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ABSTRACT

This study explored the potential biomedical applications of polypyrrole (PPy).
Electrical and topographic cues have been delivered to cells via composites of these

conducting polymers, resulting in the successful control of cell behaviour.

It was found that a clinically-relevant electrical stimulation protocol (250 Hz
biphasic pulsed-current) delivered directly via PPy/poly(2-methoxy-5-aniline
sulfonic acid) (PMAS) films can significantly promote PC12 nerve cell differentiation
in the presence of nerve growth factor (NGF), and can initiate reversible neurite
sprouting from PC12 cell in the absence of NGF. The ability to promote neural
outgrowth on PPy/PMAS has important implications for improving the

neural/electrode interface, and this may be used to effect in nerve regeneration.

The same biphasic 250 Hz electrical stimulations were applied to a monolayer of
endothelial cells on PPy/heparin films, and significantly enhanced endothelial cell
migration was observed as a result. Combined with the ease of fabrication on
metallic stents and the antithrombotic function of heparin, these materials may be
utilized for modification of stents to improve the re-endothelialization process after

implantation.

Finally, aligned PPy/poly(styrene-B-isobutylene-B-styrene) (SIBS) nanofibrous
scaffolds were fabricated by vapor phase depositing PPy onto electrospun SIBS
fibrous mats. It was shown that this novel material provided a conductive and

biocompatible platform for PC12 cell adhesion and differentiation. Neurite



Vil
outgrowth was significantly influenced by the aligned fibers. High resolution AFM
provided a closer inspection of the neurite outgrowths and revealed interesting
physical interactions between the neurites and the aligned fibers. Aligned
electroactive PPy/SIBS fibers have potential applications for improving the
electrode-cellular interface of neural electrodes by encouraging guided neurite

outgrowth toward the electrode through the use of electrical stimulation.

The knowledge gained during the course of this study could form the basis for
improving the cellular interface of neural electrodes and stents using conducting

polymers.
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