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Iterative Soft Compensation for OFDM Systems
with Clipping and Superposition Coded Modulation

Jun Tong, Li Ping, Fellow, IEEE, Zhonghao Zhang, and Vijay K. Bhargava, Fellow, IEEE

Abstract—This paper deals with the clipping method used in
orthogonal frequency-division multiplexing (OFDM) systems to
reduce the peak-to-average power ratio (PAPR). An iterative
soft compensation method is proposed to mitigate the clipping
distortion, which can outperform conventional treatments. The
impact of signaling schemes on the residual clipping noise power
is studied via the symbol variance analysis. It is found that
superposition coded modulation (SCM) can minimize the residual
clipping noise power among all possible signaling schemes. This
indicates that SCM-based OFDM systems are more robust to
clipping effect than other alternatives when soft compensation
is applied. It is also shown that a multi-code SCM scheme can
further reduce the clipping effect and its overall performance can
be quickly evaluated using a semi-analytical evolution method.
Numerical examples are provided to verify the analysis.

Index Terms—Clipping, iterative decoding, orthogonal
frequency-division multiplexing (OFDM), soft compensation,
superposition coded modulation (SCM).

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing
(OFDM) is a multi-carrier transmission technique

for broadband channels. It has attracted tremendous attention
due to its high spectral efficiency and low receiver complexity.
However, OFDM systems suffer from a high peak-to-average
power ratio (PAPR) problem. This makes OFDM more
prone to the non-linear effect of transmitter devices than
single-carrier schemes.

Various PAPR reduction techniques have been investigated
(see [1] and the references therein). They can be broadly
classified into two categories. The first category involves
redundancy (and so spectral efficiency loss), such as coding,
partial transmit sequence, and selective mapping techniques.
The second category does not involve redundancy, such as
deliberate clipping [2]-[18].

Clipping may cause non-linear distortion which degrades
performance. To treat such distortion, iterative techniques have
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been studied. In [12]-[15], clipping distortion is estimated
and then partially canceled at the receiver. A key step in
the works in [12]-[15] is to compute the means for the
original signals before clipping using decoder feedbacks. The
technique developed in [28] involves both means and variances
of the original signals, which offers noticeable performance
gains. The focus of [28] is on superposition coded modulation
(SCM) in single-carrier environments and the discussion on
OFDM systems is very limited.

This paper is concerned with the treatment of clipping
distortion for OFDM systems with coded modulation. The
proposed technique combines the works in [12]-[15] and
[28]: Price’s result is used to remove the correlation between
the original signals and clipping distortions; and both means
and variances of the original signals computed from the
decoder feedbacks are used to estimate the clipping distortions.
This combined technique ensures the effectiveness of iterative
detection and brings about considerable performance gains.

As discussed in [28], SCM generally exhibits high PAPR.
However, since OFDM suffers from high PAPR anyway, the
use of SCM in OFDM does not worsen the problem. On
the contrary, based on a result from [41], we will show that
SCM is advantageous (compared with other alternative coded
modulation methods) for estimating the original signals. This
advantage implies that SCM-OFDM systems may lead to
better performance with a low clipping ratio and hence can
help reduce the PAPR. Moreover, further performance im-
provement can be achieved using a multi-code SCM scheme.
These properties are confirmed by simulation results.

We also develop a fast, semi-analytical technique to predict
the performance of an iterative receiver. The presence of
several different types of distortions, namely, additive white
Gaussian noise (AWGN), frequency-selective fading, inter-
layer interference (due to SCM) and clipping distortion, makes
the problem complicated. We will develop a procedure to
handle such difficulty. It involves (i) the approximation of
the clipping distortions plus inter-layer interferences using
additive Gaussian variables and (ii) a two-dimensional pre-
calculated table to separate the different types of distortions.
The resultant prediction method is reasonably accurate. The
availability of a fast analysis technique provides a useful tool
for searching-based system design.

Combining the above mentioned techniques, we obtain a
promising solution to the PAPR problem in OFDM systems.
For example, we show that performance within 1.35 dB away
from the Shannon limit can be achieved with a severe clipping
ratio (CR) as low as 0 dB.

The rest of this paper is organized as follows. Section II

0090-6778/10$25.00 c⃝ 2010 IEEE
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introduces the system model and iterative soft compensation
method. The impact of signaling schemes on the residual
clipping noise power and SCM schemes are discussed in
Section III. Numerical results are presented in Section IV,
followed by the conclusion in Section V.

II. ITERATIVE SOFT COMPENSATION

A. System Model

Consider a coded OFDM system illustrated in Fig. 1.
At the transmitter, the information bits are first encoded
by a binary encoder (ENC). The resultant coded bits are
then randomly interleaved and packed into groups {𝒃[𝑛] =
(𝑏1[𝑛], 𝑏2[𝑛], ⋅ ⋅ ⋅ , 𝑏𝐾 [𝑛])} of 𝐾 bits. Each 𝒃[𝑛] is mapped to a
symbol 𝑋 [𝑛] to be carried by the 𝑛th sub-carrier. (The related
mapping rule will be detailed in Section III-A.)

Let 𝑁 be the number of sub-carriers and define 𝑿 =
[𝑋 [0], 𝑋 [1], ⋅ ⋅ ⋅ , 𝑋 [𝑁 − 1]]T. Then {𝑋 [𝑛]} are modulated
onto sub-carriers using the inverse discrete Fourier trans-
form (IDFT). The resultant signal is over-sampled into 𝒙 =
[𝑥[0], 𝑥[1], ⋅ ⋅ ⋅ , 𝑥[𝐿𝑁 − 1]]T with over-sampling factor 𝐿,

𝒙 = 𝑭 †𝑿, (1)

where 𝑭 is an 𝑁 × 𝐿𝑁 matrix with (𝑛,𝑚)th entry given
by 𝑒−𝑗 2𝜋𝑚𝑛

𝐿𝑁 /
√
𝑁𝐿, 𝑗 =

√−1, and “(⋅)†” denotes conjugate
transpose of matrix. To reduce the PAPR, each entry 𝑥[𝑚] of
𝒙 is deliberately clipped using the following clipping function,

𝑔(𝑥[𝑚]) =

{
𝑥[𝑚], if ∣𝑥[𝑚]∣ ≤ 𝐴

𝐴𝑥[𝑚]/∣𝑥[𝑚]∣, if ∣𝑥[𝑚]∣ > 𝐴
(2)

where 𝐴 is a clipping threshold and ∣ ⋅ ∣ represents absolute
value. The clipping ratio in decibel is defined as CR =
10 log10(𝐴

2/E[∣𝑥[𝑚]∣2]) where E[⋅] represents mathematical
expectation. With abuse of notation, we write the clipped
signal vector as 𝑔(𝒙).

Clipping introduces in-band non-linear distortion and out-
of-band radiation [3], [6]. This paper focuses only on the in-
band distortion that degrades the bit-error-rate (BER) perfor-
mance [2]-[18]. We assume that ideal bandpass filtering [3]
is applied to 𝑔(𝒙) and the out-of-band radiation is perfectly
mitigated. Cyclic prefix is then added to the filtered signal to
treat inter-block-interference (IBI) and the resultant signal is
transmitted. For simplicity, we assume that

∙ clipping is the only source of non-linear distortion, which
implies that linear power amplifiers are used;

∙ the cyclic prefix is sufficiently long so that the IBI can
be perfectly removed; and

∙ the channel coefficients remain unchanged within each
OFDM block and are perfectly known at the receiver.

Denote by 𝒚 the time-domain received signal vector. After
removing the cyclic prefix and applying the discrete Fourier
transform (DFT) to 𝒚, we obtain a frequency-domain signal
vector 𝒀 = [𝑌 [0], 𝑌 [1], ⋅ ⋅ ⋅ , 𝑌 [𝑁−1]]T. Considering (1) and
(2), we model 𝒀 as

𝒀 = 𝑯𝑭 𝑔(𝒙) +𝑾 (3)

where 𝑯 = diag(𝐻 [0], 𝐻 [1], ⋅ ⋅ ⋅ , 𝐻 [𝑁 − 1]) consists of the
fading coefficients on the 𝑁 subcarriers and 𝑾 is a vector

of samples of a complex Gaussian noise with mean zero and
variance 𝜎2

𝑊 /2 per dimension.
The suboptimal receiver consists of an elementary signal

estimator (ESE) and a decoder (DEC) connected by an inter-
leaver (Π) and a de-interleaver (Π−1). They operate iteratively
following the principles of bit-interleaved coded modulation
with iterative decoding (BICM-ID) [19], [20].

B. Iterative Detection/Decoding

The clipping effect is handled by the soft compensation
(SC) module in Fig. 1. Applying Price’s theorem for Gaussian-
input memoryless non-linear systems [32], the clipped signal
vector 𝑔(𝒙) is approximated as

𝑔(𝒙) = 𝛼𝒙+ 𝒅 (4)

where 𝒅 = [𝑑[0], ⋅ ⋅ ⋅ , 𝑑[𝐿𝑁 − 1]]T and 𝛼 is a constant scalar
computed as

𝛼 =
E[𝒙†𝑔(𝒙)]
E[∣∣𝒙∣∣2] (5)

and ∣∣ ⋅ ∣∣ denotes the Frobenius norm of a vector. Then from
(3) and 𝑭𝑭 † = 𝑰, we have

𝒀 = 𝛼𝑯𝑿 +𝑯𝑭𝒅+𝑾 . (6)

Assume that the mean of 𝒅, denoted by 𝒅 below, is
available. (At the beginning of decoding, a common choice
is 𝒅 = 0. The details in updating 𝒅 will be given in (12)). To
reduce the distortion related to 𝒅, we subtract 𝑯𝑭𝒅 from 𝒀 ,
yielding

𝒁 = 𝒀 −𝑯𝑭𝒅 = 𝛼𝑯𝑿 +Ξ (7)

where
Ξ = 𝑯𝑭 (𝒅− 𝒅) +𝑾 (8)

is the residual clipping noise plus channel noise. Clearly, 𝒅−𝒅
has zero mean, and so does 𝑭 (𝒅− 𝒅).

Assumption 1: The entries in 𝑭 (𝒅 − 𝒅) are independent,
identically distributed (i.i.d.) Gaussian random variables that
are uncorrelated with 𝒙.

This assumption can be justified as follows.

1) Following general treatments, the entries of 𝒙 are ap-
proximately uncorrelated. Then the entries of 𝒅 − 𝒅
are approximately uncorrelated, so are the entries of
𝑭 (𝒅 − 𝒅) since 𝑭 is orthogonal. According to the
central limit theorem, the entries of 𝑭 (𝒅 − 𝒅) are
approximately Gaussian since they are weighted sums
of many uncorrelated random variables.

2) Due to the use of 𝛼 in (4), 𝒅−𝒅 and 𝒙 are uncorrelated,
i.e., E[(𝒅− 𝒅)𝒙†] = 0, so are 𝑭 (𝒅 − 𝒅) and 𝒙.

Let {V[𝑑[𝑛]]} be the variance of the entries in 𝒅. Since the
entries in 𝑭 have the same absolute value of 1/

√
𝐿𝑁 , the

entries in 𝑭 (𝒅 − 𝒅) have the same variance denoted by 𝑣𝑑
where

𝑣𝑑 =
1

𝐿𝑁

𝐿𝑁−1∑
𝑚=0

V[𝑑[𝑚]]. (9)

We will consider the details in evaluating 𝑣𝑑 in Section II-C.
From Assumption 1 and (9), we can make the following
assumption.
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Fig. 1. Coded OFDM systems with clipping, where Π denotes interleaver and Π−1 de-interleaver. ACP denotes adding cyclic prefix and RCP removing
cyclic prefix.

Assumption 2: Ξ = {Ξ[𝑛]} are independent Gaussian
random variables with mean E[Ξ[𝑛]] = 0 and variance
V[Ξ[𝑛]] = ∣𝐻 [𝑛]∣2𝑣𝑑 + 𝜎2

𝑊 .

Now return to the detection problem based on (7) and (8).
From Assumption 1, the residual clipping noise 𝑭 (𝒅 − 𝒅)
is uncorrelated with 𝑿 and symbol-by-symbol detection can
be applied. The soft demapper outputs the so-called extrinsic
log-likelihood ratios (LLRs):

𝜆𝑘[𝑛] = ln

(
Pr(𝑏𝑘[𝑛] = 0∣𝑍[𝑛], {𝛾𝑘[𝑛]})
Pr(𝑏𝑘[𝑛] = 1∣𝑍[𝑛], {𝛾𝑘[𝑛]})

)
− 𝛾𝑘[𝑛],

𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝐾, 𝑛 = 0, 1, ⋅ ⋅ ⋅ , 𝑁 − 1, (10)

where 𝑍[𝑛] denotes the 𝑛th entry of 𝒁, and 𝛾𝑘[𝑛] is the
a priori LLR about 𝑏𝑘[𝑛] which can be obtained as the
extrinsic LLR from the DEC (see (11)). In general cases, the a
posteriori probability (APP) demapping [19], [33] can be used
to evaluate (10). For SCM, more details regarding evaluating
(10) will be discussed in Section III.

The DEC takes the de-interleaved version of {𝜆𝑘[𝑛]} in (10)
as inputs and performs standard APP decoding. The extrinsic
LLRs are produced by the DEC based on coding constraint
𝒞:

𝛾𝑘[𝑛] = ln

(
Pr(𝑏𝑘[𝑛] = 0∣𝒞, {𝜆𝑘[𝑛]})
Pr(𝑏𝑘[𝑛] = 1∣𝒞, {𝜆𝑘[𝑛]})

)
− 𝜆𝑘[𝑛],

𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝐾, 𝑛 = 0, 1, ⋅ ⋅ ⋅ , 𝑁 − 1. (11)

The DEC feedback {𝛾𝑘[𝑛]} will be then used to update 𝒅 in
an iterative manner, as detailed in the next subsection.

C. Proposed Clipping Noise Estimation Method

The following assumption is the key to the soft compensa-
tion method proposed in this paper.

Assumption 3: Each entry 𝑥 in 𝒙 is a Gaussian random
variable.
This assumption can be justified by the central limit theorem
since 𝑥 is a weighted sum of 𝑁 independent random variables
{𝑋 [𝑛]}. It also leads to a low-cost method to compensate the
distortion caused by 𝒅 at the receiver.

For simplicity, we assume that the real and imaginary parts
of 𝑥 have the same variance V[𝑥]/2, where V[𝑥] = E[∣𝑥 −
E[𝑥]∣2] is referred to as the symbol variance. The mean E[𝑥]

and variance V[𝑥] can be estimated from {𝛾𝑘[𝑛]}, as will be
detailed in Section III-A. With the Gaussian approximation,
the distribution of 𝑥 is fully characterized by E[𝑥] and V[𝑥].
According to [31], given a priori information about 𝑥, the
optimal estimate of 𝑑 = 𝑔(𝑥)− 𝛼𝑥 (in terms of minimization
of the mean square error (MSE)) is the conditional mean of
𝑑. Therefore, 𝑑 (an entry in 𝒅) can be computed as

𝑑 = E[𝑔(𝑥)− 𝛼𝑥]

=

∫
𝑔(𝑥)− 𝛼𝑥

𝜋V[𝑥]
exp

(
−∣𝑥− E[𝑥]∣2

V[𝑥]

)
𝑑𝑥. (12)

The corresponding residual clipping noise power can be
estimated by

V[𝑑] = E[∣𝑑− 𝑑∣2]
=

∫ ∣𝑔(𝑥)− 𝛼𝑥− 𝑑∣2
𝜋V[𝑥]

exp

(
−∣𝑥− E[𝑥]∣2

V[𝑥]

)
𝑑𝑥,(13)

which can be used to generate the variance of the entries of Ξ
in (8). In practice, (12) and (13) can be tabulated as functions
of (E[𝑥],V[𝑥]) for online evaluation, following [28], which
involves two two-dimensional tables.

Note that in the proposed soft compensation method, we
make no assumption regarding the distribution of 𝒅. The
reason is that, under Assumption 1, 𝑭 (𝒅 − 𝒅) contains
uncorrelated, Gaussian entries, and so its distribution can be
fully characterized by the means and variances in (12) and
(13).

Based on the above discussions, we list the clipping noise
estimation procedure as follows.

(i) Estimate the mean E[𝑋 [𝑛]] and variance V[𝑋 [𝑛]] of
𝑋 [𝑛] (the 𝑛th entry of 𝑿) from {𝛾𝑘[𝑛]}, as detailed
in Section III-A.

(ii) Generate the means and variances of the entries of 𝒙
based on the relationship 𝒙 = 𝑭 †𝑿 . More specifically,
E[𝒙] = 𝑭 †E[𝑿] where E[𝒙] and E[𝑿] are respectively
the means of 𝒙 and 𝑿 . The variance of 𝑥[𝑚], ∀𝑚, is
computed as V[𝑥[𝑚]] = 1/(𝐿𝑁)

∑𝑁−1
𝑛=0 V[𝑋 [𝑛]].

(iii) Generate the means and variances of the entries of
𝒅 using (12) and (13). In this way, the variance of
the entries of 𝑭 (𝒅 − 𝒅) in (8) is computed as 𝑣𝑑 =
1/(𝐿𝑁)

∑𝐿𝑁−1
𝑚=0 V[𝑑[𝑚]].
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Steps (i)-(iii) are performed respectively by the soft mapper,
IDFT, and SC modules in the ESE. The ESE/DEC operations
outlined above can be repeated iteratively.

D. Comparisons with Existing Methods

The following methods have been proposed in [3], [12]-[15]
and [28] to treat the clipping effect.

∙ In [3], the clipping noise is approximated by a zero-mean
Gaussian noise independent of the wanted signal. The
variance of the clipping noise is estimated and the impact
of clipping noise is treated together with channel noise.
Decoder feedbacks are not required for this purpose.

∙ The clipping noise is estimated as 𝒅 = 𝑔(E[𝒙])− 𝛼E[𝒙]
in [12]-[15]. The variance of 𝒙 is not required in this
approach.

∙ The method in [28] involves both mean and variance
of 𝒙, which makes better use of the decoder feedback.
The focus of [28] is plain SCM and OFDM is only
briefly mentioned in [28]. The clipping operation is
modeled as 𝑔(𝒙) = 𝒙 + 𝒅 in [28] (without 𝛼 in (4))
where 𝒅 is correlated with 𝒙. The correlation between
𝒅 and 𝒙 complicates the detection of 𝒙. A hypothesis-
dependant technique is devised in [28, Section IV-G] to
handle this correlation problem. When applied to OFDM
systems, however, this technique incurs excessively high
complexity. A simplified method that ignores correlation
is used for OFDM systems in [28] to save complexity,
which, unfortunately, leads to noticeable performance
degradation, as shown in Fig. 7 below.

The scheme outlined above combines the techniques in [12]-
[15] and [28]. Removing the correlation between 𝒅 and 𝒙
means that 𝒅 can be more accurately modeled as additive noise
samples, which has two beneficial consequences. First, the es-
timation of 𝑑 and V[𝑑] based on (12) and (13) provides a much
simpler solution than the hypothesis-dependent technique used
in [28]. Second, we can apply a SNR evolution technique to
analyze the performance of the iterative detection process and
search for optimized system design, as will be discussed in
Section III-C below.

Also, (approximate) maximum likelihood sequence detec-
tion is considered in [17] and [18] for uncoded OFDM sys-
tems involving clipping. This technique provides near-optimal
performance in uncoded systems. However, it is difficult to
apply this technique to coded cases due to excessively high
complexity involved.

E. Effect of the Uncertainty on Clipping Distortion

We now analyze the effectiveness of the soft compensation
technique in (7) and (8).

From Section II-C, the soft estimate 𝒅 is computed from
the DEC feedback {𝛾𝑘[𝑛]}. Assumption 4 below follows the
extrinsic information transfer (EXIT) chart principle [34],
which is approximately true with sufficiently long random
interleavers.

Assumption 4: {𝛾𝑘[𝑛]} are i.i.d. random variables.
Define 𝔼𝛾 [⋅] the expectation with respect to the distribution

of {𝛾𝑘[𝑛]}, and 𝜎2
𝑑 the average residual clipping noise power

𝜎2
𝑑 ≡ 𝔼𝛾 [∣∣𝑭 (𝒅 − 𝒅)∣∣2]/𝑁 = 𝔼𝛾 [∣∣𝒅 − 𝒅∣∣2]/(𝐿𝑁). (14)

Fig. 2. 𝜎2
𝑑 versus 𝜎2

𝑥. The oversampling factor 𝐿 = 4. The number of
sub-carriers 𝑁 = 256. The average signal power E[∣𝑋[𝑛]∣2] is normalized
to 1.

Here, 𝜎2
𝑑 represents the uncertainty on clipping distortion. If

𝜎2
𝑑 = 0, i.e., 𝒅 = 𝒅, then the clipping distortion is completely

removed from the received signal using (7). Thus we can use
𝜎2
𝑑 as a measure for the effectiveness of the compensation

operation in (7).
With interleaving, we assume that {𝑋 [𝑛]} are i.i.d.. Define

symbol variance as

𝜎2
𝑥 ≡ 𝔼𝛾 [V[𝑋 [𝑛]]] = 𝔼𝛾 [∣∣𝑿 − E[𝑿]∣∣2]/𝑁
= 𝔼𝛾 [∣∣𝒙− E[𝒙]∣∣2]/𝑁. (15)

The last equation in (15) holds since 𝒙 = 𝑭 †𝑿 , E[𝒙] =
𝑭 †E[𝑿] and 𝑭𝑭 † = 𝑰. Clearly, 𝜎2

𝑥 represents the uncertainty
about 𝒙. From (12) and (13), the estimation of 𝒅 is obtained
based on that for 𝒙. Therefore, 𝜎2

𝑑 is an implicit function of
𝜎2
𝑥:

𝜎2
𝑑 = 𝜙(𝜎2

𝑥). (16)

Fig. 2 shows the 𝜎2
𝑑 versus 𝜎2

𝑥 curves (obtained by the Monte
Carlo method) for different clipping ratios. We can observe
that 𝜎2

𝑑 is a monotonically increasing function of 𝜎2
𝑥 but

we are not able to rigorously prove this monotonicity yet.
This observation is well within expectation: a more accurate
estimate of 𝒙 would lead to a more accurate estimate of 𝒅.
We have also observed in our simulation that 𝜙(⋅) defined
in (16) is nearly independent of the signaling schemes em-
ployed for generating 𝑿 from the coded bits {𝑏𝑘[𝑛]}. This
is because when 𝑁 is sufficiently large, from the central
limit theorem, the IDFT output 𝒙 is always approximately
Gaussian-distributed, regardless of the signaling schemes. As
a consequence of these two observations, minimizing 𝜎2

𝑑 is
equivalent to minimizing 𝜎2

𝑥.
In the next section, we will show that 𝜎2

𝑥 and so 𝜎2
𝑑 can be

minimized using properly designed signaling schemes.

III. SUPERPOSITION CODED MODULATION (SCM)

In this section, we discuss the impact of signaling scheme
on the performance of the iterative soft compensation method
and show the optimality of the SCM signaling. We also show
the advantage of multi-code SCM and analyze its performance.
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A. Optimal Signaling Scheme for Soft Compensation

Let 𝒮 be a constellation of 2𝐾 points. Let 𝑏 =
(𝑏1, 𝑏2, ⋅ ⋅ ⋅ , 𝑏𝐾) be a binary 𝐾-tuple with 𝑏𝑘 ∈ {0, 1} and ℬ
the set of 2𝐾 such 𝐾-tuples. A signaling scheme is defined by
(𝒮,ℛ), where ℛ is the mapping from ℬ to 𝒮. Some examples
of (𝒮,ℛ) can be found in [19]-[23]. Another example is the
SCM [24]-[30] that generates 𝑋 as a superposition of 𝐾
bipolar modulated signals,

𝑋 =

𝐾∑
𝑘=1

𝛽𝑘(−1)𝑏𝑘 , (17)

where the weighting factors {𝛽𝑘} are complex constants. We
will refer to the operation in (17) as “SCM signaling". We can
apply the SCM signaling to the transmitter in Fig. 1, which
will result in a special case of BICM-ID [27].

Following the turbo principle, {𝑏𝑘} can be treated as binary
random variables and so the mapped symbol 𝑋 is also random.
Suppose a set of a priori LLRs {𝛾𝑘} about {𝑏𝑘} are available.

𝛾𝑘 ≡ ln

(
Pr(𝑏𝑘 = 0)

Pr(𝑏𝑘 = 1)

)
, 𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝐾. (18)

(In the soft mapper, {𝛾𝑘} are the feedback LLRs from
the DEC.) Then the a priori probability for each 𝑏𝑘 can
be computed as Pr(𝑏𝑘 = 0) = 1 − Pr(𝑏𝑘 = 1) =
𝑒𝛾𝑘

1+𝑒𝛾𝑘 , 𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝐾. Let {𝑠0, 𝑠1, ⋅ ⋅ ⋅ , 𝑠2𝐾−1} be the set
of the signaling points in 𝒮. Now the a priori probability
that 𝑠𝑚 ∈ 𝒮 is the transmitted symbol can be computed
as Pr(𝑋 = 𝑠𝑚) =

∏𝐾
𝑘=1 Pr(𝑏𝑘), where Pr(𝑏𝑘) is either

Pr(𝑏𝑘 = 0) or Pr(𝑏𝑘 = 1), depending on ℛ. (We have
assumed that {𝑏1, 𝑏2, ⋅ ⋅ ⋅ , 𝑏𝐾} are independent.) Finally, the
mean and variance of 𝑋 are, respectively,

E[𝑋 ] =

2𝐾−1∑
𝑚=0

𝑠𝑚 Pr(𝑋 = 𝑠𝑚) (19a)

V[𝑋 ] =

2𝐾−1∑
𝑚=0

∣𝑠𝑚 − E[𝑋 ]∣2Pr(𝑋 = 𝑠𝑚). (19b)

Note that E[𝑋 ] and V[𝑋 ] in (19) are computed for fixed
{𝛾𝑘}. Similarly to the treatment in Section II-E, assume that
{𝛾𝑘} are random and denote by 𝔼𝛾 [⋅] the mathematical expec-
tation over the joint distribution of {𝛾𝑘}. We are interested in
the impact of signaling scheme (𝒮,ℛ) on 𝔼𝛾 [V[𝑋 ]]. Now let
𝑋 be any entry 𝑋 [𝑛] in 𝑿 . Comparing the definitions in (15)
and (19), we can see that

𝜎2
𝑥 = 𝔼𝛾 [V[𝑋 ]]. (20)

To make a fair comparison of different (𝒮,ℛ) and following
[34], we have two assumptions.

Assumption 5: (𝒮,ℛ) is unbiased with unit average power:

2−𝐾
∑2𝐾−1

𝑚=0 𝑠𝑚 = 0, 2−𝐾
∑2𝐾−1

𝑚=0 ∣𝑠𝑚∣2 = 1.
Assumption 6: {𝛾𝑘} are i.i.d. and their probability density

function satisfies the symmetric condition [34]:

𝑝𝛾(𝛾) = 𝑝𝛾(−𝛾), ∀𝛾 ∈ {𝛾𝑘}. (21)

We define the variance of a bit after bipolar modulation as

𝜌 = 𝔼𝛾 [V[(−1)𝑏𝑘 ]] = 𝔼𝛾 [1− tanh2(𝛾𝑘/2)], ∀𝑘. (22)

Fig. 3. Transmitter of multi-code SCM.

Here 𝜌 is not a function of 𝑘 since {𝛾𝑘} are i.i.d.
The following property states that SCM is optimal among

all possible signaling schemes (𝒮,ℛ) in the sense of mini-
mizing 𝔼𝛾 [V[𝑋 ]]. (See [41] for the proof.)

Property 1: Under Assumptions 5 and 6, the minimum
symbol variance is given by

min
𝒮,ℛ

𝜎2
𝑥 = min

𝒮,ℛ
𝔼𝛾 [V[𝑋 ]] = 𝜌. (23)

Furthermore, SCM achieves this minimum.
Property 1 indicates that the SCM signaling is an optimal

solution to minimize 𝜎2
𝑥 among all possible signaling schemes.

Assuming that the function 𝜎2
𝑑 = 𝜙(𝜎2

𝑥) (see the discussion
below (16)) is monotonically increasing, the SCM signaling
is also optimal to minimize 𝜎2

𝑑 . Note that Property 1 holds
for arbitrary constellation sizes, indicating that SCM provides
a unified solution to minimize 𝜎2

𝑑 for systems with arbitrary
rates.

It is important to note that the optimality of the SCM
signaling is with respect to the clipping noise compensation
only. SCM is not necessarily optimal in combating the channel
noise, which, together with the clipping noise, determines bit-
error rate (BER). We observed that SCM is particularly at-
tractive when transmission rate is high and/or clipping is deep
where the clipping effect becomes dominant, as demonstrated
by the numerical results in Section IV.

B. Multi-Code SCM

A multi-code SCM scheme [25], [28] is illustrated in Fig.
3. For a fixed 𝑘, we call the set {(−1)𝑏𝑘[𝑛]} as layer-𝑘. All
the bits in a layer are encoded by a single code and separate
encoders are used for different layers. The transmit signal is
generated using (17). For the multi-code SCM scheme, the
following assumption is approximately true.

Assumption 7:
(i) the DEC feedback {𝛾𝑘[𝑛]} for the bits in each layer are

i.i.d., and
(ii) {𝛾𝑘[𝑛]} may have different distributions for different

layers.
We now show that the multi-code SCM scheme can lead to a
smaller symbol variance 𝔼𝛾 [V[𝑋 ]] and thus potentially further
improved performance. Denote the symbol variance for the
signals in layer-𝑘 as (see (22))

𝜌𝑘 = 𝔼𝛾 [V[(−1)𝑏𝑘[𝑛]]] = 𝔼𝛾 [1− tanh2(𝛾𝑘[𝑛]/2)]. (24)

A smaller 𝜌𝑘 implies that the DEC feedback from layer-𝑘 is
more reliable. We also define the average of {𝜌𝑘} as

𝜌 ≡ 1

𝐾

𝐾∑
𝑘=1

𝜌𝑘. (25)
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From (17) and (24), the symbol variance for a multi-code SCM
scheme is given by

𝔼𝛾 [V[𝑋 ]] =

𝐾∑
𝑘=1

∣𝛽𝑘∣2𝜌𝑘. (26)

When {∣𝛽𝑘∣} are unequal, without loss of generality, we order
{∣𝛽𝑘∣} as

1 ≥ ∣𝛽1∣ ≥ ∣𝛽2∣ ≥ ⋅ ⋅ ⋅ ≥ ∣𝛽𝐾 ∣ ≥ 0. (27)

The outputs of a DEC for a layer with a larger ∣𝛽𝑘∣ should
naturally have a smaller variance. Therefore, {𝜌𝑘} will follow
the order below.

0 ≤ 𝜌1 ≤ 𝜌2 ≤ ⋅ ⋅ ⋅ ≤ 𝜌𝐾 ≤ 1. (28)

Recall the average power constraint
∑𝐾

𝑘=1 ∣𝛽𝑘∣2 = 1. From
(25), (27), (28) and Chebyshev’s inequality [40],

𝔼𝛾 [V[𝑋 ]] ≤ 𝜌. (29)

This can be compared with 𝔼𝛾 [V[𝑋 ]] = 𝜌 in Property 1.
(Note that Property 1 is based on the assumption that {𝛾𝑘[𝑛]}
are all i.i.d., and so {𝜌𝑘} are equal, i.e., 𝜌𝑘 = 𝜌, ∀𝑘, but
{𝜌𝑘} with (29) can be unequal.) From (29), when the overall
quality (characterized by 𝜌) of the DEC feedback is the same,
the multi-code SCM scheme may lead to a smaller symbol
variance compared with a BICM-ID scheme.

At the start of iterative process, without decoder feedbacks,
we can initialize 𝜌 = 1 for the single-code scheme in Fig.
1 and 𝜌𝑘 = 1, ∀𝑘 for the multi-code one in Fig. 3. From
(29), as the iterative process proceeds, the symbol variance of
the multi-code scheme will always be equal to or less than
the single-code one, indicating the former may potentially
outperform the latter.

C. Evolution Analysis

We now outline a semi-analytical SNR evolution technique
to predict the BER of multi-code SCM-based OFDM systems
with clipping and iterative soft compensation. It is an exten-
sion of the EXIT chart method [34] to multi-code systems.
For the OFDM system under consideration, the problem
becomes very complicated due to the presence of different
types of distortions, including AWGN, frequency-selective
fading, clipping distortion, and inter-layer interference related
to SCM. In the following, we will show how to characterize
these distortions.

From (17), a SCM signal can be expressed as 𝑋 [𝑛] =∑𝐾
𝑘=1 𝛽𝑘𝑋𝑘[𝑛], where each 𝑋𝑘[𝑛] = (−1)𝑏𝑘[𝑛] ∈ {+1,−1}

is a binary phase-shift keying (BPSK) signal. We focus on a
particular 𝑋𝑘[𝑛] and rewrite the 𝑛th entry of 𝒁 in (7) as

𝑍[𝑛] = 𝛼𝐻 [𝑛]𝛽𝑘𝑋𝑘[𝑛] + 𝜁𝑘[𝑛] (30)

where

𝜁𝑘[𝑛] = 𝛼𝐻 [𝑛]
∑
𝑚 ∕=𝑘

𝛽𝑚𝑋𝑚[𝑛] +𝐻 [𝑛]𝐷[𝑛] +𝑊 [𝑛] (31)

is the distortion component. For notational simplicity, we
assume that 𝛼, {𝛽𝑘} and 𝐻 [𝑛] in (30) are real numbers.
(The results below can be easily generalized when they take

complex values.) We treat approximately the distortion term
𝜁𝑘[𝑛] as an independent, Gaussian variable. The statistics
of {𝜁𝑘[𝑛]} in (30) can be found using the DEC feedback
{𝛾𝑚[𝑛]} [35]. Then the extrinsic LLR defined in (10) can
be approximated as

𝜆𝑘[𝑛] =
2𝛼𝛽𝑘𝐻 [𝑛]

V[Re(𝜁𝑘[𝑛])]
(Re(𝑍[𝑛])− E[Re(𝜁𝑘[𝑛])]). (32)

Substituting (30) into (32), we can rewrite the ESE output
into a signal-plus-distortion form as

𝜆𝑘[𝑛]=
2𝛼𝛽𝑘𝐻 [𝑛]

V[Re(𝜁𝑘[𝑛])]
×

(𝛼𝐻 [𝑛]𝛽𝑘𝑋𝑘[𝑛] + Re(𝜁𝑘[𝑛])− E[Re(𝜁𝑘[𝑛])]) .(33)

In (33), Re(𝜁𝑘[𝑛]) − E[Re(𝜁𝑘[𝑛])] represents the distortion
component with respect to the useful signal 𝑋𝑘[𝑛]. Its average
power can be measured using the symbol variance

𝔼𝛾 [V[Re(𝜁𝑘[𝑛])]] = 𝔼𝛾 [∣Re(𝜁𝑘[𝑛])− E[Re(𝜁𝑘[𝑛])]∣2]
= ∣𝛼𝛽𝑘∣2(∣𝐻 [𝑛]∣2𝑃𝐼,𝑘 + 𝑃𝑊,𝑘) (34)

where 𝑃𝐼,𝑘 and 𝑃𝑊,𝑘 are the relative power (normalized by
∣𝛼𝛽𝑘∣2) of the interference and noise components, respectively,
as given below:

𝑃𝐼,𝑘 =
∑
𝑚 ∕=𝑘

∣𝛽𝑚∣2
∣𝛽𝑘∣2 𝔼𝛾 [V[𝑋𝑚[𝑛]]] +

𝜎2
𝑑

2∣𝛼𝛽𝑘∣2 , (35)

𝑃𝑊,𝑘 =
𝜎2
𝑊

2∣𝛼𝛽𝑘∣2 , (36)

where 𝜎2
𝑊 is the average power of the complex channel noise.

Then, the SNR for (33) with respect to 𝑋𝑘[𝑛] is

snr𝑘[𝑛] =
∣𝛼𝛽𝑘𝐻 [𝑛]∣2

𝔼𝛾 [V[Re(𝜁𝑘[𝑛])]]
=

∣𝐻 [𝑛]∣2
∣𝐻 [𝑛]∣2𝑃𝐼,𝑘 + 𝑃𝑊,𝑘

. (37)

The following assumption can greatly simplify the analysis
problem.

Assumption 8:

(i) The inputs {𝜆𝑘[𝑛]} to the DEC at different time are
independent. Similarly, the feedbacks {𝛾𝑘[𝑛]} from the
DEC at different time are also independent.

(ii) The input sequence of the DEC is characterized by
{snr𝑘[𝑛]} in (37).

(iii) The distribution of {𝐻 [𝑛]} is given.

Note that (i) is true when infinite-length random interleavers
are assumed, and (ii) holds when the Gaussian assumption
is applied to {𝜁𝑘[𝑛]}. In (iii), a typical case is that {𝐻 [𝑛]}
follows Rayleigh distribution. Based on Assumption 8 and
from (37), the pair (𝑃𝐼,𝑘, 𝑃𝑊,𝑘) fully determines the DEC
performance. In the iterative decoding process, 𝑃𝑊,𝑘 is a
constant but 𝑃𝐼,𝑘 may decrease as the iteration proceeds. We
discuss below how to track 𝑃𝐼,𝑘.

From our earlier definitions, 𝜌𝑘 = 𝔼𝛾 [V[𝑋𝑘[𝑛]]], 𝑘 =

1, 2, ⋅ ⋅ ⋅ ,𝐾 . Now, 𝜎2
𝑥 =

∑𝐾
𝑘=1 ∣𝛽𝑘∣2𝜌𝑘. Therefore, from (16),

𝜎2
𝑑 can be found from {𝜌𝑘} as

𝜎2
𝑑 = 𝜙

(
𝐾∑

𝑘=1

∣𝛽𝑘∣2𝜌𝑘
)
, (38)
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Fig. 4. Block diagram of the Monte Carlo simulation for the global variance 𝜌𝑘 .

where 𝜙(⋅) is defined in (16). From (35) and (38), 𝑃𝐼,𝑘 is
fully determined by {𝜌𝑘}. On the other hand, since 𝜌𝑘 is the
variance of the DEC feedback of the 𝑘th layer, it is a function
of 𝑃𝐼,𝑘 and 𝑃𝑊,𝑘 that characterize the inputs to the DEC of
the 𝑘th layer. We write this function as

𝜌𝑘 = 𝑓(𝑃𝐼,𝑘, 𝑃𝑊,𝑘). (39)

Note that here the decoder is characterized by a bivariate func-
tion 𝑓(⋅), differing from the treatments with univariate 𝑓(⋅) in
[35], [36]. This is because, for OFDM over frequency-selective
channels, the clipping noise plus inter-layer interference and
AWGN (characterized by 𝑃𝐼,𝑘 and 𝑃𝑊,𝑘 , respectively) have
different impact on {snr𝑘[𝑛]} in (37).

In general, 𝑓(⋅) cannot be expressed in a closed form, but it
can be characterized by a look-up table created by the Monte
Carlo simulation. The block diagram of the simulation is
depicted in Fig. 4, where we have used an equivalent channel
model

𝑍𝑘[𝑛] = 𝐻 [𝑛](𝑋𝑘[𝑛] + 𝐼𝑘[𝑛]) +𝑊𝑘[𝑛], (40)

where 𝑋𝑘[𝑛] ∈ {+1,−1} is the coded BPSK signal, 𝐼𝑘[𝑛] ∼
𝒩 (0, 𝑃𝐼,𝑘) and 𝑊𝑘[𝑛] ∼ 𝒩 (0, 𝑃𝑊,𝑘), respectively, represent
the (normalized) interference and channel noise. As shown
in Fig. 4, 𝜌𝑘 is estimated using the average of the DEC
outputs. Similarly, the BER performance of the DEC can be
characterized by a function as

BER𝑘 = 𝑔(𝑃𝐼,𝑘, 𝑃𝑊,𝑘). (41)

To summarize, we can characterize the iterative decoding
process using the following procedure. (We assume 𝑄 itera-
tions and denote by (⋅)(𝑞) the 𝑞th iteration.)

SNR Evolution:

(i) Initialization: Set 𝑞 = 1 and 𝜌
(𝑞)
𝑘 = 1, 𝑃𝑊,𝑘 =

𝜎2
𝑊

2∣𝛼𝛽𝑘∣2 ,
𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝐾 .

(ii) For the 𝑞th iteration:
Find the normalized interference power for the ESE:

𝑃
(𝑞)
𝐼,𝑘 =

∑
𝑚 ∕=𝑘

∣𝛽𝑚∣2
∣𝛽𝑘∣2 𝜌

(𝑞)
𝑚 +

𝜙
(∑𝐾

𝑚=1 ∣𝛽𝑚∣2𝜌(𝑞)𝑚

)
2∣𝛼𝛽𝑘∣2 ,

𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝐾.

Find the output variance of the DEC:

𝜌
(𝑞+1)
𝑘 = 𝑓(𝑃

(𝑞)
𝐼,𝑘 , 𝑃𝑊,𝑘), 𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝐾.

(iii) Recursion: If 𝑞 < 𝑄, set 𝑞 ← 𝑞 + 1 and go to (ii);
otherwise, go to (iv).

(iv) Find the BER for each layer:

BER𝑘 = 𝑔(𝑃
(𝑞)
𝐼,𝑘 , 𝑃𝑊,𝑘), 𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝐾.

Fig. 5. Impact of detection methods and signaling schemes on SRCNR.
𝐿 = 4, 𝑁 = 256, and CR = 0 dB.

With the above technique, only the binary-input system in
Fig. 4 needs to be simulated. Then using the stored look-
up tables to characterize (16), (39) and (41), one can predict
the performance of multi-code SCM with arbitrary weighting
factors {𝛽𝑘} and channel SNR. This is more convenient than
the EXIT chart method in BICM-ID where Monte Carlo
simulations of a multi-ary system have to be performed
whenever the signaling scheme or channel SNR is changed.
The SNR evolution technique can also be used for optimizing
the weighting factors {𝛽𝑘}. The related optimization technique
is beyond the scope of this paper. Interested readers may refer
to [25], [35] for related discussions.

IV. NUMERICAL RESULTS

This section presents numerical results. We take OFDM
systems based on the BICM-ID [19], [20] and multi-code
SCM schemes [24]-[28] as examples. For SCM, we assume
even 𝐾 and 𝛽𝑘−1 = 𝑖𝛽𝑘 with 𝑖 =

√−1 and 𝛽𝑘−1 being
a real number for 𝑘 = 2, 4, ⋅ ⋅ ⋅ ,𝐾 . The APP and Gaussian
approximation (GA) [28] demapping methods are applied to
the BICM-ID and multi-code SCM schemes, respectively. The
number of subcarriers 𝑁 = 256 and the oversampling factor
𝐿 = 4.

1) SRCNR: We first show the effectiveness of the pro-
posed soft compensation method by comparing it with the
background work in [3] and [15], where the clipping noise
𝒅 modeled in (4) are treated as an additive Gaussian noise
and estimated as 𝑔(E[𝒙]) − 𝛼E[𝒙], respectively. (See also
Section II-D.) Define the signal to residual clipping noise ratio
(SRCNR) from (7) and (8) as

SRCNR =
∣𝛼∣2E[∣𝑋 [𝑛]∣2]

𝜎2
𝑑

.
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Fig. 6. Comparison of different detection methods and signaling schemes
for clipped BICM-ID-OFDM schemes over AWGN channels. For SCM,
𝐾 = 4, {∣𝛽𝑘∣} = {1 × 4}. 𝐿 = 4, 𝑁 = 256, CR = 0 dB. The rate-1/2
convolutional code (23, 35)8 is used. The system rate is 𝑅 = 2 bits/symbol.
The frame length is 4096. (Each frame consists of 16 OFDM symbols.) The
number of iterations is 12.

Here, the residual clipping noise power 𝜎2
𝑑 defined in (14)

is measured using Monte-Carlo simulation and applying the
different methods to the SC module in Fig. 1. We assume
i.i.d., consistent Gaussian DEC feedbacks {𝛾𝑘[𝑛]}, which is
reasonable in BICM-ID. Then, the mutual information (𝐼𝛾)
between {𝛾𝑘[𝑛]} and the coded bits {𝑏𝑘[𝑛]} can characterize
the distribution of {𝛾𝑘[𝑛]}.

The SRCNR achieved by different methods for an SCM
signaling with 𝐾 = 4 are compared in Fig. 5. The proposed
method consistently outperforms the alternatives in [3] and
[15]. This is because it estimates 𝒅 as the conditional mean
𝒅 = E[𝑔(𝒙) − 𝛼𝒙], which is optimal when the a priori
distribution of 𝒙 is available. The SRCNR with the method in
[15] drops as 𝐼𝛾 increases from 0 to 0.25 and is even worse
than the method in [3] where 𝒅 is treated as a Gaussian noise
without mitigation. This indicates that the method in [15] does
not necessarily yield better estimate of 𝒅 if the estimates of
𝒙 are improved. By contrast, Fig. 2 shows that the proposed
method does lead to better estimates of 𝒅 with better estimates
of 𝒙.

We also compare the SCM signaling and the 16-QAM
signaling schemes with Gray and MSP mappings [19] for the
proposed method. From Fig. 5, the SCM signaling is clearly
the best choice. This confirms the discussion in Section III
that the SCM signaling is optimal for minimizing the residual
clipping noise power 𝜎2

𝑑. Note that the Gray signaling can also
achieve good SRCNR according to Fig. 5.

2) BER in AWGN Channels: Fig. 6 compares BERs of a
BICM-ID-OFDM system with the different detection methods
and signaling schemes in Fig. 5, where we have defined
𝐸𝑏/𝑁0 = 10 log10

(
E[∣∣𝑭 𝑔(𝒙)∣∣2]/(𝑁𝑅𝜎2

𝑊 )
)

in decibel with
𝑅 being the system rate. The proposed soft compensation
method based on (12) and (13) significantly outperforms the
other two approaches. It has roughly the same computational
complexity as the alternatives (except the extra memory re-
quired to store the look-up tables). Clearly, SCM is more

Fig. 7. Comparisons of LDPC-coded BICM-ID-OFDM, SC-SCM-OFDM
and MC-SCM-OFDM with clipping over AWGN channels. 𝐿 = 4, 𝑁 = 256,
CR = 0 dB. The frame length is 32768. 𝑅 = 2. For BICM-Gray and SC-
SCM, the number of outer iterations (between the ESE and DEC) is 1000
and the number of inner iterations (of LDPC decoding) is 1. For MC-SCM,
the number of outer iterations is 10 and the number of inner iterations is 20.
For all the SCM schemes, {∣𝛽𝑘∣} = {1 × 2, 1.5 × 2}. The constellation of
BICM-Gray is 16-QAM.

robust against the clipping effect than its alternatives, which
is in line with the SRCNR results in Fig. 5.

Fig. 7 compares BICM-ID with the single- and multi-code
SCM schemes with a rate-1/2 LDPC code and 𝐾 = 4. Follow-
ing [43], the performance with LDPC codes can be improved
by optimizing the node degree distributions. The best results
(for CR = 0 dB with the proposed soft compensation method)
known to us are applied in Fig. 7:

∙ Single-code SCM (SC-SCM): the degree profile of vari-
able nodes 𝜆(𝑥) = 0.2394𝑥2 + 0.1824𝑥3 + 0.0682𝑥5 +
0.0175𝑥7+0.1907𝑥8+0.3018𝑥30, and the degree profile
of check nodes 𝜌(𝑥) = 0.3𝑥8 + 0.7𝑥9.

∙ BICM-Gray: 𝜆(𝑥) = 0.3965𝑥2+0.2272𝑥3+0.0583𝑥10+
0.0842𝑥11 + 0.2338𝑥30 and 𝜌(𝑥) = 0.2𝑥6 + 0.8𝑥7.

∙ Multi-code SCM (MC-SCM): 𝜆(𝑥) = 0.25𝑥2 +
0.1854𝑥3 + 0.0031𝑥4 + 0.1499𝑥5 + 0.1616𝑥8 +
0.0055𝑥10 + 0.0423𝑥20 + 0.2022𝑥21 and 𝜌(𝑥) = 𝑥8.

From Fig. 7, the MC-SCM scheme yields the best performance
(within 1.35 dB from the Shannon limit) with the proposed
soft compensation method. This scheme also has lower com-
plexity than the alternatives in Fig. 7 as a smaller number of
iterations are applied. BICM-Gray outperforms the SC-SCM
slightly by 0.12 dB, which indicates that the BER performance
is not determined by Property 1 alone. (Recall that, from
Fig. 5, the difference in SRCNR between the SCM and Gray
signaling schemes is very small.) From Fig. 7, the proposed
soft compensation technique provides noticeable performance
improvement compared with those proposed in [3], [15] and
[28]. This confirms our discussions in Section II-D.

3) BER in Fading Channels: We also consider Rayleigh
fading channels. The multi-code SCM and BICM-ID schemes
at rate 𝑅 = 4 bits/symbol are compared. For SCM, the compo-
nent code is a concatenation of the rate-1/2 convolutional code
(23, 35)8 with a length-4 repetition code [35]; 𝐾 = 32. For
BICM-ID, the 64-QAM with set-partitioning (SP) mapping
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Fig. 8. Comparison of convolutional-coded multi-code SCM-OFDM and
BICM-ID-OFDM with clipping and soft compensation over fully interleaved
Rayleigh fading channels. 𝐿 = 4, 𝑁 = 256, and CR = 2 dB. The frame
length is 16384. 𝑅 = 4. The number of iterations is 12. The weighting factors
of SCM are given by {∣𝛽𝑘∣} = {1×12, 1.58×4, 2.10×6, 2.49×2, 2.73×
2, 3.58× 4, 3.93× 2}.

and 𝐾 = 6 is used [38] and the above convolutional code
is punctured to rate 2/3 to achieve 𝑅 = 4. The APP and GA
[28] demapping methods at complexities of 𝒪(2𝐾) and 𝒪(𝐾)
are applied to the BICM-ID and SCM schemes, respectively.
As 𝐾 = 6 for the BICM-ID and 𝐾 = 32 for the SCM,
the schemes compared here have comparable demapping com-
plexities. The decoding complexities of the component codes
are also comparable [35].

From Fig. 8, without clipping, the BICM-ID scheme with
SP signaling and the SCM scheme have similar performance.
However, when clipping is used, SCM significantly outper-
forms BICM-ID. In this case, the iterative compensation is
not very effective for the BICM-ID scheme with the SP
signaling; hence, its performance is dramatically degraded by
the clipping effect. Soft compensation still works well with
the SCM signaling in this case.

Fig. 8 also compares the simulation results and the BER
predicted by the SNR evolution technique outlined in Section
III-C. From Fig. 8, they agree well in both the clipped and
unclipped cases. This clearly demonstrates the effectiveness
of the SNR evolution technique.

V. CONCLUSION

Clipping can alleviate the high PAPR problem in OFDM
systems but causes serious performance degradation when
not treated properly. In this paper, we propose an iterative
soft compensation method to mitigate the clipping effect,
which can outperform conventional approaches. We analyze
the impact of signaling schemes on performance and show the
optimality of SCM signaling for clipping noise compensation.
We also show that the performance can be improved by using
mutli-code SCM schemes whose performance can be predicted
and optimized based on a fast evolution technique. Both the
analytical and numerical results show that the SCM scheme
with the proposed soft compensation method can outperform
other alternatives, especially when clipping is severe and/or
transmission rate is high.
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