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ABSTRACT 

Lithium-ion batteries and supercapacitors are both important energy storage systems 

and can make energy storage and usage more efficiently than with previous solutions. 

Both systems would be excellent choices for Electrical Vehicles (EVs) or Hybrid 

Electrical Vehicles (HEVs), and also other portable devices requiring both high 

power and high energy density. The key aspect for improving the performance of 

both kinds of energy devices is to improve the performance of the active materials. 

The use of nanostructured materials and conductive composite materials is designed 

to enhance both ion transport and electron transport by shortening the diffusion 

lengths of ions (such as, Li+, Na+, K+, H+, and OH-) and increasing the conductivity 

within the electrode materials, respectively. In this doctoral work, several 

nanostructured materials and conductive (carbon or conducting polymer) composites 

were examined and characterized for possible application as electrode materials for 

lithium-ion batteries or supercapacitors. For the Li-ion battery, tin dioxide (SnO2) 

nanotubes, carbon-coated SnO2 composite, hematite (α-Fe2O3) carbon composite, 

lithium iron phosphate (LiFePO4) polypyrrole composite, and vanadium pentoxide 

(V2O5) nanomaterials were investigated. Meanwhile, several flexible electrode 

materials for supercapacitors were also studied: manganese dioxide (MnO2) 

nanowire-carbon nanotube composite, MnO2 nanowires on stainless steel mesh 

(SSM), porous vanadium oxide (VOx) on SSM, and cobalt hydroxide (Co(OH)2) 

nanoflakes on SSM. 
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Anode materials for Lithium-ion battery 

The SnO2 nanotubes were synthesized by anodic electrochemical deposition under 

ambient conditions without using any additional template. Controlled self-bubbling 

O2 acted as both the template and the oxidizing agent for obtaining SnO2 tube 

structures at the interface of the gas (O2) and the liquid (electrolyte). The length of 

the tube could be controlled by adjusting the electrochemical deposition time. 

Electrochemical results show that the nanotubes have higher discharge capacity and 

better high-rate capability than microtubes. The morphology of the hollow nanotube 

structures composed of ultra-fine nanoparticles could be responsible for the enhanced 

high-rate performance and improved cycling stability as an electrode material. 

Electrochemical impedance spectroscopy (EIS) measurements showed that the 

nanotubes had a much higher electrochemically active surface area than microtubes. 

From the Arrhenius plots, the apparent activation energies were calculated to be 61.9 

and 85.7 kJ mol-1 for the nanotubes and microtubes, respectively, indicating the 

enhanced kinetics. Carbon-coated SnO2 nanoparticles were prepared by a novel 

facile route using commercial SnO2 nanoparticles treated with concentrated sulfuric 

acid in the presence of sucrose at room temperature and ambient pressure. The key 

features of this method are the simple procedure, low energy consumption, and 

inexpensive and non-toxic source materials. The electrochemical measurements 

showed that the carbon-coated SnO2 nanoparticles with 10 % carbon and using 

carboxymethyl cellulose (CMC) as a binder displayed the best electrochemical 

performance, with the highest specific capacity of 502 mAh g-1 after 50 cycles at a 

current density of 100 mA g-1. In addition, owing to the water solubility of CMC, the 
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usage of CMC as binder makes the whole electrode fabrication process cheaper and 

more environmentally friendly.  

Hollow-structured α-Fe2O3/carbon (HIOC) composite with high surface area around 

260 m2 g-1 was synthesized by one-step, in-situ, and industrially-oriented spray 

pyrolysis method using iron (II) lactate solution and sucrose as the precursor. The 

electrochemical tests show that the HIOC composite with 14.7% carbon using CMC 

as binder, without pressing of the electrode, shows the best electrochemical 

performance, in terms of the high capacity (1000 mAh g-1 at 0.1 C), good rate 

capability (700 mAh g-1 at 2 C), and good cycling stability (720 mAh g-1 at 2 C up to 

220 cycles). The high surface area, hollow structure, selected binder, and carbon 

content account for the high performance with respect to lithium storage properties.  

Cathode materials for Lithium-ion battery 

Highly flexible, paper-like, free-standing polypyrrole (PPy) and polypyrrole-

LiFePO4 composite films were prepared using the electropolymerization method. 

The films are soft, lightweight, mechanically robust, and highly electrically 

conductive. The electrochemical performance of the free-standing pure PPy electrode 

was improved by incorporating the most promising cathode material, LiFePO4, into 

the PPy films. The cell with PPy-LiFePO4 composite film had a higher discharge 

capacity beyond 50 cycles (80 mAh g-1) than that of the cell with pure PPy (60mAh 

g-1).  The free-standing films can be used as electrode materials to satisfy the new 

market demand for flexible and bendable batteries that are suitable for the various 

types of design and power needs of soft portable electronic equipment. 
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V2O5 nanomaterials, including nanoribbons, nanowires, and microflakes, have been 

synthesized by an ultrasonic assisted hydrothermal method combined with a post 

annealing process. A room temperature ionic liquid (RTIL) was used as the 

electrolyte in  rechargeable lithium metal batteries along with V2O5 nanomaterials as 

cathode materials. The electrochemical tests show near-theoretical specific capacity, 

improved cycling stability, good high-rate capability, and enhanced kinetics. The 

thermogravimetric analysis (TGA) results show that the RTIL can prevent the 

dissolution of V2O5 during charge and discharge. The rechargeable lithium battery 

using V2O5 nanoribbons as cathode material and RTIL as the electrolyte could be the 

next generation lithium battery with high capacity, excellent safety, and long cycle 

life. 

Materials for Supercapacitor 

MnO2 nanowires were electrodeposited onto carbon nanotube (CNT) paper by a 

cyclic voltammetric (CV) technique. The as-prepared MnO2 nanowire/CNT 

composite paper (MNCCP) can be used as a flexible electrode for electrochemical 

supercapacitors. Electrochemical measurements showed that the MNCCP electrode 

displayed specific capacitance as high as 167.5 F g−1 at a current density of 77 mA g-

1. After 3000 cycles, the composite paper can retain more than 88% of initial 

capacitance, showing good cyclability. The CNT paper in the composite acts as a 

good conductive and active substrate for flexible electrodes in supercapacitors, and 

the nanowire structure of the MnO2 could facilitate the contact of the electrolyte with 

the active materials, and thus increase the capacitance. 
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Flexible porous Co(OH)2 nanoflake, porous vanadium oxide, and MnO2 nanowire 

films were synthesized by an electrochemical deposition method using stainless steel 

mesh as the substrate. The cyclic voltammetry (CV) results show that the MnO2 

nanowire film has a specific capacitance of 195, 170, 158, and 91 F g-1 at scan rates 

of 5, 10, 20, and 50 mV s-1, respectively. The porous VOx film displays specific 

capacitance of 152, 124, 99, and 76 F g-1 at scan rates of 5, 10, 20, and 50 mV s-1, 

respectively. The capacitance losses for the MnO2 nanowire film and the porous VOx 

film are only 5 % and 10 % for 1000 cycles, respectively.  The porous Co(OH)2 

nanoflake film shows the highest capacitance of 609.4 F g-1, The electrochemically 

active specific surface area of the annealed porous Co(OH)2 nanoflake film remained 

virtually unchanged after 3000 cycles, showing the stability of the microstructure. 
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