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ABSTRACT 

This thesis presents the design and results of a simulator 
for a new multi-processor personal computer. A brief overview of 
the machine architecture will be presented as background. 

The system design exploits the concept of multiple processes 
to support separation of concerns and facilitate modularity and 
ease of development. Since the target machine is at a design 
state, the simulation studies performed assisted the refining of 
the machine's design. The modularisation of code allowed changes 
to one component of the simulator to have no effect on the oth-
ers. 

The simulator uses message passing to simulate the circuits 
in the machine. It was developed and implemented on an ^IBM-XT 
using *PORT. 

*PORT is a Trade Mark of University of Waterloo 
^IBM is a Trade Mark of International Business Machines 
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. Introduction 

An overview of the machine being simulated is presented to 

facilitate the understanding of the actual simulator. The 

machine is being developed at the University of Wollongong. The 

simulator allows the user to visually observe the working of the 

internal hardware of the machine. 

i-'i* aim of the project 

The aim of the project is the development of a flexible 

simulator to visually observe the execution of a machine. The 

simulator was necessary to facilitate testing the conceptual 

ideas of the new machine. It may also be used as a debugging 

tool for software development in the future. Since the simulator 

shows the contents of all the registers, the output can be used 

very effectively to debug code produced by a compiler. The simu-

lator had to be written so that it could easily be changed to 

follow modifications to the definition of the machine. One of 

the most important requirements of the simulator was to display 

useful information on the screen. This information must help in 

making design changes to the hardware of the machine and help in 

debugging programs. The simulator must be able to link all 

pieces of hardware and be flexible enough so that pieces of 

hardware can be added or removed with ease. 

The facilities available for developing the simulator were 

an IBM-XT running the PORT operating system. The language used 

to write the code is also called PORT. The PORT language is a 



mix between "C" and Pascal. It also has system functions such as 

"send", "receive", "transfer_to" and "transfer__from" for communi-

cation between processes. The Window Manager provides all the 

routines necessary to implement a program driven window. 

Development concept 

A process begins its existence by executing the first state-

ment of its code. All processes created by programs are given 

identification tags by the operating system. The difference from 

a procedure is that processes do not lie within the code image of 

a calling program. 

The PORT operating system is designed to present no diffi-

culty in the use of processes. Unlike the '̂ UNIX operating sys-

tem, processes in PORT are very economical. 

The main advantage of this simulator is that it exploits the 

"process" concept to facilitate modularity and ease of develop-

ment. A "process" is a sequence of actions determined by its 

individual program and input data. The method of development 

made it possible to test each individual component of simulated 

hardware before connection to the whole system. 

1.3. Introduction of actual machine 

The machine being simulated has a 32 bit logical address 

space and a 32 bit physical address space. The machine has two 

different modes, kernel and user. It uses a Memory Management 

'UNIX is the Trade Mark of Bell Laboratories 



Unit(MMU) based on a segmented memory addressing system using 

Base, Limit and Permission registers. MMU registers are at loca-

tions 0 - $5F of the logical address space when the machine is in 

kernel mode. 

The Main features of the new machine are; 

i) Multi-Processor 

ii) Asynchronous operation 

iii) High resolution screen 

iv) Large Memory Size 

v) No interrupts 

vi) Intelligent Devices 

vii) Simple 

viii) Reduced instruction set 

The machine uses multiple processors to spread the work 

load. The basic machine has four processors, the kernel proces-

sor and three user processors. Each processor has space for 

cache memory on board to reduce bus contention. Global memory is 

the common memory where information about all programs are 

stored. The memory available in the machine is of the order of 

eight billion bytes. The machine has a basic set of 16 regis-

ters. 

The intricate details of each piece of hardware and instruc-

tions in the new machine will be presented in the discussion of 



each piece of simulated hardware. The thesis is organised so 

that the detailed discussion and explanation of the machine is 

discussed where the implementation of each piece of simulated 

hardware is discussed. This enables the reader to relate the 

implementation with the actual design of the machine. 



2.' Method of Approach 

A decision was made to use the concept of "process" to write 

the code for the simulator. This allows the programmer to write 

the code for each simulated piece of hardware separately. The 

alternative was to write the whole simulator as one large pro-

gram. Had that been done, making changes would have been diffi-

cult due to the interactions between the pieces of code simulat-

ing different parts of the machine. This method would not facil-

itate step by step development of the machine or separation of 

concerns. 

_2 .Ĵ . Discussion of the whole system 

The machine being simulated consists of a set of hardware 

pieces. All the hardware components to be simulated are listed 

below. 

1. Arithmetic Logical Unit (ALU) 

2. Memory Management Unit (MMU) 

3. Bus 

4. Memory (MEM) 

5. On Board Switch (OBS) 

6. Gofer (GOF) (Connections) 

7. Serial Line (SL) 

These are represented in the simulator by processes. Each 

process has an individual task to perform. Sent and received 



messages represent the interconnection lines in the real machine. 

The following describes the fields in the message template. More 

details of the fields will be given when needed. 

ADDRESS {a 32 bit number} 

DATA {a 32 bit number} 

WIDTH {2 bits indicate 1,2,3 or 4 bytes for data} 

MODE {contains 1 bit, defines kernel or user mode} 

ACCESS {uses 1 bit to indicate reading or writing} 

REQUEST {defines the type of request made by a process} 

Since each process has a well defined task to perform, the 

code for each process was tested by using simple programs to 

interact with the new process created. Testing was carried out 

whenever the code for one of the processes was nearing comple-

tion. This facilitated the development because processes could 

be tested before completing the whole simulator. 

One major problem in setting up the communication path is 

the incorrect message passing of one or more processes. 

This manifests itself in one of two ways. When a process 

receives a message it has to acknowledge the receipt of that mes-

sage. Until the acknowledgement is received the sender is reply 

blocked. Reply blocked processes can be detected by looking at 

the status of each process. Thus incorrect communication is easy 



to detect and fix. This is analogous to incorrect protocol in 

asynchronous circuits. 

Incorrect messages are more difficult to detect. By moni-

toring the contents of each message many bugs were detected and 

fixed. The bugs were varied, some processes were sending the 

wrong contents, and some were sending the information to the 

wrong process. These are analogous to wiring errors in physical 

hardware. 

. Advantages of a_ multiple process system 

The problems encountered were only minor compared to those 

that would have occurred if the "process" concept had not been 

used. The use of multiple processes enforces code modularity and 

ease of development. 

Using a separate process to simulate one piece of hardware 

enables the programmer to consider only the code for which a 

change was made. Otherwise the complete simulator would have had 

to be considered each time a change was made to any part of the 

code. 

Role of the processes 

Each unit of simulated hardware has a role to play in the 

system's execution. A brief description of their functions is 

given below 

i) ALU - Executes instructions. 



ii) MMU - Translates addresses. 

iii) MEM - Stores values. 

iv) Bus - Traps addresses for its board, connects a single 
board to global machine communication path. 

v) OBS - Diverts messages to appropriate places. 

vi) GOF - Carries messages 

When all of the processes are connected and the simulator is 

working, sample programs can be executed using the simulator to 

monitor working of the hardware components. For example the 

simulator can be used to monitor how subroutine calls are done. 

Starting the simulator 

The simulator is designed so that it can be configured using 

a text file. This reduces the need to modify the actual code in 

the programs when design changes are made. The processes are 

created by a program called "Set__machine". This program is used 

to read the information from a text file, start the processes and 

set up the communication paths. 

¿•A'i* The contents of the text file 

Each line of text consisted of the following information. 

i) Name 
ii) Process Number 
iii) Sizes 
iv) In__Ids {pronounced "in eye-dees"} 
v) Out Ids 



¿'A'i'i* Name 

The PORT language provides support for building systems of 

multiple sequential processes which communicate by message pass-

ing. The "Name" provided in the text file indicates which pro-

gram the process should execute. 

_2 Process Number 

This is the number given to a process by the programmer to 

identify the process. This number is a unique number within the 

file. When the simulator is running, the operating system pro-

vides every process with an identification tag. The number given 

by the programmer is used by the program "Set_machine" to iden-

tify the different processes it has to deal with. Note that the 

name taken from the file does not provide a unique identification 

since multiple processes can execute the same program. 

I'iL'l'l' Sizes 

The sizes refer to the address range to which that particu-

lar process can refer. For example a memory process given the 

sizes $0 and $3FFF will be responsible for the first 16384 physi-

cal memory locations. 

In Ids 

The In__Ids are the process numbers to which a particular 

process can listen ( receive messages from ). These In_Ids are 

the process numbers specified by the programmer. This is one of 



the main reasons the programmer has to identify processes by 

numbers. 

l-A-i-l* Out Ids 

These are similar to In_Ids except that these numbers refer 

to the processes to which a particular process can talk ( send 

messages ). 

A from the text file 

The following is an extract from the text file which is used 

to set up the machine. Refer to Appendix III for a complete 

listing of a text file. 

0 #me/Frontpanel $0 $0 1 2 3 4 5 

1 #me/Alu $0 $0 2 0 

2 #me/Mmu $0 $0 1 7 8 0 

3 #me/Mem $80000000 $80003FFF 9 10 0 

4 #me/Bus $80000000 $80003FFF 11 12 13 

In the above example the numbers in the first column are the 

process numbers given by the programmer, "#me/Name" is where the 

code for the processes are stored. The hex values are the range 

of addresses each process will respond to; it should be noted 

that only the Memory and Bus processes use the address ranges. 

The numbers after the address range are the In_ids and the 

Out ids. The separates In_ids from the Out_ids, So for 



example, #2 Mmu receives messages from #1 Alu and #7, sends mes-

sages to #8 and #0 Front panel ( #7 and #8 are Gofers). All the 

details in the text file are analogous to a wiring diagram which 

explains how to make the connections between pieces of hardware 

in a machine. 

An alternative method of setting up the simulator would be 

to include all the necessary details in the code of each process. 

This could be very tedious when changes have to be made to the 

configuration. If this information is included in the code and a 

change is required, then the actual code file would have to be 

changed every time. Changing the code file is time wasting since 

each changed file has to be recompiled before running the simula-

tor. As well, two processes could not have used one code file. 

A third possibility would be to include all the start up 

details of all the processes in the code of Set_machine. This 

method would also require modifications to a code file to change 

the configuration. This also implies that the parameters that 

define the behaviour of processes are scattered around the pro-

gram Set_machine, which makes it difficult to keep track of all 

the information. 

l'È.' P^^ogram "Set machine" 

This program reads the data and creates the simulator 

processes and informs them of the other processes with which they 

communicate. All the required processes have to be created 

before it is possible to inform each process which it has to com-



municate with. This is necessary because the process numbers 

given by the user in the text file are not the real identifica-

tion numbers(ids). Only after each process is created is the 

real "id" available. Therefore the whole file of information had 

to be read and stored in the data structure discussed below. 

._1. The data structure used 

The program "Set_machine" must use a data structure to match 

the input text. The data structure must also be flexible to han-

dle expansions if needed. The program uses a template called 

"Structure" which is defined below to store all the information 

in memory. An array of such structures is used to store the 

information about each process. 

LOW : unsigned[32] 
HI : unsigned[32] 
ID : Pid {pronounced "Pee eye-dee"} 
IN[256] : unsigned 
OUT[256] : unsigned 
PATH NAME : &char 

"LOW" and "HI" are 32 bit unsigned numbers containing the 

address range for that process. The "LOW", "HIGH" and 

"PATH_NAME" were stored only for debugging purposes. "ID" is 

the process-id given by the Operating System when created using 

the function "Create". Type "Pid" is a system defined type. 

"IN[256]" and "0UT[256]" are vectors to hold the values of In_Ids 

and Out Ids. A vector of 256 has been allocated so that the 

memory will be more than sufficient for future additions. The 

"PATH NAME" refers to the name of the code file. 



A question may arise that the data structure uses a lot of 

memory. The usage of memory at this point is not very important 

because the program "Set_machine" terminates after starting up 

the simulator. Therefore the execution of the simulator is not 

affected by the program "Setjnachine". 

. Using the data to start up the machine 

The program sets up a table of the above mentioned data 

structures. The table is indexed by the process number in the 

text file given by the programmer. 

The following algorithm explains the creation of each process. 

while not end of text file 
read a line of text 
pick record using argument 0 
Create a process using argument 1 
remember its process-id in ID 
store the sizes using arguments 2 & 3 
send the sizes to the process created 
while the next argument is not a 

store the argument value in In_Ids[] 
while there are more arguments 

store the argument value in Outbids[] 
for each process entry in the Structure table 

while there are more In_ids 
send the real In__ids to this process 
send invalid id to indicate end of Ids. 

while there are more Out_ids 
send the real Out_ids to this process 
send invalid id to indicate end of Ids. 

As can be seen, the configuration of the machine can be 

modified very easily. When a new piece of hardware has to be 

simulated, the text file can be changed to accommodate the new 

addition. 



Details of simulated hardware 

This chapter will discuss the important details of the 

machine components where relevant and the implementation details 

of each simulated piece of hardware. The multiple process 

environment paves the way for convenient coding of processes. It 

allows the programmer to write the code for . each process 

separately and test it before linking it with the main simulator. 

For example the instruction definitions can be modified and 

tested using the simulator. In this section more details of the 

machine will be discussed before starting the discussion on 

implementation. All the definitions of the machine features are 

not part of writing the simulator or part of the project there-

fore justification for every feature of the machine will not be 

discussed. 

When using multiple processes testing of one process 

requires the processes with which it communicates. Therefore all 

processes which were not completed at a particular stage were 

replaced by dummy processes for the purpose of testing. At this 

stage the dummy processes do not assume their eventual role, but 

act as communication relayers. The following is a diagramatic 

view of the communication path. The arrows indicate the direc-

tion of the communication. 



P18 Represent the Communicat ion Path 

Figure 3.0 Communication Path 

Testing individual processes before linking them to the main 

system helps a great deal when debugging. The processes however 

can only be partially tested before linking them with the simula-

tor, but it helps to identify communication errors. This can be 

also used very effectively to test for correctness of functions. 

The details of the MMU will be first discussed because the MMU 

was the first program to be implemented and tested. 



2-1* Introduction of the MMJ 

The main function of the MMU is translation of logical 

addresses into physical addresses. The MMU also checks for 

invalid addresses and invalid operations on addresses. 

3 . Positioning the MMU within the environment 

The MMU sits between the bus and the instruction processor. 

It receives requests from the instruction processor. Then the 

MMU does the necessary address translations and error checking. 

If the MMU is satisfied it sends the request to the bus and waits 

for a response. After the response is received, it then replies 

to the instruction processor with the appropriate details. 

+ 
ALU I 

—V + 
MMU I + 

- V + 
OBS ! + 

Fig 3.1 Diagram of MMU's position within the whole machine 

3.3. Using the message template fields within the MMU 

The message template contains 6 different fields, each with 

a different purpose. The following paragraphs will describe only 



five of the relevant fields in detail because the "REQUEST" field 

was not used by the MMU process 

The most significant bit in the ADDRESS contains information 

to decide which half of the segment set to use. If the most sig-

nificant bit was on, then the upper half (i.e. 24 - 47) should 

be used and if the bit was off then the lower half (i.e. 0 - 23) 

should be used. After the decision on which half to use has been 

made, then the next most significant bit that is on indicates 

which segment to use. All the other lower bits give the value of 

the offset into this particular segment. 

which segment set to use 
i s o 

This bit indicates 
which half of the 
segment set to use 

32 bit ADDRESS field 

Offset 
0 

Fig 3.2 Example of 32 bit ADDRESS 

The MODE field indicates if the process is running under 

kernel or non-kernel mode. This distinction is very important 



for the MMU because it does not do any address translations when 

the machine is running in kernel mode. 

The ACCESS field indicates a read or write access. This is 

very necessary for permission checking. ACCESS is a one bit 

field (1 - read and 0 - write). 

The WIDTH field gives the width of the data. This field is 

also used to indicate error conditions when returning a message. 

The WIDTH field will contain an ok signal or an error condition. 

When the data is addressed to the MMU, the 32 bit DATA value 

presented to the MMU contains information about the Base, Limit 

and Permission registers. All this information is within the 32 

bits that have been provided for the DATA field. 

32 bit Data field 

Bits 31 - 6 Represent Base Register Value 
Bits 5 - 1 Represent Limit Register Value 
Bit 0 Represents Permissions 

Fig 3.3 Diagram of DATA field 



Design of the MMU simulator 

The main function of the MMU is to repeatedly receive mes-

sages from the ALU, translate the logical addresses to physical 

addresses, send the address along the communication path and 

reply to the ALU. 

The memory management facility works in one of two modes. 

They are : 

(1) Kernel mode 

(2) User mode (non-kernel) 

When the kernel of the Operating System is running, the 

memory management is effectively short circuited and the address 

given by the kernel is taken as the physical address. 

The MMU is most useful when a non-kernel process is running. 

When in non-kernel mode the MMU has to do the mapping of 

addresses and trapping of invalid addresses. It also has to 

check for permissions. 

The 32 bit address presented to the MMU is used to select 

one of 48 sets of registers. Each set of registers consists of a 

Base register. Limit register and a Permissions register. Assum-

ing the bits are numbered from 0 to 31 from least significant to 

most significant, then the question of which of the 48 segments 

is to be used is determined from the bits 31 to 8. 



When an address is passed to the MMU two types of errors can 

occur: a limit error or an access error. Limit errors occur when 

the processor tries to refer to an address outside the specified 

address space. An access error occurs when an attempt is made to 

write to a read only segment. An access error can also occur 

when an attempt is made to read from a segment for which read 

access is denied. Checking for these errors is quite simple. 

The WIDTH field of the message is used to indicate the type 

of error. The two bits in the WIDTH field are used for this pur-

pose. The WIDTH field is used because this field is redundant 

when replying. 

. Implementation of the MI*iU 

The implementation of the MMU was done in several phases. 

Starting from the initial design, testing and tracing work had to 

be done to pick out the best and most efficient solution to the 

problem. The following discussion will explain the initial 

design, show the results that have been obtained by tracing this 

design and discuss the changes that were made at each stage. The 

trace results obtained will show the effects of these changes 

when executing the program. Tracing procedures carried out will 

be discussed in detail. All other major code modules were traced 

and refined in a similar manner. The MMU was the first process 

implemented and traced, so the tracing mechanism used and the 

results obtained will be discussed here. 



¿•l'i- P^^ase 

A function "Mmu" was written to repeatedly receive messages 

from a process. When a message is received from a process, it is 

passed on to a function called "Handlejmsg" which deals with part 

of the contents of the message received. 

The Handlejmsg function has two major sections. If the MODE 

of the message is "kernel", then Handlejnsg will continue pro-

cessing the functions needed for kernel mode addresses. If the 

message is not in kernel mode then the processing will execute 

the functions needed for non-kernel addresses. The following is 

a pseudo code version of Handle msg: 

Accept a message from function Mmu 
if kernel mode 

process message in kernel mode 
else 

process message in non-kernel mode 

3.5.1.1. Processing a message in kernel mode 

Assuming the MODE is "kernel", then the Handlejmsg function 

should check if the address is between 0 and 96 inclusive, and if 

the access is "write". If both the conditions are true then the 

function "Set reg" is executed. The Set__reg function uses the 

DATA field of the message that was passed in from Handlejnsg to 

set the registers. All the information necessary to set the 

registers are encoded into the DATA field of the message. 

Set reg sets the Base, Limit and Permission registers. It uses 



the ADDRESS field to work out which register set to use. After a 

particular register set has been assigned values, all the sets 

with a higher number are made inaccessible. To make registers 

inaccessible, a value of 0 is assigned to the Permission regis-

ter. 

When the kernel wants to read values from memory, then the 

function "Access_memory" is invoked. This function will pass the 

address directly to memory because the request came from the ker-

nel. No address translations are done in kernel mode. 

¿•^•jL'^* Processing a_ message in user mode 

When a process is running in user mode then all the neces-

sary address translation and error checking has to be done. 

¿•^'i*^* Converting virtual addresses to physical addresses 

Access_memory converts a logical address to a physical 

address. This function performs a very important role in the 

Mmu. In address translations, the register set the address 

refers to is identified. Which of the 48 sets to use is deter-

mined from the most significant non-zero bit (ignoring the 

highest bit) of the address. This can be done in many different 

ways. In phasel two tables called "Mask_table" and 

"High bit numbers" are used to determine the register set and the 

offset. 

A loop was constructed to shift the 32 bit address by 8 bits 

each time around the loop to find out which byte contained the 



necessary bit to determine the register set. This method was 

used instead of 32 one bit shifts so as to reduce the amount of 

testing that would have to be done to determine which bit was on. 

The highest bit that was turned on is located by indexing into 

the table of High_bit__numbers. On obtaining the highest bit that 

was turned on within the 8 bit byte, the number of bits that have 

been shifted can be added to work out the highest bit relative to 

the 32 bit address. This value is used to index into the 

Mask_table so that the offset can be selected. 

The High_bit__numbers table is indexed by an 8 bit number, 

therefore this table contains 256 locations. When the table is 

indexed by a number (0 <= number < 256) it returns the position 

of the most significant bit that was on. 

For example consider the following address: 

$00003543 

When the High_bit_numbers table is indexed with the value 

$35, the value 6 is obtained, this being the most significant bit 

that was on, (if the bits are numbered 1 - 8 from right to left.) 

The Mask_table contains mask values to obtain the offset 

into a particular segment. The values in this table mask off the 

the most significant bit that was on, which indicated the regis-

ter set to be used. The table is indexed by a value between 0 

and 23 inclusive and therefore contains 24 locations. The mask 



values are worked out assuming the address was shifted right by 

eight, so that only the upper 24 bits are taken into considera-

tion. 

eg : value of 6 

If the Mask__table is indexed with the value of . 6 then the 

value of $0000001f results and this will mask off the bit which 

was used to indicate the register set. After masking off that 

bit, the offset into this particular segment to be used is 

obtained. Thus for $3543, the register set is 6 and the offset 

into that segment is $1543 

Obtaining the register values 

After calculating the register set to use, the Base, Limit 

and the Permissions are obtained by indexing into the register 

tables. Summing the offset and the Base value gives the physical 

address. Before summing the values a check is made for a possi-

ble limit error. After obtaining the physical address, the 

access permissions must be checked for any violations. If a 

limit error or an access error occurred, then an error indication 

is returned. 

Tracing of Phase 

The execution of the MMU was traced to ascertain where it 

was spending most of the time, and to find out where changes 

could be made to make the running of the MMU more efficient. The 

main concern was to cut down on the number of instructions the 



MMU took to complete one translation cycle. A file of addresses 

and data was created to simulate input from the ALU, The file 

contained 500 sets of data. The same file was used throughout 

all the testing and tracing phases. 

An example of a set of data is as follows: 

uwf $1234 $678 

"uwf" - user mode, write, full word 

$1234 - Address field 

$678 - Data field 

Trace Results of Phase , No. £f instructions per function 

Mmu 20393 

Handle_msg 19298 

Access_memory 164340 

Set_reg 19851 

Total* 247815 

*Total includes instructions from other functions. 

After the MMU function was traced with the sample data, the 

areas that had to be changed were self evident. Analysing the 

trace by function output, it was found that the program was doing 

the bulk of its work in Access_memory. Analysing the trace by 

instruction output it was noticed that most of the instructions 

were executed to pass the message to, and return the message 

from, functions that needed the message. The initial intention 



was to reduce this unnecessary work load of passing the message 

to each function. 

When the records have to be passed to a function the whole 

record must be copied each time it is passed. Copying records 

consumes a lot of instructions. Copying a record each time a 

function needs it is unnecessary when it can be set up so all 

functions have access to it. 

I'l'l- Phase 2 

The problem of passing the message was affecting all the 

functions, so a decision was made to have the message as an 

external so that all the functions have access to the message 

without having to pass it to each of the functions that used it. 

This method was decided upon after considering the option of 

passing a pointer to the message. The pointer passing method was 

not very efficient because the processes still had to execute 

unnecessary instructions to pass a pointer to the message. The 

biggest cost with passing a pointer to a record occurs when a 

field in the record has to be accessed. When a field within the 

record is needed by a function, the address has to be computed 

before accessing the field. 



Trace Results of Phase £f instructions per function 

Mmu 8909 

Handle_msg 2430 

Access memory 157033 

Set__reg 19851 

Total* 212132 

*Total includes instructions from other functions. 

After tracing the execution of phase2 it was distinctly-

noticeable that a large number of instructions had to be executed 

to do 32 bit shifts. This was mainly due to the fact the the 

8086 processor performs 32 bit shifts by only shifting a single 

bit at a time. So multiple shifts have to be done in a loop. 

The Access memory function had to do many 32 bit shifts to work 

out the high-bit that was on in the 32 bit address given to 

Acces s_memory. 

The main aim of Phase 3 was to reduce the total number of 

instructions executed by reducing the number of 32 bit shifts. 

Phase _3 

Changes to the function Access memory were centered on where 

32 bit shifts occurred. In the previous phases there was a great 

deal of unnecessary shifting because 8 bits were shifted each 

time around the loop to find out if the bit sought occurred in 

those 8 bits. One half of the search area was eliminated by 



doing a simple check which did not require any shifting of bits 

The pseudo-code for this particular check is as follows. 

if (Address bit-wise and with $FFFFOOOO) 
upper 16 bits 

else 
lower 16 bits 

From the above check it was possible to decide which half 

the high bit was in. Only the bits 16-8 from the lower 16 bits 

have to be considered because only 24 bits need to be used. 

After it has been decided which half to look at, then a test 

value and a mask value have to be created to check the address to 

find out the highest bit that was on. The test value is used to 

check a particular bit to see if that bit was on, the mask value 

is used to find out the offset into the particular segment. This 

method is basically a linear search (i.e. each bit starting from 

the most significant bit is tested with a new test value each 

time down to the least significant bit in that particular half.) 



The pseudo version of this check is as follows. 

if in upper 16 bits 
initialise Test 
initialise Mask 
if (Address bit-wise and(&) with Test) 

work out register set 
work out offset 

else 
shift Test value right by 1 
shift Mask value right by I 

else in lower 16 bits 
initialise Test 
initialise Mask 
if (Address bit-wise and(&) with Test) 

work out register set 
work out offset 

else 
shift Test value right by 1 
shift Mask value right by 1 

A loop was created to check each bit consecutively. The 

starting mask value depends on the starting test value. If a 

decision was made to search the upper half, then the starting 

test value will be $80000000 and the starting mask value will be 

$7FFFFFFF. The test and the mask values will change according to 

the search area. 

The following trace results were obtained after making 

changes. 



Trace Results of Phase 2.» £f instructions per function 

Mmu 8909 

Handlejmsg 2430 

Access_memory 94699 

Set_reg 19851 

Total* 148906 

*Total includes instructions from other functions. 

2-1-1- Phase ^ 

This phase of modification uses a similar technique to that 

of phase3. It is that of reducing the search area by doing a 

bit-wise "and" to check if any bits were on in a particular area 

of the address field. This method is very tedious to write but 

it should reduce the number of instructions needed to find the 

high-bit number. The technique to be used in Phase 4 is a binary 

search technique, which eliminates one half of the search area 

after each comparison. 

The code for searching the high bit number using a binary 

search technique was modularised to its extreme. It was written 

so that after each check a different function was called. An 

example of such a test was mentioned in Phase 3. The technique 

of testing and eliminating the search area was used in all the 

functions until the appropriate bit was found. This method was 

rather complex to implement because of the number of functions 

that had to be used. The high number of functions were needed to 



cover all possibilities when doing a binary search. The organi-

sation of the functions were similar to a binary tree. 

Considering the function calls as a binary tree, each leaf 

node contained a mask value and a high-bit number. The values 

used for mask value and the high-bit number were assigned to 

external variables. This allows all functions free access to 

these values. The only drawback to the binary search technique 

is the amount of manual work needed to create the functions. 

Phase 3 needed the least amount of manual work. This was possi-

ble because only the initial values of Test and Mask had to be 

assigned. In phase4 all the possible Test and Mask values had to 

be worked out manually. In phase 4, the 32 bit shifts have been 

eliminated. 

The "Set_reg" function used a loop to assign zeros to all 

register sets not in use. It was changed to use the system func-

tion "Zero" which made it more efficient. 

Trace Results of Phase £f instructions per function 

Mmu 8909 

Handlejnsg 2430 

Access_memory 41201 

Set_reg 4210 

Total* 98911 

*Total includes instructions from other functions. 



From the trace results it can be seen that there has been a 

considerable saving in the number of instructions consumed by 

Ac c e s s_memo ry. 

After analysing the trace results more thoroughly it was 

seen that more savings were possible by reducing the number of 

functions. This was done by bringing the setting of mask and 

high bit numbers functions up by a few levels. Savings could 

then be made in the number of instructions needed to make func-

tion calls. In the PORT language this is not a very big saving 

(only uses 2 instructions per call and return), but in a language 

such as ' C there would be a much bigger saving. 

After all the major changes were done, some minor adjust-

ments were done to reduce the number of variables used. This was 

basically a clean-up process to. reduce redundancy. The trace 

results of the final version follows. 

Trace Results of final. No. of instructions per function 

Mmu 8909 

Handlejnsg 2430 

Access_jiiemory 29107 

Set_reg 4210 

Total* 86818 

*Total includes instructions from other functions. 



Advantages of tracing 

From the above results it is obvious how advantageous it is 

to monitor and make programs more efficient. The number of 

instructions needed to simulate all the MMU operations have been 

reduced from 247815 down to 86818 which is a very large saving. 

Since the number of instructions executed have been reduced, the 

speed of execution has been increased. 

l-l- Arithmetic Logical Unit (ALU) 

The main function of the ALU is the execution of instruc-

tions. It is also known as the Instruction Processor (IP). The 

ALU talks to the MMU when it has to read an instruction or when 

it has to make a reference to data memory. When the ALU needs to 

display any information it sends a message to the Front Panel to 

display the information on the screen. This is not part of the 

hardware definition but rather visualising execution of test pro-

grams. The major parts of the machine that relate to the ALU 

will be discussed in detail, 

¿•¿•i* Registers 

The machine has a basic set of 16 thirty two bit registers. 

These registers can be considered in two parts: 8 registers which 

are manipulated directly by the program which is defined by those 

registers, and another 8, which are hidden from the program but 

used for other purposes by the ALU. The machine has two sets of 

registers, one for kernel and the other for user processes. 



Since the machine has two sets of registers the simulator had to 

be written so that values of these registers can be stored and 

made available at all times. This could have been done in many 

different ways such as linked lists, structures, 32 variables or 

vectors. The simulator utilises a vector to hold the active 16 

registers that exist in the machine. This method has been chosen 

because vectors can be indexed by using values extracted from 

instructions. All the register values are displayed on the 

screen when the machine is running. More details of the displays 

will be discussed in the front panel section. The following 

table lists all 16 registers as they have been defined. 

Register Name Used for 
General Register 0 General purpose 
General Register 1 General purpose 
General Register 2 General purpose 
General Register 3 General purpose 
General Register 4 General purpose 
Frame Pointer Pointer to Local data Space 
Old Frame Pointer Old value of Frame Pointer 
Program Counter or Zero Points to the next instruction 

treated as zero in ALU 
Old Program Counter Old value of Program Counter 
Status Register Flags affecting Execution 
History Register 0 Contains an Old Program Ctr. 
History Register 1 Contains an Old Program Ctr. 
History Register 2 Contains an Old Program Ctr. 
History Register 3 Contains an Old Program Ctr. 
History Register 4 Contains an Old Program Ctr. 
History Register 5 Contains an Old Program Ctr. 

Figure 3.4 Register Set 



The five general purpose registers are used for all arith-

metic and logical operations in the machine. All operations are 

conducted with 32 bits of precision. These five registers can be 

augmented by the next two, which are the frame pointer(fp) and 

old frame pointer (ofp) registers. The only thing which dif-

ferentiates these two registers from the five general purpose 

registers is the affect on their contents when certain instruc-

tions are executed, hence they are named differently to distin-

guish them from the other five. 

The last of the first eight registers is viewed in two dif-

ferent ways. When instructions are being fetched from memory 

this register is treated as a pointer into the area of memory 

which contains instructions. It is treated in the same way for 

instructions which change the location of execution such as jumps 

and calls. However, for all other instructions this register 

presents another appearance. It is viewed as a register which 

contains the value zero. Thus, for example, it is not possible 

to change the program counter (pc) with arithmetic instructions. 

Since this restriction applied to the (pc) register, the simula-

tor had to be written to cope with this problem in a simple 

manner. 

Now that the first eight registers have been discussed, the 

second eight registers will be discussed. The old program 

counter (opc) is used with call and return instructions to pro-

vide a fast subroutine call mechanism. 



The status register contains various bits. The main infor-

mation represented by the bits are: 

a) Whether the process is in kernel or user mode 

b) The reason for switching to kernel mode from user 
mode. 

c) Whether to simulate a switch state instruction. 

d) The one condition code of the machine 
which is the carry bit 

The last six registers are history registers, which are 

changed by instructions such as jump and call. To see how these 

registers are manipulated, a simple algorithm can be looked at. 

The assumptions are that the "Destination" has been defined, 

either by computing the address from the short version of the 

instruction and the current program counter, or by loading the 32 

bit value which followed the jump instruction. 

Register[HR5] = Register[HR4] 
Register[HR4] = Register[HR3] 
Register[HR3] = Register[HR2] 
Register[HR2] = Register[HRl] 
Register[HRl] = Register[HRO] 
Register[PC] = Destination 

Figure 3.5 History register Algorithm 



The History registers which are a part of the 16 registers 

could have been implemented using a circular list, but it was 

implemented utilising an array to hold the values. Using a cir-

cular list would have made jumps and calls simpler. The array 

method was used for the sake of simplicity and code modularity. 

Using a circular list in this case would have made other opera-

tions more complex. 

Instruction Set 

There are 16 basic instructions in this machine. All 

instructions are an integral number of half-words in length. 

Which of the 16 instructions to perform is indicated by the most 

significant non-zero bit of the instruction packet. The follow-

ing diagram gives the basic instructions and specifies which bit 

indicates which instruction. 



-+ 

1 1 1 1 1 1 
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 
X X X X X X X X X X X X X X X X 

I +- Switch State 
+ Return 

Call 
Flying Leap 
*NCD 
*NCD 
*NCD 
*NCD 
Load Store Alternate 
*NCD 
*NCD 
If 
Load Address 
Jump 
Load - Store 
Arithmetic 

*NCD - Not Currently Defined 

Figure 3.6 Basic Instructions 

Since the most significant bit (MSB) indicates which 

instruction to execute, the simulator had to implement a very 

efficient means of obtaining the MSB from a given instruction 

packet. Therefore it was decided to write a function to strip 

the bits in the instruction and return the MSB that is on. 

In the following paragraphs, the details of all the instruc-

tions implemented will be discussed. 



Arithmetic 

All arithmetic and logical Instructions are of the form 

shown In the following figure. 

1 1 1 1 1 1 
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

l A A A B B C C D E E E F G G G I I I I 
I I II Source Register 
I 
H Negate Source 

H—h-H Destination Register 

Negate Destination 

+--H Carry 

Shift 

I I H Operation 

Figure 3.7 Arithmetic Instruction 

These Instructions operate on the contents of the seven 

registers, plus the register containing zero. To describe these 

Instructions the following notation will be used. This notation 

will be discussed before the specific Instructions are dealt 

with. 



The notation: 

Register[X] 

denotes the address or contents of the register "X" as appropriate 

For convenience, in describing how the arithmetic instruc-

tion works, four pseudo registers will be defined. These are 

named "Sourcel", "Source2", "Carry" and "Result". These are all 

33 bit registers except for "Carry" which is 1 bit. 

The bits of the instruction will be referenced by their 

letters which were shown in figure 3.7. Note that the concatena-

tion of bit names implies the concatenation of their respective 

bit values, thus AAA denotes a value from 0 to 7 as extracted 

from the three bits in the instruction at the location shown in 

the figure 3.7. 

If the "D" field is on, then the destination register value 

is complemented, before being loaded into Sourcel. If the "F" 

field is on, then the source register value is complemented 

before being loaded into Sourcel. 

The "CC" field defines the value of a local variable called 

"carry" used within arithmetic operations. 

if CC == 0 carry = 0 
if CC == 1 carry = 1 
if CC == 2 carry = carry bit from status register 
if CC == 3 carry = complement of carry bit from 

status register 



Operations 

If AAA is equal to the value 0, the operation requested is 

an addition. The sum of Sourcel, Source2 and Carry is placed in 

the register Result. This will result in 33 bits of information. 

Since the addition is done wi.th 33 bit registers and the 8086 

processor only does addition in 32 bits the simulator had to have 

a special addition routine to cope with these conditions. 

If AAA is equal to the value 1, then the operation requested 

is a bitwise "And". The bitwise "And" of Sourcel and Source2 is 

placed in the register Result. 

If AAA is equal to the value 2, the operation requested is 

bitwise "Or". The bitwise "Or" of Sourcel and Source2 is placed 

in the register Result. 

If AAA is equal to the value 4, then the operation is a 

shift to the left of the value of Source2, by the value of 

Sourcel. The Result is set equal to Source2. For each bit 

shifted the Carry bit is copied to the least significant bit of 

the Result. 

Result Carry 

Figure 3.8 Shift Left 



If the value of AAA is equal to 6, then the operation is the 

same as Shift Left, except that the Carry is copied to the bit 

which was moved from the 33rd position of the result. 

Result Carry 
Figure 3.9 Rotate Left 

If AAA is equal to the value 5, then the operation is a 

shift to the right of the value of Source2, by the value of 

Sourcel and the Result is set to Source2. For each bit that was 

shifted, the Carry bit is copied to the most significant bit of 

the Result. 

Carry Result 

Figure 3.10 Shift Right 

If the value of AAA is equal to 7, then the operation is the 

same as Shift Right except that the Carry is set to the bit which 



was moved from the least significant position of the Result after 

each shift. 

Result 

Figure 3.11 Rotate Right 

1-i-l-l* shift field 

If the value of BB was 0, then the Result and Carry regis-

ters are left as they were. The Result stays the same. 

If the field BB has the value 1, then the Result register is 

shifted left one bit and the value of the Carry register is 

added. 

Result 

Figure 3.12 Shift left one bit 



If BB has the value 2, then the Result register is shifted 

right by one bit and the Carry register is shifted left 31 bits 

and added to the result register. The Carry register is set to 

the value of the bit which was removed from the least significant 

bit of the Result register. 

Result 

Figure 3.13 Shift right one bit 

If BB has the value 3, then the Result register is shifted 

right by one bit and the 32nd bit is set to the 31st bit. The 

Carry register is set to the value of the bit which was removed 

from the least significant bit of the Result register. 

Result 

Figure 3.14 Shift right one bit 



Since the maximum bits per word is 32 bits, and the arith-

metic operations required 33 bits, temporary variables had to be 

used in the simulator to store partial values. 

I'l'l'l' destination field 

The contents of the Result register are placed back into 

Register[EEE] and the value of the 33rd bit of the Result regis-

ter is placed into the least significant bit of the status regis-

ter. Since the values obtained from the EEE bits can equal 7, 

special precautions had to be taken when writing the simulator to 

avoid storing values in register 7. 

¿•¿'A* Load Store 

The Load and Store instructions are either one, two or three 

half words long. The extra half-words are necessary for various 

addressing modes and will be discussed later. The discussion of 

Load and Store will make reference to the following figure. 



l i l i l í 

5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

O I A A A B B B C C C C C C C C I I I I I I I I I I I 
I I I Addressing Mode 

+ - + - + Register 

Operation 

Figure 3.15 Load or Store 

1-i-A-i* Definitions 

The BBB field of the instruction specifies one of the eight 

registers available to the arithmetic unit. This forms either 

the source if the instruction is a Store, or the destination if 

the instruction is a Load. 

The following table gives the meanings of the operation field 



I AAA I Operation Implied I 
^ H + 

I 000 I Load 16 bit zero fill | 

I 001 I Load 32 bit | + H ^ 
010 I Load 16 bit sign extended 

011 I Load 32 b i t I 
+ 
I 
+ I 
+ I 

+ 

100 1 1 Store 16 bit 

101 1 1 Store 32 bit 

110 1 1 Store 16 bit 

111 1 1 Store 1 
32 bit 

Table 3.1 Load Store Operations 

._2. The Addressing Mode 

The following figure displays the assignments of the bits in 

the addressing mode. 

7 6 5 4 3 2 1 0 

A A A B B C C C 

— Register 

Extra Half-Word 

Offset 

Figure 3.16 Addressing Mode 



The only form of addressing specifies a register and an 

offset. The contents of the register are added to the offset, 

and the resulting value is the address of the operand. The 

offset can be either 3 bits, 4 bits, 16 bits, or 32 bits, depend-

ing on the value of the BB field. The following figure will 

explain how the offset is calculated from the bit positions. 

Note that the size bit of the instruction is also involved. 

instruction iNext Half-Word ¡Third Half-Word | 

1OlXXsXXXaaabbXXX|QQQQQQQQQQQQQQQQIPPPPPPPPPPPPPPPP1 

sbb 

000 

001 

010 

Oil 

100 

101 
+-

110 

111 

Offset Implied 

aaa 

laaa | 

QQQQQQQQQQQQQQQQ I 

PPPPPPPPPPPPPPPPQQQQQQQQQQQQQQQQI 

aaaO 

laaaO | 

QQQQQQQQQQQQQQQQ I 

PPPPPPPPPPPPPPPPQQQQQQQQQQQQQQQQL 

Figure 3.17 Implied Offsets 



The addressing mode function should be able to get the 

correct amount of instruction packets when necessary because of 

the varying size of the offset. 

The following diagram shows the bits in the Jump instruc-

tion. 

1 1 1 1 1 1 
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

O O I B C C C C C C C C C C C C I I I I I I I I I I I I I I — off^t 
I 
H Extra Size 

Figure 3.18 Jump instruction 

If the B field has the value 1, then the destination address 

is contained in the two half-words which follow the jump instruc-

tion. This provides for access to any location in memory. 

If the B field has the value 0, then the area of memory 

which is accessible is limited by the available number of bits. 

This implies that when simulating the "jump" instruction, 

there has to be a method of obtaining more instruction packets 

when necessary. The history registers would also have to be 

assigned the correct values. When calculating the short offsets, 



the 12 bits have to be sign extended and the program counter must 

be incremented at the right time. 

^Q^^ Address 

The Load Address instruction essentially skips the operand 

fetch of the Load instruction. Instead of computing the address 

of the memory operand, then fetching the operand, the address is 

treated as the operand. The following diagram shows the Load 

Address instruction format. 

1 1 1 1 1 1 
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

O O O I A B B B C C C C C C C C i I I I I I I I I i I I I I — Addressing Mode 

Register 

Size 

Figure 3.19 Load Address 

It may be noted that the addressing mode register and size 

fields of this instruction are in the same bit position as in the 

Load and Store instructions. This makes instruction decoding for 

this instruction simply a subsection of the instruction decoding 
of the Load and Store instructions. This implies that there 

should be a function to work out the addressing mode. 



l-i-Z* 

This machine has a "If" instruction which is essentially a 

combination of a comparison and a conditional branch. The fol-

lowing figure gives the bit assignment for this instruction. 

1 1 1 1 1 1 
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

O O O O I A A A D E E E F G G G 
— Right Register 

Negate Register 

Left register 

Negate left 

Relation 

Figure 3.20 If instruction 

The two operands are specified just as they are for arith-

metic or logical instructions. There is a third operand found in 

the following half-word which is a 16 bit signed value which is 

to be added to the program counter if the test made is true. The 

test is specified in the relation field. 



- 5 2 -

AAA 

000 

1 Do Jump if it is True that 

1 Left Equal to Right 
= = = = = = = = = = 

001 1 Carry bit is zero 

010 1 Left Less Than Right (unsigned) 

o i l 1 Left Not Greater Than Right (unsigned) 

100 1 Left Less Than Right (signed) 

101 1 Left Not Greater Than Right 

110 1 Carry bit is one 

111 1 Left Not Equal to Right 

Table 3.2 Relation Definition 

Since PORT supports both signed and unsigned tests, the 

testing of conditions will not cause much problems. 

Access to Alternate Registers 

The following figure gives the bit assignments for this 

instruction. 



1 1 1 1 1 1 

5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

O O O O O O O I A B B B C C C C I I I I I I 1 
— Alternate Register 

Current Register 

Operation 

Figure 3.21 Load or Store Alternate Registers 

The CCCC field indicates which of the 16 registers in the 

alternate set is the one in question. 

The BBB field indicates which of the 8 registers of the ker-

nel is the other register in question. 

If the A field has the value 0, then the alternate register 

is loaded from the kernel register. If it has the value 1, then 

the kernel register is loaded from the alternate register. This 

implies that there has to be a means of storing both sets of 

registers, so that depending on the value of "A" the loading of 

registers can take place. 

Flying Leap 

The following figure gives the bit assignments for this 

instruction. 



1 1 1 1 1 1 
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

O O O O O O O O O O O O I A A A 
— Register 

Figure 3,22 Flying Leap 

The value of the destination i s taken from the contents of 

the register spec i f ied in the AAA f i e l d . After the destination 

address has been determined, the same algorithm used for the Jump 

instruction can be used. 

2 .^ .10 . Call 

The following f igure gives the bit assignments for this 

instruct ion. 

1 1 1 1 1 1 
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

O O O O O O O O O O O O O I A B 
Service 

Length 

Figure 3.23 Call 



The A field indicates how the destination is to be computed. 

If A has the value 0, then the destination is computed from the 

program counter and the 16 bit signed value following the 

instruction. If A has the value 1, then the destination is the 

value of the 32 bit word which follows the instruction. When the 

16 bit number is used, sign extension of the number must be taken 

into consideration. 

The B field indicates which of two different call instruc-

tions are to be used. 

If B has the value 1, then this is a service call and the 

value of the program counter is simply stored in the old program 

counter register. 

If B has the value 0, then the call is more complex. This 

requires the simulator to assign the value pointed to by the Old 

Frame Pointer to the Frame Pointer. Then store the Program 

counter at Frame Pointer + 2, and assign the value of Frame 

Pointer back to the Old Frame Pointer. 

In both cases mentioned above, the same algorithm for saving 

the history registers has to be executed. This implied that the 

simulator needed two different functions to handle the two cases 

because the service call is much simpler to implement. The func-

tions which handle the "call" instruction must have means of 

obtaining more instructions if necessary to work out the offset. 



¿•¿•iL* Return 

The following figure gives the bit assignments for this 

instruction. 

1 1 1 1 1 1 
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

O O O O O O O O O O O O O O I A I 

H — Service 

Figure 3.24 Return Instruction 

If the A field has the value 1, then this is assumed to be a 

return instruction which matches a "call" instruction which also 

had the least significant bit as a 1. As such the program 

counter is simply set equal to the value of the old program 

counter. 

If A has the value 0, then a more complex return is needed. 

The algorithm is the reverse of the call instruction. Therefore 

the function to handle the "return" instruction should be able to 

differentiate between the two different calls. 

. Switch State 

There are two states in the machine which indicate which of 

the two register sets is the current set. The execution of the 

Switch State instruction changes the current set to the other. 



1 1 1 1 1 1 
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

O O O O O O O O O O O O O O O l 

Figure 3.25 Switch State instruction 

If the kernel wishes to dispatch a process it simply loads 

the other register set and then executes this statement. 

When a non-kernel process wishes to have the kernel perform 

some operations it simply executes this instruction and the ker-

nel will continue from the location after the one at which it 

executed the switch state instruction that dispatched the pro-

cess. 

When this instruction is executed, certain bits in the 

status register get set to indicate the reason. Trace trap test-

ing will be disabled until after the next instruction. 

The Switch State instruction definition implies that it 

could be implemented in two different ways. 

1. Two vectors could have been used to hold the values of 
the two register sets and access the values through a 
pointer. 

2. One vector could have been used to hold the values of 
one register set and copy the values of the register 
set in use. 



3 »6.13. Implementation Details 

The code for the ALU process was written in different 

stages. The stages were as follows : 

(i) Wrote a function to initialise all variables called 
"Initialise". 

(ii) Wrote a function called "Run" to select the 
instruction to be executed and then call a function 
to execute the instruction. 

(iii) Wrote each of the functions which execute an 
instruction. 

(iv) Wrote all the support functions to do minor tasks. 

The "Initialise" function is very small containing all the 

necessary initialisation statements. This is the function that 

receives the messages from the program "Set_machine" and sets up 

the communication path for the ALU. It also initialises the pro-

gram counter register and the frame pointer registers to their 

initial values. 

The "Run" function has the main control loop. It repeatedly 

reads instructions, select the most significant non-zero bit and 

calls the appropriate function to execute that particular 

instruction. 

Originally instructions were executed silently without the 

use of the screen. After the Front panel process was created the 

ALU could send messages to the front panel to display certain 

information. More will be discussed about the Front panel later. 

The Run function sends a SERVER READY message to the Front panel 



when it is ready to execute instructions. After sending a 

SERVER_READY message it calls the function "Get_next_inst" which 

gets one instruction from memory. It then calls the function 

"Inst_length" which returns the number of instruction packets 

needed to execute this particular instruction. If more instruc-

tion packets are needed, either another 1 or 2 are obtained. 

After the necessary packets are obtained, and if the 

instruction has to be displayed on the screen, the function 

"One_instruction" is called to take either 1, 2 or 3 instruction 

packets and concatenate them into one string. After the instruc-

tion string has been formatted "Update__inst" is called to update 

the instruction display on the screen. 

The main purpose of the "Get next inst" function is to 

obtain the next instruction from code memory. The original 

design of this function was very inefficient because, every time 

an instruction was required it had to send a request to memory 

which can be a very slow process. To improve the speed an 

instruction cache was introduced. At this point in time the 

simulator was driving the design of the machine. By observing 

the execution of the simulation, improvements to the machine 

design were made possible. One such improvement was incorporat-

ing cache memory. 

3.6.14. Cache (Memory Prefetch) 

The main purpose of having on board cache memory is to 

reduce bus contentions. Having a local area of cache for each 



processor is very effective particularly in the case of a program 

executing a loop which has all the instructions within the cache 

area. The maximum capacity of the cache is 256 bits. This is 

implemented as a linked list of four nodes based on the following 

template. 

LINK I &Cache__entry 

ADDR : unsigned[32] 

VALS[4] : unsigned[16] 

The field ADDR contains an instruction or data address, the 

vector VALS contains the instructions or data that are at ADDR, 

ADDR+1, ADDR+2 and ADDR+3. When the function "Get__next_inst" is 

given an address, it checks the linked list to confirm if that 

particular address is in the linked list. If the address is 

found to be in the linked list, it then moves that particular 

node to the head of the list, and returns the values in vector 

VALS. As can be seen above, there are four instruction packets 

in one node, therefore the probability of finding the next packet 

in the same node is very high. This is the main reason for 

choosing this data structure as opposed to an array. Using an 

array structure would be too slow because every time a value is 

required, the search has to start from the beginning of the array 

or a wrap around index would have to be used. To avoid such a 

situation the array would have to be rearranged each time a value 

is found, which would still be uneconomical. 



If the value is not found in the linked list, then a request 

is sent to memory to obtain another 4 packets of information. 

The new information is put at the head of the linked list. Each 

time memory is accessed, 4 packets are obtained because the 

memory is read 64 bits at a time. 

Caching was also done for data memory access. The only data 

that cannot be cached is the Input/Output(I/O) data. The 

"Get__next__data" function makes certain that the data required is 

not I/O data before it checks in the cache. At the initial 

stage, the data cache did not exist, but adding the code neces-

sary to implement a data cache was very simple. The only func-

tion that had to be changed was the function "Get__next_data". 

This confirms the advantage of using functions and processes to 

do different tasks. The only process affected was the ALU, 

because the function "Get_next__data" resides as part of the ALU 

process. This also takes advantage of the PORT scope rules since 

only the function changed could be affected. 

When the "Get_next_data" function was first changed to 

introduce a data cache, there was a bug which was not obvious. 

The linked list used to store the data cache was loaded with the 

same value twice. Therefore the program worked but the loading 

of the data cache was not executed correctly. When the addresses 

of the data cache were displayed on the screen using the Front 

Panel process the bug was detected. This was a good example 

where the simulator was used to help in debugging the simulator 

itself. 



The function "Assign__history_regs" was written to modularise 

the code because each time the program executes a Jump, Call, or 

a Flying_leap, the history registers have to be changed. 

Sending Messages to the Screen Process 

A function called "Send__to__window" was written which has the 

following arguments. 

which : unsigned {field number on the screen} 

address : unsigned[32] {contents to put on the field} 

request : unsigned {how to display the contents} 

When the function receives the above arguments from the cal-

ling process it assigns the values to the appropriate fields in a 

message and sends the message,to the Front Panel process. This 

function is called by many functions which require display infor-

mation on the screen. The function was created to reduce the 

code size, so that all the functions that have to send informa-

tion to the screen do not have to set up a message and send the 

information. The pseudo-code version of the function follows. 

WHICH[message] = field number 
ADDRESS[message] = field content 
REQUEST[message] = request 
send message to Front Panel 
return 



The same function discussed above was used by various 

processes, such as the MMU process. This method would also make 

the calls to display information by different processes con-

sistent. By making the function consistent, making changes to 

its content is much simpler. 

Whenever register contents have to be updated the function 

"Update__registers" is invoked. This function uses a variable 

called "Base" which is the screen field number of register 0. 

When the other registers have to be accessed their manifest con-

stant is added to the Base field to define their screen field 

number. The contents of the registers are accessed by their man-

ifest constants. The contents of the registers are in an array 

which makes it uncomplicated to refer to a particular register by 

simply indexing the array by the manifest constant. Any other 

data structure would have been very time consuming to code and to 

implement. The function "Update__registers" invokes 

"Send to window" each time a register value has to be displayed 

on the screen. Registers other than the program counter register 

get updated on the screen only when tracing has been turned on. 

The function "Redraw_prefetch" is used to display the 

addresses that reside in the cache. This function is called each 

time an address has changed within the linked list. Similarly 

the display is updated only when tracing is required. 



3.6.16. Monitoring the Execution of ALU 

The monitoring Is done to find out the efficiency of dif-

ferent program modules. This Is Important In order to detect 

which parts of the programs are being executed Inefficiently. 

The word "efficiency" In this context means the measure of the 

number of Instructions taken to execute a certain task. Effi-

ciency Increases as the number of Instructions executed 

decreases. To measure the efficiency, a general approach which 

Is similar to the tracing of the MMU has been used, therefore 

this discussion will be on the modifications that were made to 

the program code and not how the tracing was done. 

Code size Is very Important when writing programs, but 

another equally Important aspect Is the number of actual machine 

Instructions that get executed to do a certain task. It Is pos-

sible to write a program which Is rather small In code size, but 

the number of machine Instructions It executes Is far too large. 

The best way to start to reduce the number of Instructions that 

are executed Is to run a sample program and do some experiments. 

A test program was written using the new machine's Instruc-

tion set to work out the dates of Easter until the year 2099. 

The tracing was done whilst working out Easter for one year. At 

the Initial stage the ALU of the simulator used approximately 

2958 Instructions for each Instruction packet simulated. When 

the trace by function Information was obtained. It was obvious 

which functions were executing an excessive amount of Instruc-

tions. The function "Add" used close to 200,000 Instructions. 



All the other major usage was in the functions that were used by 

the function "One instruction". 

The first attempt to reduce the number of instructions was 

concentrated on the functions that were used by 

"One__instruetion". This was done because the function 

"One_instruction" was not part of the actual hardware design of 

the ALU. Another reason was that the function "One_instruction" 

was invoked many more times than the function "Add". The func-

tion "One_instruction" was invoked for every instruction that was 

executed. Looking at the code, it was clear that most of the 

functions were doing things that did not need to be done or that 

they were written very inefficiently. 

After modifying the functions that were inefficient, the 

next version used approximately 1447 instructions for each 

instruction packet. In the first version, the function 

"One__instruction" was called each time an instruction packet was 

obtained. After the modification, the "Run" function reads an 

instruction and used a function called "Inst__length" to work out 

how many more instruction packets it needs to execute. If more 

instructions are needed, the next 1 or 2 instructions are read 

and then the function "One_instruction" is called to make up the 

string which contains all the instruction details to be displayed 

on the screen. The function "Inst_length" uses very few instruc-

tions, comparatively the function "One__instruction" uses many 

more instructions. Therefore adding a new instruction and reduc-



ing the calls to "One_instruction" reduced the number of instruc-

tions executed. 

Looking at the function "Add" it was seen that the algorithm 

used to add two binary numbers was very inefficient. The algo-

rithm needed too many 32 bit shifts. Doing 32 bit shifts costs 

too much in the number of instructions that are needed to execute 

the operation. After improving the algorithm for "Add" and mak-

ing more modifications to the function "One_instruction" and its 

member functions, the ratio of machine instructions vs. instruc-

tion packets were reduced down to approximately 1074. Compared 

to the original code, the saving on instructions is approximately 

60%. 

The evidence emphasises the importance of tracing code not 

only for debugging purposes, but also for writing better code and 

saving computing time. There.is a very high probability that 

most programs can be made more efficient after the first attempt 

at coding a program. After the code for the ALU was made more 

efficient, the execution speed was noticeably higher. 

3.7. Memory 

The memory process simulates the storage and retrieval of 

data and code in the machine. The machine uses different sec-

tions of memory to store related contents. For example, the data 

values are stored within a certain address range, and the code is 

stored in a different address range. Memory processes receive 

messages from the bus requesting certain actions to be performed, 



such as reading or writing data. The replies are passed back to 

the bus via a gofer. The memory is simulated using files to 

store information. 

Obtaining values from memory 

The contents of simulated memory could have been stored in 

memory or on disk. Storing simulated memory in real memory is 

impossible because of the size of the physical memory available. 

Therefore contents of simulated memory were stored on disk. To 

reduce the disk accesses needed to obtain values from memory a 

blocking mechanism was used. Each time the disk was accessed a 

block of 2048 bytes was obtained. This method has a distinct 

advantage over a non blocking system because the memory process 

has to access the disk fewer times. Disk accesses can be time 

consuming, therefore each time the disk is accessed, a block of 

2048 bytes is obtained. Each time memory is read 64 bits of 

information from the current block are passed back to the calling 

function. 

As caching of memory saves on requests to the memory process 

and bus contentions, the blocking mechanism implemented in the 

memory process saves on disk accesses. In most machines the 

input and output are the most time consuming, therefore any sav-

ing on time made in this area is a major advantage. The simula-

tor was used to experiment and work out the optimum block size 

for reading information from the disk. 



¿'Z'^* Implementation details 

The program "Set machine" sends messages to the process 

"Memory" with all the information it needs to set up its own com-

munication path. The "Memory" process has to receive these mes-

sages and reply back to the program "Set_jnachine" indicating it 

received the information successfully. The initialisation state-

ments are as follows. 

receive (Message) 
low = ADDRESS[Message] 
high = DATA[Message] 
receive (Message) 
in_id = SRC__ID [Message] 
receive (Message) 
out id = SRC ID[Message] 

The variable "in_id" is the process number from which the 

"Memory" process will receive messages. The "low" and "high" are 

the address range, "out__id" is the process number to which the 

"Memory" will send messages. 

After the initialisation has been done, the particular 

memory process knows its communication parameters. The process 

"Memory" has a main loop to repeatedly receive messages from its 

"in id" and executes the instruction. This loop has the follow-

ing structure. 



repeat 
receive (Msg, in__id) 
process the request 
send (Msg, out_id) 

end; 

Memory contents are stored in PORT files on the hard disk as 

a sequence of bytes. The contents of the block of memory are 

stored in an array data structure. An array data structure has 

been used for the purpose of simplicity. Indexing into the array 

structure is very simple. The following statement works out the 

index. 

index = address & $7FF 

A bitwise "and (&)" of the address field by $7FF gives an 

index between 0 - 2048. The value 2048 is not a magic number, 

rather it is an optimum number chosen after testing and timing 

the disk accesses. 

The PORT file system allows reading or writing to be done on 

arbitrary sized blocks. The procedure "Load__block" loads a block 

of data into the variable "The_block" which is the variable which 

contains the current block of memory. When the function 

"Load block" is called, it checks if the required block is the 

current block in memory. If the memory required is not in the 

current block, then a new block is read in to the variable 

"The block". Before the new block is read in, it has to check if 



the current block is dirty. If the block is dirty, then it has 

to be written out to disk. 

l-l* Bus 

This is the process which carries data to and from memory. 

It sits between one simulated board and the global communication 

path. The code for this process provides the interface logic of 

the simulated board. 

Each memory process has a bus process which belongs to its 

address space. The purpose of the bus is to trap addresses that 

belong to its board and send the messages to a gofer which will 

pass it on to the memory process. The bus processes are con-

nected in a loop, i.e. the design of the communication path is 

circular. If an invalid address is sent from the MMU to the com-

munication path, then none of the busses will recognise the 

address, therefore the address will go around the path and come 

back to the original bus. When an address comes back to the bus 

which initiated it then that particular address is invalid. This 

is an asynchronous access method where a process waits until it 

receives an acknowledgement from the servicing process. The 

above method of detecting errors is useful in eliminating con-

trols such as a minimum waiting time for a service to take place 

if a synchronous method was used. This also allows the freedom 

to order "boards" arbitrarily. 



. Initialisation of the bus process 

The bus process initialises itself by receiving messages 

from the program "Set_jnachine". Even though there is only one 

code file to simulate the bus, when the machine starts up more 

than one bus process is required. The "Size" field mentioned in 

2.4.1.3 are very important for the bus processes because the 

sizes define which address space that particular bus accepts. 

Changing the address range of a bus process is a very simple 

task which only entails changing the address range in the text 

file which is used by "Setjnachine" function. This is another 

advantage of using the text file to configure the simulator. Not 

only is changing the parameters of the existing bus processes 

simple, but adding a new bus process is as easy as adding another 

line of text in the file. 

Outgoing message 

The bus processes send messages to two different processes. 

They are the next bus process and its board(gofer). The Out_ids 

in the text file specify to which processes the bus can send mes-

sages. There are two types of outgoing messages. One is when 

the bus sends a request to the next bus because the address did 

not belong to its board. The second type is when the bus 

requests its board(gofer) to process the message and take some 

action because the address was for its own board. 



. Incoming messages 

The bus process receives messages from two processes. The 

two processes are the previous bus and its board(gofer). The 

In^ids in the text file specifies from which processes the bus 

can receive messages. The following are the types of incoming 

messages. 

From Gofer to the Bus 

1. A request to perform some actions. 

2. A reply to indicate it processed a message. 

From Bus(n-l) to Bus(n) 

1. Request to perform some actions. 
The actions are either process the message or pass 
it on to the next bus. 

2. An invalid message, which has cycled around the 
communication path. 

When a bus receives a message from the previous bus, it will pro-

cess the message if the address belongs to its board. If the 

message belongs to its board, the bus has to request its board to 

process the message. After the bus has sent the request to pro-

cess the message and the action requested has been completed the 

bus will receive a request from its board(gofer). After the bus 

receives the request from its board, it will send the message 

along the communication path. 

If the address did not belong to its board, then the bus 

will request the next bus to process the message. If the 



original bus which sent the address receives the same address 

from a previous bus, then that address is invalid. 

—'2-' ^̂ oî t Panel Process 

This process has to perform two major activities : 

1. Display simulated information on the screen 

2. Handle user input (i.e special keys and alphanumeric 
characters) 

The front panel process receives from all other processes in 

the simulator, but it is the only process which does not send to 

other processes created by the simulator. Therefore initialising 

the front panel process involves receiving all the In_ids from 

the program "Set_jnachine". A vector of local In_ids was created 

to store all the In_ids rather than use different names to store 

all the data. The vector allows future changes to the In_id list 

without having to change the code. Storing the Ids will be dis-

cussed later. 

Implementation of the Front Panel 

The screen is designed using a program called "fg" provided 

by the PORT system. This allows the programmer to designate all 

screen details. The details are as follows: 



Field Location (i.e. X & Y coordinates) 

Field Length 

Field Type (i.e. String or Numeric) 

The program "fg" uses the above information to create the 

following external variables: 

Field__numbers 

Field rows 

Field columns 

Field_^types 

Field_widths 

Screen image 

All the above variables are self explanatory, except for 

"Screen image" which is a copy of the screen image as designed by 

the programmer. This image can be edited and changed by the pro-

grammer. The screen was designed in two stages, at the initial 

stage an area was reserved for future use. 

Diagram of a screen format follows 
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Instruction Cache Data Cache 
$XXXXXXX> $XXXXXXX> $XXXXXXX> $XXXXXX)0 $xxxxxxx> $xxxxxxx> $xxxxxxx> $xxxxxxx> 

Current instruction : add r2 - r3 c=0 

GrO $00001AB2 
Gr1 $XXXXXXXX 
Gr2 $00000000 
Gr3 $12345678 
Gr4 $XXXXXXXX 
OFP $XXXXXXXX 
FP $00000300 
OPC $xxxxxxxx 
PC $80000AB4 
STAT$XXXXXXXX 
HRO $800001FF 
HR1 $XXXXXXXX 
HR2 $XXXXXXXX 
HR3 $XXXXXXXX 
HR4 $XXXXXXXX 
HR5 SXXXXXXXX 

Logical 

SXXXXXXXX-
Base + Offset 

•SXXXXXXXX sxxxxxxxx-
Physical 

-#-$XXXXXXX)i 

Memory writes 
Address Data 
SXXXXXXXX 
$xxxxxxxx 
$xxxxxxxx 
$xxxxxxxx 
SXXXXXXXX 
$XXKXXXXX 
$xxxxxxxx 
$xxxxx<xx 
SXXXXXXXX 
$xxxxxxxx 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
$0000123 

SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 
SXXXXXXXX 

S0000012 

Break At SXXXXXXXX 

Output from programs 

GR - General Register 
FP - Frame Pointer 
OFP - Old Frame Pointer 
PC - Program Counter 
OPC - Old Program Counter 
STAT - Status Register 
HR - History register 



PORT also provides most of the screen initialisation and 

startup functions. The Window Manager of PORT provides part of 

the building blocks necessary to implement a user driven screen. 

The main functions that had to be written and modified were as 

follows: 

Update_field 

Scroll_memory writes 

Update__inst 

Server_ready 

Input__arrived 

The function "Update_field" is called when the contents of a 

particular field on the screen have to be changed. The function 

has to be given the field number to be changed and the data to be 

displayed. From the field number, the row and column can be 

obtained by indexing into the appropriate vectors created by the 

program "fg". 

"Scroll_memory_writes" function is used to display the 

addresses and contents of memory. When the area allocated for 

memory is full, the contents on the screen get scrolled up to 

make room for the new values. Except for the scrolling mechan-

ism, this function works in a similar manner as the 

"Update field" function. 



The function "Update_inst" displays the next Instruction to 

be executed. The Instruction Is displayed as a string. The 

string to be displayed was concatenated In the function 

"One__lnstructlon" as mentioned In the discussion of ALU. The 

string contains the machine code value and the assembler 

equivalent. The following Is an example of the display: 

$8024 add r2 r4 

The "$8024" Is the machine Instruction representing the 

addition of register "r2" with register "r4" and the result being 

placed In "r2". 

The function "Server_ready" Is called when the ALU sends the 

"SERVER__READY" request. When the ALU Is ready to execute an 

Instruction It sends a "SERVERJREADY" request to the front panel. 

When this request Is received, the front panel sets the machine 

to the appropriate state and redraws the active buttons. If the 

current state permits the execution of another Instruction, then 

the front panel will give permission to the "ALU to execute the 

next Instruction. 

The function "Input arrived" handles all keyboard Input. 

The keyboard Input consists of alphanumeric keys and special 

keys, all control keys are Ignored. When any key on the key-

board Is pressed, this function will Interpret the Input key and 

call the appropriate function to handle that particular key. 



Screen control keys 

To a certain extent the output on the screen can be con-

trolled by the user. The IBM-XT keyboard contains 10 special 

keys (pfl - pflO) on the left hand side of the keyboard. These 

keys allow the user to select options on the screen when the 

simulator is in motion. For this simulator only 7 out of the 10 

options are used. The need for alphanumeric characters will be 

discussed in the section about break points. The ALU is con-

trolled by the input from the user. Since the user input is han-

dled by the Front panel the execution of the ALU is controlled by 

the Front panel. The following is a pseudo code version of the 

ALU control. 

while there are more instructions to execute 
ask front panel for permission to execute 
execute the next instruction 
update the screen 

This allows the user to control the execution of the 

machine. 

Special Keys 

Only certain keys shown in the diagram are recognised by the 

program when pressed by a user at any given time. All other key 

presses are ignored. The keys that are recognised by the program 

are highlighted. As can be seen from the diagram, the "quit" 

option is the pfl key. This key is pressed to stop the execution 



of the simulator. When the execution is stopped by pressing pfl, 

all the processes get destroyed(killed). Destroying the 

processes is important because the processes may not terminate 

unless specifically destroyed or the system is rebooted. The 

processes could have been written so that each process destroys 

itself when the processes it communicates were non existent. 

This method assumes that the processes are communicating as 

expected. If there was a bug in one of the processes however it 

may not destroy itself, thereby affecting all other processes 

dependent on that particular process. 

The pf2 key is the "help" key. The operation of the simula-

tor is self explanatory. A help option still exists to provide 

information about the simulator to users. When the pf2 button is 

pressed, the program looks for a text file called "help" and 

displays the contents of the file. Allowing the user to page 

back and forth. 

The "Step" option (pf3) key is used to execute the simulator 

one instruction at a time. Since the ALU has to ask permission 

from the Front panel before it executes an instruction, only when 

this button is pressed can the ALU execute the next instruction. 

The "step" mode is very useful when the user wants to look at the 

changes that took place after a single instruction was executed. 

This mode allows the user to observe the changes at his/her own 

pace. It also gives the user enough time to write down notes if 

necessary. 



The "Run" (pf4) key is the automatic mode button. The pf3 

is the manual (step) mode, so when the pf4 key is pressed, the 

Front panel gives the ALU permission to execute the next instruc-

tion every time. It stops giving permission only when the pf5 

button is pressed. This button is necessary because a user may 

want to speed up the execution or go away and leave the machine 

running. This button essentially simulates an user rapidly 

pressing the "pf3" button. 

The "Pause" button (pf5) is absolutely necessary because a 

user may want to stop the execution of the machine at a given 

time. This button will be necessary only when the machine is in 

the "Run" mode which was discussed in the previous paragraph. 

When the "Pause" button is pressed, the Front panel does not give 

permission to the ALU to execute an instruction. Therefore the 

ALU waits until it is allowed to execute an instruction. 

The "Traceon" (pf6) key turns the tracing mechanism on, and 

the "Traceoff" (pf7) key turns the tracing mechanism off. The 

trace mechanism discussed here is mainly concerned with running a 

program in the machine and observing the execution. When the 

trace is on, all changes to the machine are displayed on the 

screen. When the trace is off only the program counter changes 

are displayed on the screen. When the trace is off, the machine 

executes at a much faster speed. This is mainly because most of 

the time is spent on making changes to the screen or creating 

readable instructions. The program counter is displayed so that 

the user knows that instructions are being executed. 



Implementation of the special keys 

There are seven buttons in total which the user can use to 

control the screen displays. Writing the code to handle the user 

control inputs can get very complex. When one or more of the 

buttons are pressed, the machine is in a particular state, so 

when another button is pressed, the state of the machine has to 

be considered before any action can be taken on the latest input. 

Before writing any code, a state table was built to work out 

which buttons are allowed to be pressed at a given point and what 

action is to be taken when a particular button is pressed. A two 

dimensional table with buttons as columns and states as rows was 

created. After designing the transition table on paper, all the 

conditions were incorporated into the two dimensional table 

called "Trans_table". The following are a few examples from the 

"Trans table". 

Trans_table[0][2] = 1; 

Trans_table[l][3] = 2 + $20; 

Trans_table[l][7] = 4; 

Trans_table[5][2] = 5 + $10; 

A variable called "State" was used to indicate the current state 

of the machine. When a new "pf" key is pressed, the 

"Trans table" is indexed by the value of "State" and the key 

number. The value obtained contains the new State of the machine 

and an indication whether to reply to the ALU. The State of the 



machine Is in the least significant 4 bits of the value. The 

reply details are in the upper 12 bits of the value. 

Another one dimensional table called "Soft_buttons" was 

created. The table indicates which buttons can be pressed by the 

user at a given state of the machine. This table is indexed by 

the variable "State" which returns a value which indicates which 

buttons are active (i.e. which buttons cannot be pressed). The 

following are a few example rows from the table "Soft buttons" 

Soft_buttons[0] = PF3_ACTIVE 
PF6_ACTIVE 

Soft_buttons[3] = PF3_ACTIVE 

Soft__buttons[8] = PF3__ACTIVE 
PF6 ACTIVE 

PF4_ACTIVE I PF5_ACTIVE 
PF7_ACTIVE; 

PF5_ACTIVE I PF6__ACTIVE; 

PF4_ACTIVE I PF5_ACTIVE 
PF7 ACTIVE; 

When any of the special keys are pressed, the function 

called "Input_arrived" is called. This function decides which 

key was pressed and calls the appropriate function. Each key is 

handled by a different function. Each of the functions call the 

function "Change state" and pass their key number (i.e. the 

column number to index into "Trans_table"). The function 

"Change state" will change the variable "State" to its new value. 

The following is an algorithm used by the function "Change_state" 

to change the state of the machine and reply to ALU if necessary. 



value = Trans_table[State][key] 
State = value & $F {get the new state of the machine} 
{decide which buttons are active in the current state} 

The__active_buttons = Soft__buttons [State] 
value = value » 4 {shift down the lower 4 bits} 
if (value != 0) {check if the ALU should be replied to} 

reply to the ALU 

The alternative way of implementing the code to handle the 

special key inputs would be to have a string of conditional 

checks. This method would entail the code having to check what 

the previous state was, and then changing the current state. 

After that it has to do a conditional check to work out which 

buttons are active in the new state. The code required to imple-

ment this type of algorithm would be too long and difficult to 

maintain. In the current implementation, getting the new state 

requires only one statement, and working out the active buttons 

requires only one statement. This method is also faster because 

the external tables "Transitable" and "Soft__buttons" are set up 

at compile time and can be simply indexed at execution time. 

1-1*1 Break Points 

The Front panel's function "Input_arrived" handles 

alphanumeric input as well as special key input from the key-

board. The keyboard input is necessary to incorporate break 

points. When the simulator is executing in the "Run" mode, the 
user may wish to stop the execution when the program counter (PC) 

is equal to a certain value. To do this the user could watch the 

value of the PC and press the Pause button when the PC value is 



equal to a pre determined value. As can be seen this would be 

impossible to do because of the speed at which the value of the 

PC changes are displayed on the screen. Therefore the concept of 

break point was introduced. The user is allowed to type in a 

break point value, when the PC is equal to this value the Front 

panel pretends the user pressed the pause button at just the 

right time. Since the ALU cannot execute without the permission 

from the Front panel, the machine will pause. 

The break points are a vital part of the simulator. The 

break point mechanism allows the user a simple and elegant means 

of debugging programs. Any debugging tool would not be complete 

if an user was not allowed to set break points. 

3.10. On Board Switch (OBS) 

As the name suggests, this process only switches the direc-

tion of an address. When an address is sent to the OBS by the 

MMU, its only task is to trap a set of addresses and send it to 

one of two pieces of hardware depending on certain conditions. 

The most common use of the OBS would be for on board memory. The 

following pseudo-code explains the task of the OBS. 

if (Address >= low && Address <= high) 
send Address to first piece of hardware 

else 
send Address to second piece of hardware 



In the initial design of the machine, this process was not 

part of the machine. This process came into existence only when 

there was a need to display characters on the screen area which 

was kept for future use. The OBS process has a very simple func-

tion to perform. In the current implementation, the OBS sits 

between the MMU, the Serial Line and the Gofer which sends mes-

sages to the first bus. 

Adding this process to the simulator was a simple task. 

Since each process can be coded separately the other processes in 

the simulator did not have to be modified. This highlights the 

advantages of a multiple-process simulator. In the initial 

design, the MMU would send a message directly to the gofer which 

in turn would send the message to the bus. After the OBS was 

introduced the code in the MMU still appears to be sending mes-

sages to a gofer, but the text file was changed so that the MMU 

sent messages to the OBS. This was achieved without having to 

change the code for the MMU or the gofer. 

3.11. Serial Line 

Part of the screen was reserved for future use and this is 

where that area will be discussed. The Serial Line is a cheap 

peripheral attached to the machine which provides simple output 

for the machine. The Serial Line process receives input from the 

OBS and sends the input received to the Front panel. On receiv-

ing input from the Serial line the Front panel will display the 

input in the area reserved for display purposes. Displaying out-



put produced by programs running in the machine was very useful 

when testing the machine's execution. 

3.11.1. Implementation 

The implementation for the Serial Line was very simple 

because the only job of the serial line is as follows: 

repeat 

receive a message from OBS 

reply to OBS 

send the data to the front panel to display 

A function called "Serial_line" was created, this function 

receives the In^ids and the Outbids from the program 

"Set__machine". After the initialisation has been done, the func-

tion repeatedly receives messages from the OBS. The contents of 

the addresses are then passed on to the Front panel to be 

displayed on the screen. This process was tested when testing 

the whole simulator. To test the serial line, test programs were 

written to display messages on the screen. It is also worth not-

ing that the serial line was introduced to the machine only when 

there was a need to display output from the test programs. This 

peripheral was introduced without having to alter any of the 

other functions. 



A* Testing The Simulator 

To test the simulator to a reasonable extent, many programs 

were needed because it was decided to test the simulator with 

some real data (i.e to simulate a program that did something sen-

sible). The programs that were used to test the simulator will 

be mentioned after discussing the creation of such programs. To 

run the simulator, the contents of code and data memory had to 

be created. A decision was made to create two files to simulate 

code and data memory. The code file had to contain machine 

instructions (in binary). The data file had to contain data in 

binary. Creating the code file was going to be the major hurdle. 

There were two possible ways of creating the code file, they 

were: 

i) Write a program in machine code by editing a file. 

ii) Write a program in assembler and assemble the 
program to create a file in machine code. 

At first, it may seem that the first option is easier 

because an assembler had to be written to implement the second 

option. Looking at future needs the second option was the most 

sensible. If the first option was chosen, then creating and 

checking the code would be a tedious task. This task would have 

to be repeated many times. 



A'JL* Writing An Assembler 

A simple assembling program was written to parse instruc-

tions written in assembler. This program creates both the code 

and data files, it also produces an assembler listing for refer-

ence. The intention was to produce the necessary files, there-

fore in some cases efficiency and elegance were sacrificed for 

speed of production. 

A*JL'-L* Implementation details 

The implementation of the assembler was kept as simple as 

possible. The main loop reads a line of characters and calls an 

appropriate function depending on the first word of the line. 

The first word is an instruction name except for a few words. 

When the word ".code" is encountered, the code file is chosen as 

the output file, when the word ".data" is encountered the data 

file is chosen as the output file. The words such as "byte", 

"half-word", and "word" are used to set up data values of those 

sizes. The word "Label" is also recognised which defines the 

position of a label. 

When a word matching a defined instruction is encountered, a 

function which performs the necessary conversion to machine 

language is called. All addressing mode values are worked out 

where necessary and written to the appropriate place. If a 

reference to a label is made, the parser will check a linked list 

of labels to determine the address of the label. If the label is 

found, then its address is written adjacent to the instruction. 



When forward references are made on instructions such as "call", 

"jump" or "if", then the linked list of label definitions will 

not contain the label. At this moment the parser writes zeros in 

place of the label address and stores the byte position of the 

code file, line number and address of the instruction in a linked 

list. 

At the end of the first pass, the program consults the 

linked list with the undefined labels and takes the addresses 

from the linked list with the defined labels and writes the 

addresses to the code file at the correct byte location. If an 

undefined label is not found in the linked list with defined 

labels, then an error condition is returned. 

An assembler listing is also produced at the end of the com-

pilation. Tliis listing contains the program counter, instruc-

tions in machine code and the assembler version of instructions. 

Using the Assembler to create test programs 

The assembler program was used to create code and data files 

which calculate the dates of Easter for 99 years. This program 

used sub routines such as "divide" and "multiply" to test arith-

metic and call instructions. The program utilised every piece of 

hardware to perform the required calculations, storage and 

display. The date of Easter for every year was displayed on the 

screen using the "serial line" process. This was the main pro-

gram that was used to test all the simulated pieces of hardware 



and instructions, other minor programs were used when testing 

individual pieces of simulated hardware. 

A*^* Writing a disassembler 

After the assembler was written to produce the code file, it 

was rather strenuous to check if all the instructions were 

correct. The only way to check the instructions . was to check 

each one by hand, or to write a disassembler to produce the ori-

ginal assembler instructions. The second option was more feasi-

ble because of the large number of instructions that had to be 

checked. 

¿•¿•JL* Implementation Details 

An elementary but efficient disassembler program was created 

to check the data. This took little time to write and after it 

was written it was simple to check the data in the code file. 

The disassembler program reads the instructions from the 

code file and produces a assembler listing. This program rev-

erses the action taken by the assembler program. The highest bit 

that is turned on marks the type of instruction. The other bits 

are used in certain instructions to decide if more bytes have to 

be read before reading another instruction. This program has a 

simple loop which reads an instruction from the code file and 

calls an appropriate function to handle that instruction. The 

concept of having a different function to handle each instruction 

makes it very comfortable to maintain the program. This method 



makes debugging a very simple task because it isolates the prob-

lem area to a particular function. 

Debugging the two programs 

As discussed above, the assembler and the disassembler pro-

grams were built separately. Each program has a unique task to 

perform, the two tasks are the reverse of each other. Since the 

assembler and the disassembler were both written as separate 
entities, the possibility of making the same coding error in both 

programs is very remote. Both programs were coded from matching 

specifications, therefore any coding error occurring in one pro-

gram will be highlighted by the other program. 

Consider the following example: 

Load rO r2 [2] 

When the assembler program parses the above instruction it 

will decode the instruction into the mode, registers and offset. 

The disassembler program uses the decoded bits to obtain the ori-

ginal instruction. Therefore if the assembler had decoded the 

instruction incorrectly, then the disassembler will not be able 

to produce the original instruction correctly. If the disassem-

bler program produced a wrong instruction, this would throw light 

on the fact that one of the programs was wrong. 



1.' How to use the simulator 

The first objective is to create a file with machine code 

and a file with data. This can be achieved by creating a file in 

assembler (refer to Appendix II for mnemonics). After the file 

has been created, it can be assembled by the assembler program. 

The simulator program looks for the code and data files in the 

temporary directory in the file tree. The code file has to be 

named •• and the data file is 

" This unusual naming 
convention has been chosen to allow different files to be used to 

simulate different address ranges in memory. Also to simplify 

name generation and not conflict with any useful names. The file 

name represents the 32 bits in an address. Every represents 

a 1 and the represents a 0 value. Consider the following 
example: 

Address = $00040000 

The file name representing this address would be 

The files that are created by the assembler are called 

"Code" and "Data". Therefore these files have to be copied to 

the above mentioned names in the correct directory before running 

the simulator. 



After the code and data files have been created, running the 

simulator is simple. To start the simulator, simply execute the 

program "Set_jnachine". This program will start the simulator, 

create all the necessary processes and set up the communication 

path. After the simulator has started to execute, the user could 

control the execution with the special keys. These keys give the 

user full control of the simulator's output on the screen. The 

output provided by the simulator is self explanatory, so the 

details will not be discussed. 

How the simulator works 

Details of all the simulated hardware components have been 

discussed in chapter 3. The following paragraph will discuss 

their usage within the whole machine. The discussion will be 

based on specific examples so as to facilitate the understanding 

of the simulator's execution. 

è. simulation of £ program's execution 

The example that will be discueed in detail is as follows: 

Please refer to figure 5.1. 



P I - P18 Represent ihe C o m m u n i c a l i o n Path 

Figure 5.1 Communication Path 

The instructions being simulated take a string of data from 

memory, add a value to each character and then display each char-

acter. The discussion will be based on the communication that is 

required to perform such an operation. 

The program is created using the assembler program. 

Instructions are typed in using the editor in a format the assem-

bler expects (refer to Appendix II). This file is converted to 

machine instructions by the assembler and then written to the 

file which contains instruction packets. All data values are 

written to another file which stores data packets. Code 

addresses start at $80000000 and data addresses start at $0. 



When the simulator first starts to execute, the assumption 

is that all registers are initialised. ALU sends a request via 

PI to the MMU seeking the instruction packet at location 

$80000000 (code addresses start at this value). MMU does some 

address translation and sends it along P2. The OBS will check 

the address and decide to send it along P4. The Gofer will then 

pass it along P5. The bus will then pass the address along P8. 

If the address does not belong to that particular bus, it then 

sends the address along P13. If the address is valid, then the 

bus which belongs to that address range will respond and accept 

the address. After the address has been accepted, the bus will 

send the address along P8. The gofer will then pass the address 

along PIO. After the memory receives the address, it converts 

the address to a location on the file and reads a block of data 

(code file is used for instructions, data file for data values). 

It then sends 64 bits of information to the bus via Pll and P12. 

The bus that received the contents of memory will send it along 

to the next bus (pl3) which in turn will send it to next bus to 

be passed along p6. Then the values will be passed along P7 to 

the gofer which passes it along, P2 to MMU, which then will pass 

the contents via PI back to the ALU. 

After the ALU receives the machine instruction, it stores 

the information in the instruction cache. If all the details of 

this particular instruction have been obtained, the string 

representation of the instruction is sent to the front panel to 

be displayed. The instruction is then decoded by the "Run" func-

tion and the function "Load" will be invoked to execute that 



instruction. To load a character from memory, the ALU has to go 

through the same sequence of tasks as mentioned above. The only 

difference is that this time the data memory will respond and 

pass back 64 bits of data. This data will be then stored in the 

data cache. 

After the character has been loaded, when the next instruc-

tion is needed, the ALU will first look in the instruction cache 

which will contain an "add" instruction. As can be seen, obtain-

ing the next instruction was very much quicker and easier. After 

the "add" instruction has been obtained and decoded the function 

"Add" will be invoked to add the contents of two registers. 

P18 

P I - P18 Represent the C o m m u n i c a t i o n Path 

Figure 5.2 Communication Path 

After the add instruction has taken place, the new value has 

to be stored. ALU then sends a request via Pi, on receiving the 



request the MMU then sends the address along P2. If the charac-

ter is to be displayed on the screen, then it is sent along P3. 

On receiving the character the Serial Line will send it to the 

Front Panel to be displayed. 

If the character does not have to be displayed, then the 

contents and the address reach the memory process via the same 

path mentioned above. Memory then writes the contents at the 

given location and replies back via P16. When a value is written 

to an address in the current block, that block is said to be 

"dirty". If a block is "dirty", it has to be written back to the 

file before another block of information is obtained from the 

file. 

The above process continues until the whole string has been 

processed. If the loop needs less than 16 instruction packets, 

then all the needed instructions will fit into the cache, thereby 

eliminating the need to access memory. Another point to note is 

the contents of registers; each time the register values change, 

the new values are displayed on the screen if the trace has been 

turned on. 

Concluding Remarks 

The simulator has been very helpful in developing this new 

personal computer. It has made it possible to highlight many 

design errors and better methods of designing the hardware com-

ponents in the machine. For example in the initial design of the 

machine cache memory was not part of the design. But after test-



ing some programs using the simulator it was seen that cache 

memory would speed the execution of programs. This simulator can 

be further utilised to help in designing an Operating System 

and/or a compiler. All further development work on the machine 

will be done using the simulator as a guide to visually observe 

the execution of the machine instructions. 

If a compiler were to be designed, the simulator can be used 

quite effectively to help in debugging the code. The output pro-

duced by the simulator has been designed to give maximum help in 

debugging programs. The disassembler program can also be used to 

debug code images produced by a compiler. The development work 

on the simulator has been exciting and thought provoking. There 

is a lot more work left to be done to complete the design of the 

whole machine. Now that the foundation has been laid further 

development can be done more easily with the aid of the simula-

tor. This project was the first attempt at the design of the 

machine. In the light of these circumstances, writing the simu-

lator was a time consuming task. The method that was chosen to 

implement the simulator was the best under those circumstances. 

The simulator is so flexible that making changes to each com-

ponent of simulated hardware was rather simple because each piece 

of hardware was simulated by a different process. As can be 

seen, if any other method was used to simulate the hardware com-

ponents, making changes to the design would be rather laborious. 



APPENDIX I 

I.l Code for ALU "Run" function 

0 

Import( IO_request, 
IO_requests, 
Registers ) 

high__bit : unsigned 
request : IO__request 
num : unsigned 

{ 
Pre_base = 18; 
repeat 

{ 

Send_to_window( Base_field+PROGRAM_COUNTER, 
Current__regs[PROGRAM__COUNTER], MODIFY__BYTES ); 

Display_pc = Current__regs [PROGRAM__COUNTER]; 
First = Instruction = Get_next_inst(); 
num = Inst_length( First ); 
if( num > 1 ) 

{ 
Second = Get_next_inst() ; 
if( num > 2 ) 

Third = Get next inst(); 
} "" ~ 

repeat 
{ 

if( All_changes ) 
{ 

One__instruction( Display_pc, First, 
Second, Third, Temp_str ); 

Update i n s t O ; } 
REQUEST[request] = SERVERJREADY; 
send( request, request, Window_id ); 
if( REQUEST[request] == $1 ) { 

All_changes = 0; 
break; } 

if( REQUEST[request] == $2 ) 
{ 

All_changes = 1; 
break; 

} 
All changes = 1; 
Redraw prefetch(); 
Red raw__da ta_pr ef etch (); 
Update all registers(); 



Send__to_window ( Ba se_field+PROGRAM__COUNTER, 
Dlsplay__pc, MODIFYJBYTES ) ; 

high__bit = High_bit(); 
select (high b i t ) 

{ 
case 0 : SpinO; 
case 1 : Switch__state(); 
case 2 : ReturnO; 
case 3 : Ca l lO ; 
case 4 : Flying leap() ; 
case 5 : NcdO; 
case 6 : Ncd(); 
case 7 : Ncd(); 
case 8 : Ncd(); 
case 9 : Load store a l t ( ) ; 
case 10 : Ncd(T; 
case 11 : Ncd(); 
case 12 : i f ( ) ; 
case 13 : Load e f fect ive address(); 
case 14 : JumpT); 
case 15 : Load store ( ) ; 
case 16 : Process regs( ) ; 

} 
Update registersO; 



IL'1. for Mmu process 

import( Message set ) 
() 

sendid : Pid 

{ 

} 

Rec__rep(); 
Rec__repO; 
sendid = SRC_ID[Msg]; 
Rec__rep(); 
Froiii_buss__id = SRC_ID[Msg]; 
Rec_rep(); 
Rec^repO; 
Receive__id = SRC_ID[Msg]; 
Rec__rep(); 
Window_id = SRC__ID[Msg]; 
Rec_rep(); 
repeat { 

if( receive(Message, sendid) ) 
Handle_msg(); 

else 
DestroyC My_id ); 

replyC Message, sendid ); } 



Code for Memory Process 

import( Message set, 10 descriptor, 10 modes. 10 requests ) () ~ "" - _ H y 
f_name : &char = stack(33) 
mask : unsigned[32] 
i : unsigned 
low : unsigned[32] 
high : unsigned[32] 
in : Pid 
out : Pid 
bits : unsigned 
bytepos : unsigned[32] 
lowadd : unsigned[32] 
highadd : unsigned[32] 
offset : unsigned 

{ 
Rec__rep(); 
My_number = WIDTH[Msg]; 
low = ADDRESS[Msg]; 
high = DATA[Msg]; 
Rec_rep(); 
in = SRC__ID[Msg]; 
Rec_rep(); 
Rec_rep(); 
out = SRC__ID[Msg]; 
Window_id = Rec_rep(); 
Rec_rep(); 
mask = $80000000; 
for( i=0; i<32; -H-i) { 

} 

if( mask & low ) 
else 

mask » = 1; 

f_name [ i ] = 
f name[i] = 

f_name[32] = 0; 
Set__current__node( "#me" 
The file = Open( f name MODIFY, 0, 0 ); 
while( receive( Msg, in ) ) 
{ 
reply( Msg, in ); 
bytepos = (ADDRESS[Msg]~low) « 1; 
Load_block( bytepos & ~$7FF ); 
bits = WIDTH[Msg]; 
if( ACCESS[Msg] ) { 

if( bits == 1 ) offset = bytepos 6e $7FE; 
else offset = bytepos & $7FC; 
The_block[offset] = DATA[Msg]; 
The_block[-H-offset] = DATA[Msg] » 8; 
if( bits == 2 ) 
{ 



} 
The_block [-H-of f s e t ] 
The block[-H-offset] 

DATA[Msg] » 1 6 ; 
DATA[Msg] » 2 4 ; 

} 
else 
{ 

Dirty = 1; 
Send_to__window( 1, ADDRESS [Msg], APPENDJBYTES ); 
Send to window( 0, DATA[Msg], APPEND BYTES ); 

} 

offset = bytepos & $7F8; 
lowadd = The block[offset+3]; 
lowadd = (lowadd « 8) | The_block[offset-l-2]; 
lowadd = (lowadd « 8) | The__block[offset-l-l]; 
lowadd = (lowadd « 8) j The_block[of f set-i-0]; 
hlghadd = The__block[of fset-l-7]; 
highadd = (hlghadd « 8) | The block[offset+6]; 
highadd = (highadd « 8) 
highadd = (highadd « 8) 
ADDRESS[Msg] = lowadd; 
DATA[Msg] = highadd; 

The__block[offset-4-5]; 
The block[ of f set-l-4]; 

REQUEST[Msg] = 0; 
DES_ID[Msg] = SRC_ID[Msg]; 
SRC_ID[Msg] = Invalid__id; 
send( Msg, Msg, out ); 



1.4 Code for On Board Switch Process 

import( Message_set, 
IO__requests ) 

() 
in_id : Pid 

{ 
Rec__rep(); 
in_̂ id = Rec_rep(); 
Rec_rep(); 
Window id = Rec__rep(); 
Rec_rep(); 
while( receive( Msg, in_id ) ) { 

replyC Msg, in_id ); 
Send to window( 0, DATA[Msg], HERE_IS_TEXT ); } } 



1.5 Code for Front Panel "Run" function 

import( IO_request, 
IO__requests, 
Fleld_definltlons, 
Active buttons ) 

0 { 
Change_window_height( Window__height=FORM_HEIGHT ); 
Inltlalize_lmage(); 
The_actlve__buttons = PF3_ACTIVE | FF4__ACTIVE I FF5_ACTIVE; 
Redlsplay_wlndow(); 
repeat { 
FlushO; 
Requestor = receive__any( Request ); 
select( REQUEST[Request] ) { 

Input_^arrlved( ); 
Update_fleld( Request ); 
Scro1 l_memory_wr11es(Request); 
Update_lnst( Request ); 
Server readyO; 

} 

case INPUT_ARRIVED 
case MODIFYJBYTES 
case APPEND_BYTES 
case DISPLAY_MESSAGE 
case SERVER READY 



1.6 Code for Bus process 

import( Message set, Pid, Structure ) 
() 

from_my_board : Pid 
to__my board : Pid 
nextJEuss : Pid 
id : Pid 
low : unsigned[32] 
high : unsigned[32] 

Rec_rep(); 
low = ADDRESS[Msg]; 
high = DATA[Msg]; 
Rec__rep() j 
froni_my_board = SRC_ID[Msg]; 
Rec_rep(); 
Rec__rep( ); 
to_my_board = SRC_ID[Msg]; 
Rec__rep(); 
next_buss = SRC__ID[Msg]; 
Rec__rep(); 
repeat { 

id = receive__any( Msg ); 
if( id == from_my_board ) { 

if( REQUEST[Msg] == 0 ) { 
send( Msg, Msg, next__buss ); 
reply( Msg, from__my_board ); 

} 
eise 
{ 
SRC_ID[Msg] = My_id; 
DES_ID[Msg] = Invalid_id; 
send( Msg, Msg, next^buss ); 
reply( Msg, from_my_board ); 

} } 
eise { 

reply( Msg, id ); 
if(DES ID[Msg] == My id] |SRC ID[Msg] == My__id) { - ~ 

if( SRC_ID[Msg] == My_id ) WIDTH[Msg] = 3; 
send( Msg, Msg, to_my__board ); 
} 

eise if(DES_ID[Msg]==Invalid_id && ADDRESS[Msg] 

>= low &6f ADDRESS [Msg] <= high ) { 



send( Msg, Msg, to_iny_board ) ; 

} 
eise 

{ 

send( Msg, Msg, next buss ) ; 

} 
} 

} 
} 



1.7 Code for Serial Line Process 

import( Message__set, Pid ) 
() 

mmu id • Pid 
gof_id • Pid 
outl : Pid 
out2 ; Pid 
lower • unsigned[32] 
upper • • unsigned[32] 

Rec__rep(); 
lower = ADDRESS[Msg]; 
upper = DATA[Msg]; 
mmu_id = Rec_rep(); 
gof__id = Rec_rep(); 
Rec__rep(); 
outl = Rec_rep(); 
out2 = Rec_rep(); 
Rec_rep(); 
while( receive( Msg, mmu_id ) ) { 

reply( Msg, mmu_id ); 
if(ADDRESS[Msg] >= lower && ADDRESS[Msg] <= upper) 

send( Msg, Msg, out2 ); 
else { 

send( Msg, Msg, outl ); 
receive( Msg, gof_id ); 
reply( Msg, gof_id ); 

} 
send( Msg, Msg, mmu_id ); 

} 



1.8 Code for Gofer Process 

±mport( Message_set, Pid ) 
() 

in : Pid 
out : Pid 

{ 
Rec__rep(); 
My_number = WIDTH[Msg]; 
Rec^repO; 
in = SRC ID[Msg]; 
Rec_rep(T; 
Rec__rep(); 
out = SRC__ID[Msg]; 
Rec_rep(); 
while( receive( Msg, in ) ) 
{ 
reply( Msg, in ); 
send( Msg, Msg, out ); } 



APPENDIX II 

II.1 Assembler mnemonics 

code - change output to code file 
data - change output to data file 
add - add the value of two registers 
lea - load effective address 
shiftl - shift left 
shiftr - shift right 
roti - rotate left 
rotr rotate right 
ldul6 - load unsigned 16 
ldu32 - load unsigned 32 
ldil6 - load signed 16 
ldi32 - load signed 32 
Idalt - load alternate register 
stalt - atore alternate register 
stul6 - store unsigned 16 
stu32 - store unsigned 32 
stil6 — store signed 16 
sti32 - store signed 32 
if - if condition goto 
call - subroutine call 
leali - long subroutine call 
calls - service cal 
Icalls - long service call 
jump - long jump absolute value 
hop - short jump relative value 
leap - flying leap 
switch - switch modes 
return - return from a subroutine call 
or - bitwise or 
and - bitwise and 
@Label - define a label 
word - define a word of data 
byte - define a byte of data 



Appendix III 

III.l Text file used by program "Set machine' 

0 //me/Frontpanel 
18 19 6 

1 #me/Alu 
2 #me/Mmu 
3 #me/Mem 
4 #me/Mem 
5 //me/Screen 
6 #me/Buss 
7 #me/Buss 
8 #me/Buss 
9 #me/Buss 
10 #me/Gofer 
11 #me/Gofer 
12 #me/Gofer 
13 #me/Gofer 
14 #me/Gofer 
15 #me/Gofer 
16 //me/Gofer 
17 //me/Gofer 
18 #me/Mem 
19 #me/Mem 
20 #me/Gofer 
21 #me/Gofer 
22 #me/Gofer 
23 #me/Gofer 
24 #me/Buss 
25 #me/Buss 

0 

7 8 9 24 25 10 
0 
0 
0 

$80000000 

0 

0 

0 
0 

$80000000 

0 
0 

0 
0 
0 
0 
0 

0 
$40000000 
$00000000 

0 
0 
0 
0 

$40000000 

$00000000 

0 

11 12 13 14 15 
0 

0 

$4000 
$80004000 

0 

0 
0 

$4000 
$80004000 

0 
0 

0 
0 
0 
0 

0 

0 

$40004000 
$00004000 

0 

0 

0 

0 

$40004000 
$00004000 

16 17 20 

1 13 
15 
17 
11 

10 

12 
14 
16 
5 
6 
2 

7 
3 
8 
4 
9 

20 
22 

24 
18 

25 
19 
9 
24 

1 2 3 4 
21 22 23 

2 0 

12 0 
14 0 
16 0 

10 

7 
8 
9 
24 

11 
13 
15 
17 

6 
5 
7 
2 

8 
3 
9 
4 

21 0 
23 0 
18 
24 
19 
25 
20 25 
22 6 
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