 -0.0515958   0.0354946   0.4727639   -4.6944134   0.3698276 

1992 462 -0.2445626   0.0002112   0.7980315   -4.6944134   0.3045397 

1993 520 -0.1191241   0.0132208   0.5720244   -4.6944134   0.3698276 

1994 622 -0.0820474 0.0227670   0.4903810   -4.6944134   0.3698276 

1995 678 -0.1155786   0.0190306   0.5374183   -4.6944134   0.3698276 

1996 735 -0.0774989 0.0132043   0.3641876   -4.6944134 0.3698276 

1997 779 -0.1080678   0 0.4014774   -4.9638071 0.3698276 

1998 812 -0.1733446   0 0.6198979   -4.6944134   0.3698276 

1999 877 -0.1681899 0 0.5646330   -4.6944134   0.3698276 

2000 999 -0.1396347   -0.0049617   0.4931552   -4.6944134   0.3698276 

2001 1,044 -0.3593912   -0.0401468   0.9277242   -10.9244802   0.3698276 

2002 1,065 -0.3696295   -0.0649399   0.9007334 -8.5540541   0.3698276 

2003 1,072 -0.3203504   -0.0386937   0.8473606   -7.5795358   0.3698276 

2004 1,137 -0.2209747   -0.0294531   0.7211106   -9.2613779   0.3698276 

2005 1,224 -0.2237759   -0.0410236   0.6274303   -4.6944134   0.3698276 

2006 1,257 -0.2827157   -0.0384873   1.5482209   -36.6215998 0.3698276 

Panel E: Descriptive Statistics of NI/TA grouped by Firm Size 

Firm Size 

(Quartile) 
N Mean Median Std. Dev. Minimum Maximum 

Q1 3376 -0.5247709   -0.1765108 1.1743217 -36.6215998 0.3698276 

Q2 3376 -0.2784907 -0.0794690 0.9163825 -36.6215998 0.3698276 

Q3 3376 -0.0939643 0.0137022 0.3983990 -4.6944134 0.3698276 

Q4 3377 0.0341840 0.0499120 0.1886210 -4.6944134 0.3698276 
1 Wilcoxon-Mann-Whitney test is carried out for each variable to test the significance of differences of firm 
characteristics between failed and non-failed groups. The test shows the differences are statistically 
significant at the 1% level for all variables except for the WC/TA for the entire sample and estimation 
sample, and at the 5% level for all variables, with the exception of WC/TA, for holdout sample. 
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Table IV 
Correlation matrix 

This table presents the Pearson Product-Moment correlations. Pearson correlation statistics are computed 
from observations with non-missing values for each pair of predictor variables. All correlations are 
significant at the 1% level (two-sided test). NI/TA is the firm’s net income divided by its total assets; 
WC/TA is the firm’s working capital divided by its total assets; TL/TA is the ratio of firm’s total liabilities 
to its total assets; CF/TA is the ratio of firm’s net operating cash flow to its total assets; MB is the market-
to-book ratio of the firm’s market capitalization to its total equity; RSIZE is the firm’s relative size 
measured as the log ratio of each firm’s market capitalization to that of the ASX All Ordinary Index; 
MC/TL is the firm’s market capitalization divided by its total liabilities. Correlation matrices of the seven 
covariates in the model are constructed for the entire sample (Panel A), the estimation sample (Panel B) and 
the holdout sample (Panel C), respectively. Panel A shows the correlation matrices constructed based on 
13,505 all firm-year observations from 1989 – 2006 including 120 failed firms. Panel B is constructed 
using the estimation sample, where there are 8,815 firm-year observations from 1989 – 2002 including 80 
failed firms. Panel C is constructed on a holdout sample, where there are 4,690 firm-year observations from 
2003 – 2006 including 40 failed firms. 
 
Panel A: Correlation matrix for the entire sample 

Variables NI / TA WC / TA TL / TA CF / TA MB RSIZE MC / TL 

NI / TA  0.355 -0.329 0.652 -0.063 0.258 -0.053 

WC / TA   -0.301 0.300 -0.057 0.108 0.015 

TL / TA    -0.169 -0.080 0.069 -0.311 

CF / TA     -0.123 0.333 -0.136 

MB      0.120 0.229 

RSIZE       -0.112 

MC / TL        

Panel B: Correlation matrix for estimation sample  

Variables NI / TA WC / TA TL / TA CF / TA MB RSIZE MC / TL 

NI / TA  0.331 -0.253 0.666 -0.052 0.290 -0.049 

WC / TA   -0.254 0.240 -0.046 0.082 0.040 

TL / TA    -0.079 -0.075 0.073 -0.321 

CF / TA     -0.110 0.326 -0.142 

MB      0.138 0.238 

RSIZE       -0.103 

MC / TL        

Panel C: Correlation matrix for holdout sample 

Variables NI / TA WC / TA TL / TA CF / TA MB RSIZE MC / TL 

NI / TA  0.401 -0.416 0.642 -0.070 0.230 -0.058 

WC / TA   -0.386 0.382 -0.058 0.136 -0.020 

TL / TA    -0.281 -0.083 0.059 -0.295 

CF / TA     -0.126 0.341 -0.123 

MB      0.118 0.208 

RSIZE       -0.117 

MC / TL        
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Table V 
Hazard model estimates  

Panel A shows the total number of firms, the number of failed firms and the number of censored (non-
failed) firms and percentages of censored to the total number of firms in our estimation sample over the 
period of 1989 – 2002. Panel B reports the parameter estimates of Cox hazards model with time-varying 

covariates, 
⎭
⎬
⎫

⎩
⎨
⎧

⋅= ∑
=

p

j

i
jji tzthtzth

1
0 )(exp)())(|( β . NI/TA is the firm’s net income divided by its total assets; 

WC/TA is the firm’s working capital divided by its total assets; TL/TA is the ratio of firm’s total liabilities 
to its total assets; CF/TA is the ratio of firm’s net operating cash flow to its total assets; MB is the market-
to-book ratio of the firm’s market capitalization to its total equity; RSIZE is the firm’s relative size 
measured as the log ratio of each firm’s market capitalization to that of the ASX All Ordinary Index; 
MC/TL is the firm’s market capitalization divided by its total liabilities. A positive coefficient on a 
particular variable implies that the hazard rate is increasing in that variable.  
 
Panel A: Number of failed and censored firms in the estimation sample 

Total  Failed Censored Percent Censored 

1,278 80 1,198 93.74 

Panel B: Parameter estimates 

Variables 
Expected 

sign 
Coefficient Std. Error Chi-Square p-Value 

NI / TA - -0.06714 0.11583 0.3360 0.5621 

WC / TA - -0.31114 0.27851 1.2480 0.2639 

TL / TA + 0.32142 0.07622 17.7809 <.0001 

CF / TA - -0.60997 0.16368 13.8875 0.0002 

MB + 0.02143 0.02354 0.8291 0.3625 

RSIZE - -0.15080 0.12955 1.3549 0.2444 

MC / TL - -0.02896 0.01132 6.5483 0.0105 

Panel C: Log Likelihood Statistics 
Criterion Without Covariates With Covariates 
-2 LOG L 1058.940 1000.033 

 
Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 58.9066 7 < .0001 
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Table VII 
Predictive Accuracy 

This table shows the area under the ROC (AUROC) curve of the in-sample and out-of-sample survival 
functions. The AUROC measures the predictive accuracy of the model and the higher the AUROC, the 
better the model. Predictions made at random have an AUROC of 0.5 and models that do not beat this 
benchmark have no predictive power. Panel A examines predictive accuracy over the period for which we 
have estimation sample from 1989 to 2003. The estimation horizon is presented with event time, from 1 to 
14 years. Panel B describes the area under the ROC curve for holdout sample. Holdout sample is reserved 
for the purpose of out-sample prediction, and whose predictive accuracy is tested against the estimated 
time-dependent Cox hazards model.    
 
Panel A: Predictive accuracy over estimation sample – Area under the ROC curve for in-sample prediction 

Estimation Horizon AUROC 

1 0.4612441 

2 0.4887909 

3 0.6408263 

4 0.6411966 

5 0.6646468 

6 0.6500862 

7 0.6365567 

8 0.6428241 

9 0.6608045 

10 0.6519414 

11 0.7000067 

12 0.7426942 

13 0.7929476 

14 0.8106618 

Panel B: Predictive accuracy over holdout sample – Area under the ROC curve for out-of-sample prediction 

Forecast Horizon AUROC 

1 0.6075342 

2 0.6706679 

3 0.6960380 

4 0.6661926 
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Figure 1 
Calendar time vs. Event time 

Panel A: Arrangement of Firms in the Risk set according to calendar time 

 

Panel B: Arrangement of Firms in the Risk set according to Event Time 
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Figure 2 
Calculation of the Likelihood for the Failure of Firm A in a Time-dependent Model 
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