
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong Thesis Collection
1954-2016 University of Wollongong Thesis Collections

1985

A design of a multi-process simulator for a new personal computer: a step A design of a multi-process simulator for a new personal computer: a step

in the right direction in the right direction

Christopher N. Tisseverasinghe
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong University of Wollongong

Copyright Warning Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University

does not authorise you to copy, communicate or otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court

may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong. represent the views of the University of Wollongong.

Recommended Citation Recommended Citation
Tisseverasinghe, Christopher N., A design of a multi-process simulator for a new personal computer: a
step in the right direction, Master of Science (Hons.) thesis, Department of Computer Science, University
of Wollongong, 1985. https://ro.uow.edu.au/theses/2786

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses?utm_source=ro.uow.edu.au%2Ftheses%2F2786&utm_medium=PDF&utm_campaign=PDFCoverPages

A Design of a Multi-Process Simulator for a new

Personal Computer

A Step in the Right Direction

A thesis submitted in partial fulfilment of the requirements

for the award of the degree of

HONOURS MASTER OF SCIENCE
(Computing Science)

from

THE UNIVERSITY OF WOLLONGONG

by

CHRISTOPHER N. TISSEVERASINGHE BMath (ComSci) W'gong

UNIVERSITY OF
WOLLONGONG

LIBRARY

Department of Computing Science

1985

I hereby declare that I am the sole author of this thesis,

I authorise the University of Wollongong to lend this thesis to

other institutions or individuals for the purpose of scholarly

reasearch.

ABSTRACT

This thesis presents the design and results of a simulator
for a new multi-processor personal computer. A brief overview of
the machine architecture will be presented as background.

The system design exploits the concept of multiple processes
to support separation of concerns and facilitate modularity and
ease of development. Since the target machine is at a design
state, the simulation studies performed assisted the refining of
the machine's design. The modularisation of code allowed changes
to one component of the simulator to have no effect on the oth-
ers.

The simulator uses message passing to simulate the circuits
in the machine. It was developed and implemented on an ^IBM-XT
using *PORT.

*PORT is a Trade Mark of University of Waterloo
^IBM is a Trade Mark of International Business Machines

ACKNOWLEDGEMENT

This work would not have been possible without the support

and guidance of my supervisor Mr. Gary J. Stafford. The initial

idea for the new machine was initiated by Mr. Stafford. The

facilities provided by the University of Wollongong Computing

Science Department and IBM Australia were extremely useful. Many

thanks are extended to Ms Elisabeth Hilton and Mr. Kingsley

Tisseverasinghe whose generosity and scholarship have saved me

from many errors of omission and commission. Finally I must ack-

nowledge the unfailing encouragement and careful comments of my

wife Caroline and all the fellow graduate students within the

Department of Computing Science.

TABLE OF CONTENTS

1. Introduction 1

1.1. The aim of the project 1

1.2. Development concept . 2

1.3. Introduction of actual machine 2

2. Method of Approach 5

2.1. Discussion of the whole system 5

2.2. Advantages of a multiple process system 7

2.3. Role of the processes 7

2.4. Starting the simulator 8

2.4.1. The contents of the text file 8

2.4.1.1. Name 9

2.4.1.2. Process Number 9

2.4.1.3. Sizes 9

2.4.1.4. Inlds 9

2.4.1.5. Outlds 10

2.4.2. A sample from the text file 10

2.5. Program "Setmachine" 11

2.5.1. The data structure used 12

2.5.2. Using the data to start up the machine . . 13

3. Details of simulated hardware 14

3.1. Introduction of the MMU 16

3.2. Positioning the MMU within the environment . . . 16

3.3. Using the message template fields within the MMU 16

3.4. Design of the MMU simulator 19

3.5. Implementation of the MMU 20

3.5.1. Phase 1 21

3.5.1.1. Processing a message in kernel mode . . 21

3.5.1.2. Processing a message in user mode . . . 22

3.5.1.3. Converting virtual addresses to physical
addresses 22

3.5.1.4. Obtaining the register values 24

3.5.2. Tracing of Phase 1 24

3.5.3. Phase 2 26

3.5.4. Phase 3 27

3.5.5. Phase 4 30

3.5.6. Advantages of tracing 33

3.6. Arithmetic Logical Unit (ALU) 33

3.6.1. Registers 33

3.6.2. Instruction Set 37

3.6.3. Arithmetic 39

3.6.3.1. Operations

3.6.3.2. The shift field ^3

3.6.3.3. The destination field 45

3.6.4. LoadStore ^^

3.6.4.1. Field Definitions

3.6.4.2. The Addressing Mode

3.6.5. Jump

3.6.6. Load Address

3.6.7. If ^^

3.6.8. Access to Alternate Registers 52

3.6.9. Flying Leap ^3

3.6.10. Call 54

3.6.11. Return 56

3.6.12. Switch State 56

3.6.13. Implementation Details 58

3.6.14. Cache (Memory Prefetch) 59

3.6.15. Sending Messages to the Screen Process . . 62

3.6.16. Monitoring the Execution of ALU 64

3.7. Memory 66

3.7.1. Obtaining values from memory 67

3.7.2. Implementation details 68

3.8. Bus 70

3.8.1. Initialisation of the bus process 71

3.8.2. Outgoing message 71

3.8.3. Incoming messages 72

3.9. Front Panel Process 73

3.9.1. Implementation of the Front Panel 73

3.9.2. Screen control keys 77

3.9.2.1. Special Keys 77

3.9.2.2. Implementation of the special keys . . . 80

3.9.2.3. Break Points 82

3.10. On Board Switch (OBS) 83

3.11. Serial Line 84

3.11.1. Implementation 85

4. Testing The Simulator 86

4.1. Writing An Assembler 87

4.1.1. Implementation details 87

4.1.2. Using the Assembler to create test programs 88

4.2. Writing a disassembler 89

4.2.1. Implementation Details 89

4.3. Debugging the two programs 90

5. How to use the simulator 91

5.1. How the simulator works 92

5.2. A sample simulation of a program's execution . . 92

5.3. Concluding Remarks 96

APPENDIX I A1

APPENDIX II A12

APPENDIX III A13

REFERENCES

. Introduction

An overview of the machine being simulated is presented to

facilitate the understanding of the actual simulator. The

machine is being developed at the University of Wollongong. The

simulator allows the user to visually observe the working of the

internal hardware of the machine.

i-'i* aim of the project

The aim of the project is the development of a flexible

simulator to visually observe the execution of a machine. The

simulator was necessary to facilitate testing the conceptual

ideas of the new machine. It may also be used as a debugging

tool for software development in the future. Since the simulator

shows the contents of all the registers, the output can be used

very effectively to debug code produced by a compiler. The simu-

lator had to be written so that it could easily be changed to

follow modifications to the definition of the machine. One of

the most important requirements of the simulator was to display

useful information on the screen. This information must help in

making design changes to the hardware of the machine and help in

debugging programs. The simulator must be able to link all

pieces of hardware and be flexible enough so that pieces of

hardware can be added or removed with ease.

The facilities available for developing the simulator were

an IBM-XT running the PORT operating system. The language used

to write the code is also called PORT. The PORT language is a

mix between "C" and Pascal. It also has system functions such as

"send", "receive", "transfer_to" and "transfer__from" for communi-

cation between processes. The Window Manager provides all the

routines necessary to implement a program driven window.

Development concept

A process begins its existence by executing the first state-

ment of its code. All processes created by programs are given

identification tags by the operating system. The difference from

a procedure is that processes do not lie within the code image of

a calling program.

The PORT operating system is designed to present no diffi-

culty in the use of processes. Unlike the '̂ UNIX operating sys-

tem, processes in PORT are very economical.

The main advantage of this simulator is that it exploits the

"process" concept to facilitate modularity and ease of develop-

ment. A "process" is a sequence of actions determined by its

individual program and input data. The method of development

made it possible to test each individual component of simulated

hardware before connection to the whole system.

1.3. Introduction of actual machine

The machine being simulated has a 32 bit logical address

space and a 32 bit physical address space. The machine has two

different modes, kernel and user. It uses a Memory Management

'UNIX is the Trade Mark of Bell Laboratories

Unit(MMU) based on a segmented memory addressing system using

Base, Limit and Permission registers. MMU registers are at loca-

tions 0 - $5F of the logical address space when the machine is in

kernel mode.

The Main features of the new machine are;

i) Multi-Processor

ii) Asynchronous operation

iii) High resolution screen

iv) Large Memory Size

v) No interrupts

vi) Intelligent Devices

vii) Simple

viii) Reduced instruction set

The machine uses multiple processors to spread the work

load. The basic machine has four processors, the kernel proces-

sor and three user processors. Each processor has space for

cache memory on board to reduce bus contention. Global memory is

the common memory where information about all programs are

stored. The memory available in the machine is of the order of

eight billion bytes. The machine has a basic set of 16 regis-

ters.

The intricate details of each piece of hardware and instruc-

tions in the new machine will be presented in the discussion of

each piece of simulated hardware. The thesis is organised so

that the detailed discussion and explanation of the machine is

discussed where the implementation of each piece of simulated

hardware is discussed. This enables the reader to relate the

implementation with the actual design of the machine.

2.' Method of Approach

A decision was made to use the concept of "process" to write

the code for the simulator. This allows the programmer to write

the code for each simulated piece of hardware separately. The

alternative was to write the whole simulator as one large pro-

gram. Had that been done, making changes would have been diffi-

cult due to the interactions between the pieces of code simulat-

ing different parts of the machine. This method would not facil-

itate step by step development of the machine or separation of

concerns.

_2 .Ĵ . Discussion of the whole system

The machine being simulated consists of a set of hardware

pieces. All the hardware components to be simulated are listed

below.

1. Arithmetic Logical Unit (ALU)

2. Memory Management Unit (MMU)

3. Bus

4. Memory (MEM)

5. On Board Switch (OBS)

6. Gofer (GOF) (Connections)

7. Serial Line (SL)

These are represented in the simulator by processes. Each

process has an individual task to perform. Sent and received

messages represent the interconnection lines in the real machine.

The following describes the fields in the message template. More

details of the fields will be given when needed.

ADDRESS {a 32 bit number}

DATA {a 32 bit number}

WIDTH {2 bits indicate 1,2,3 or 4 bytes for data}

MODE {contains 1 bit, defines kernel or user mode}

ACCESS {uses 1 bit to indicate reading or writing}

REQUEST {defines the type of request made by a process}

Since each process has a well defined task to perform, the

code for each process was tested by using simple programs to

interact with the new process created. Testing was carried out

whenever the code for one of the processes was nearing comple-

tion. This facilitated the development because processes could

be tested before completing the whole simulator.

One major problem in setting up the communication path is

the incorrect message passing of one or more processes.

This manifests itself in one of two ways. When a process

receives a message it has to acknowledge the receipt of that mes-

sage. Until the acknowledgement is received the sender is reply

blocked. Reply blocked processes can be detected by looking at

the status of each process. Thus incorrect communication is easy

to detect and fix. This is analogous to incorrect protocol in

asynchronous circuits.

Incorrect messages are more difficult to detect. By moni-

toring the contents of each message many bugs were detected and

fixed. The bugs were varied, some processes were sending the

wrong contents, and some were sending the information to the

wrong process. These are analogous to wiring errors in physical

hardware.

. Advantages of a_ multiple process system

The problems encountered were only minor compared to those

that would have occurred if the "process" concept had not been

used. The use of multiple processes enforces code modularity and

ease of development.

Using a separate process to simulate one piece of hardware

enables the programmer to consider only the code for which a

change was made. Otherwise the complete simulator would have had

to be considered each time a change was made to any part of the

code.

Role of the processes

Each unit of simulated hardware has a role to play in the

system's execution. A brief description of their functions is

given below

i) ALU - Executes instructions.

ii) MMU - Translates addresses.

iii) MEM - Stores values.

iv) Bus - Traps addresses for its board, connects a single
board to global machine communication path.

v) OBS - Diverts messages to appropriate places.

vi) GOF - Carries messages

When all of the processes are connected and the simulator is

working, sample programs can be executed using the simulator to

monitor working of the hardware components. For example the

simulator can be used to monitor how subroutine calls are done.

Starting the simulator

The simulator is designed so that it can be configured using

a text file. This reduces the need to modify the actual code in

the programs when design changes are made. The processes are

created by a program called "Set__machine". This program is used

to read the information from a text file, start the processes and

set up the communication paths.

¿•A'i* The contents of the text file

Each line of text consisted of the following information.

i) Name
ii) Process Number
iii) Sizes
iv) In__Ids {pronounced "in eye-dees"}
v) Out Ids

¿'A'i'i* Name

The PORT language provides support for building systems of

multiple sequential processes which communicate by message pass-

ing. The "Name" provided in the text file indicates which pro-

gram the process should execute.

_2 Process Number

This is the number given to a process by the programmer to

identify the process. This number is a unique number within the

file. When the simulator is running, the operating system pro-

vides every process with an identification tag. The number given

by the programmer is used by the program "Set_machine" to iden-

tify the different processes it has to deal with. Note that the

name taken from the file does not provide a unique identification

since multiple processes can execute the same program.

I'iL'l'l' Sizes

The sizes refer to the address range to which that particu-

lar process can refer. For example a memory process given the

sizes $0 and $3FFF will be responsible for the first 16384 physi-

cal memory locations.

In Ids

The In__Ids are the process numbers to which a particular

process can listen (receive messages from). These In_Ids are

the process numbers specified by the programmer. This is one of

the main reasons the programmer has to identify processes by

numbers.

l-A-i-l* Out Ids

These are similar to In_Ids except that these numbers refer

to the processes to which a particular process can talk (send

messages).

A from the text file

The following is an extract from the text file which is used

to set up the machine. Refer to Appendix III for a complete

listing of a text file.

0 #me/Frontpanel $0 $0 1 2 3 4 5

1 #me/Alu $0 $0 2 0

2 #me/Mmu $0 $0 1 7 8 0

3 #me/Mem $80000000 $80003FFF 9 10 0

4 #me/Bus $80000000 $80003FFF 11 12 13

In the above example the numbers in the first column are the

process numbers given by the programmer, "#me/Name" is where the

code for the processes are stored. The hex values are the range

of addresses each process will respond to; it should be noted

that only the Memory and Bus processes use the address ranges.

The numbers after the address range are the In_ids and the

Out ids. The separates In_ids from the Out_ids, So for

example, #2 Mmu receives messages from #1 Alu and #7, sends mes-

sages to #8 and #0 Front panel (#7 and #8 are Gofers). All the

details in the text file are analogous to a wiring diagram which

explains how to make the connections between pieces of hardware

in a machine.

An alternative method of setting up the simulator would be

to include all the necessary details in the code of each process.

This could be very tedious when changes have to be made to the

configuration. If this information is included in the code and a

change is required, then the actual code file would have to be

changed every time. Changing the code file is time wasting since

each changed file has to be recompiled before running the simula-

tor. As well, two processes could not have used one code file.

A third possibility would be to include all the start up

details of all the processes in the code of Set_machine. This

method would also require modifications to a code file to change

the configuration. This also implies that the parameters that

define the behaviour of processes are scattered around the pro-

gram Set_machine, which makes it difficult to keep track of all

the information.

l'È.' P^^ogram "Set machine"

This program reads the data and creates the simulator

processes and informs them of the other processes with which they

communicate. All the required processes have to be created

before it is possible to inform each process which it has to com-

municate with. This is necessary because the process numbers

given by the user in the text file are not the real identifica-

tion numbers(ids). Only after each process is created is the

real "id" available. Therefore the whole file of information had

to be read and stored in the data structure discussed below.

._1. The data structure used

The program "Set_machine" must use a data structure to match

the input text. The data structure must also be flexible to han-

dle expansions if needed. The program uses a template called

"Structure" which is defined below to store all the information

in memory. An array of such structures is used to store the

information about each process.

LOW : unsigned[32]
HI : unsigned[32]
ID : Pid {pronounced "Pee eye-dee"}
IN[256] : unsigned
OUT[256] : unsigned
PATH NAME : &char

"LOW" and "HI" are 32 bit unsigned numbers containing the

address range for that process. The "LOW", "HIGH" and

"PATH_NAME" were stored only for debugging purposes. "ID" is

the process-id given by the Operating System when created using

the function "Create". Type "Pid" is a system defined type.

"IN[256]" and "0UT[256]" are vectors to hold the values of In_Ids

and Out Ids. A vector of 256 has been allocated so that the

memory will be more than sufficient for future additions. The

"PATH NAME" refers to the name of the code file.

A question may arise that the data structure uses a lot of

memory. The usage of memory at this point is not very important

because the program "Set_machine" terminates after starting up

the simulator. Therefore the execution of the simulator is not

affected by the program "Setjnachine".

. Using the data to start up the machine

The program sets up a table of the above mentioned data

structures. The table is indexed by the process number in the

text file given by the programmer.

The following algorithm explains the creation of each process.

while not end of text file
read a line of text
pick record using argument 0
Create a process using argument 1
remember its process-id in ID
store the sizes using arguments 2 & 3
send the sizes to the process created
while the next argument is not a

store the argument value in In_Ids[]
while there are more arguments

store the argument value in Outbids[]
for each process entry in the Structure table

while there are more In_ids
send the real In__ids to this process
send invalid id to indicate end of Ids.

while there are more Out_ids
send the real Out_ids to this process
send invalid id to indicate end of Ids.

As can be seen, the configuration of the machine can be

modified very easily. When a new piece of hardware has to be

simulated, the text file can be changed to accommodate the new

addition.

Details of simulated hardware

This chapter will discuss the important details of the

machine components where relevant and the implementation details

of each simulated piece of hardware. The multiple process

environment paves the way for convenient coding of processes. It

allows the programmer to write the code for . each process

separately and test it before linking it with the main simulator.

For example the instruction definitions can be modified and

tested using the simulator. In this section more details of the

machine will be discussed before starting the discussion on

implementation. All the definitions of the machine features are

not part of writing the simulator or part of the project there-

fore justification for every feature of the machine will not be

discussed.

When using multiple processes testing of one process

requires the processes with which it communicates. Therefore all

processes which were not completed at a particular stage were

replaced by dummy processes for the purpose of testing. At this

stage the dummy processes do not assume their eventual role, but

act as communication relayers. The following is a diagramatic

view of the communication path. The arrows indicate the direc-

tion of the communication.

P18 Represent the Communicat ion Path

Figure 3.0 Communication Path

Testing individual processes before linking them to the main

system helps a great deal when debugging. The processes however

can only be partially tested before linking them with the simula-

tor, but it helps to identify communication errors. This can be

also used very effectively to test for correctness of functions.

The details of the MMU will be first discussed because the MMU

was the first program to be implemented and tested.

2-1* Introduction of the MMJ

The main function of the MMU is translation of logical

addresses into physical addresses. The MMU also checks for

invalid addresses and invalid operations on addresses.

3 . Positioning the MMU within the environment

The MMU sits between the bus and the instruction processor.

It receives requests from the instruction processor. Then the

MMU does the necessary address translations and error checking.

If the MMU is satisfied it sends the request to the bus and waits

for a response. After the response is received, it then replies

to the instruction processor with the appropriate details.

+
ALU I

—V +
MMU I +

- V +
OBS ! +

Fig 3.1 Diagram of MMU's position within the whole machine

3.3. Using the message template fields within the MMU

The message template contains 6 different fields, each with

a different purpose. The following paragraphs will describe only

five of the relevant fields in detail because the "REQUEST" field

was not used by the MMU process

The most significant bit in the ADDRESS contains information

to decide which half of the segment set to use. If the most sig-

nificant bit was on, then the upper half (i.e. 24 - 47) should

be used and if the bit was off then the lower half (i.e. 0 - 23)

should be used. After the decision on which half to use has been

made, then the next most significant bit that is on indicates

which segment to use. All the other lower bits give the value of

the offset into this particular segment.

which segment set to use
i s o

This bit indicates
which half of the
segment set to use

32 bit ADDRESS field

Offset
0

Fig 3.2 Example of 32 bit ADDRESS

The MODE field indicates if the process is running under

kernel or non-kernel mode. This distinction is very important

for the MMU because it does not do any address translations when

the machine is running in kernel mode.

The ACCESS field indicates a read or write access. This is

very necessary for permission checking. ACCESS is a one bit

field (1 - read and 0 - write).

The WIDTH field gives the width of the data. This field is

also used to indicate error conditions when returning a message.

The WIDTH field will contain an ok signal or an error condition.

When the data is addressed to the MMU, the 32 bit DATA value

presented to the MMU contains information about the Base, Limit

and Permission registers. All this information is within the 32

bits that have been provided for the DATA field.

32 bit Data field

Bits 31 - 6 Represent Base Register Value
Bits 5 - 1 Represent Limit Register Value
Bit 0 Represents Permissions

Fig 3.3 Diagram of DATA field

Design of the MMU simulator

The main function of the MMU is to repeatedly receive mes-

sages from the ALU, translate the logical addresses to physical

addresses, send the address along the communication path and

reply to the ALU.

The memory management facility works in one of two modes.

They are :

(1) Kernel mode

(2) User mode (non-kernel)

When the kernel of the Operating System is running, the

memory management is effectively short circuited and the address

given by the kernel is taken as the physical address.

The MMU is most useful when a non-kernel process is running.

When in non-kernel mode the MMU has to do the mapping of

addresses and trapping of invalid addresses. It also has to

check for permissions.

The 32 bit address presented to the MMU is used to select

one of 48 sets of registers. Each set of registers consists of a

Base register. Limit register and a Permissions register. Assum-

ing the bits are numbered from 0 to 31 from least significant to

most significant, then the question of which of the 48 segments

is to be used is determined from the bits 31 to 8.

When an address is passed to the MMU two types of errors can

occur: a limit error or an access error. Limit errors occur when

the processor tries to refer to an address outside the specified

address space. An access error occurs when an attempt is made to

write to a read only segment. An access error can also occur

when an attempt is made to read from a segment for which read

access is denied. Checking for these errors is quite simple.

The WIDTH field of the message is used to indicate the type

of error. The two bits in the WIDTH field are used for this pur-

pose. The WIDTH field is used because this field is redundant

when replying.

. Implementation of the MI*iU

The implementation of the MMU was done in several phases.

Starting from the initial design, testing and tracing work had to

be done to pick out the best and most efficient solution to the

problem. The following discussion will explain the initial

design, show the results that have been obtained by tracing this

design and discuss the changes that were made at each stage. The

trace results obtained will show the effects of these changes

when executing the program. Tracing procedures carried out will

be discussed in detail. All other major code modules were traced

and refined in a similar manner. The MMU was the first process

implemented and traced, so the tracing mechanism used and the

results obtained will be discussed here.

¿•l'i- P^^ase

A function "Mmu" was written to repeatedly receive messages

from a process. When a message is received from a process, it is

passed on to a function called "Handlejmsg" which deals with part

of the contents of the message received.

The Handlejmsg function has two major sections. If the MODE

of the message is "kernel", then Handlejnsg will continue pro-

cessing the functions needed for kernel mode addresses. If the

message is not in kernel mode then the processing will execute

the functions needed for non-kernel addresses. The following is

a pseudo code version of Handle msg:

Accept a message from function Mmu
if kernel mode

process message in kernel mode
else

process message in non-kernel mode

3.5.1.1. Processing a message in kernel mode

Assuming the MODE is "kernel", then the Handlejmsg function

should check if the address is between 0 and 96 inclusive, and if

the access is "write". If both the conditions are true then the

function "Set reg" is executed. The Set__reg function uses the

DATA field of the message that was passed in from Handlejnsg to

set the registers. All the information necessary to set the

registers are encoded into the DATA field of the message.

Set reg sets the Base, Limit and Permission registers. It uses

the ADDRESS field to work out which register set to use. After a

particular register set has been assigned values, all the sets

with a higher number are made inaccessible. To make registers

inaccessible, a value of 0 is assigned to the Permission regis-

ter.

When the kernel wants to read values from memory, then the

function "Access_memory" is invoked. This function will pass the

address directly to memory because the request came from the ker-

nel. No address translations are done in kernel mode.

¿•^•jL'^* Processing a_ message in user mode

When a process is running in user mode then all the neces-

sary address translation and error checking has to be done.

¿•^'i*^* Converting virtual addresses to physical addresses

Access_memory converts a logical address to a physical

address. This function performs a very important role in the

Mmu. In address translations, the register set the address

refers to is identified. Which of the 48 sets to use is deter-

mined from the most significant non-zero bit (ignoring the

highest bit) of the address. This can be done in many different

ways. In phasel two tables called "Mask_table" and

"High bit numbers" are used to determine the register set and the

offset.

A loop was constructed to shift the 32 bit address by 8 bits

each time around the loop to find out which byte contained the

necessary bit to determine the register set. This method was

used instead of 32 one bit shifts so as to reduce the amount of

testing that would have to be done to determine which bit was on.

The highest bit that was turned on is located by indexing into

the table of High_bit__numbers. On obtaining the highest bit that

was turned on within the 8 bit byte, the number of bits that have

been shifted can be added to work out the highest bit relative to

the 32 bit address. This value is used to index into the

Mask_table so that the offset can be selected.

The High_bit__numbers table is indexed by an 8 bit number,

therefore this table contains 256 locations. When the table is

indexed by a number (0 <= number < 256) it returns the position

of the most significant bit that was on.

For example consider the following address:

$00003543

When the High_bit_numbers table is indexed with the value

$35, the value 6 is obtained, this being the most significant bit

that was on, (if the bits are numbered 1 - 8 from right to left.)

The Mask_table contains mask values to obtain the offset

into a particular segment. The values in this table mask off the

the most significant bit that was on, which indicated the regis-

ter set to be used. The table is indexed by a value between 0

and 23 inclusive and therefore contains 24 locations. The mask

values are worked out assuming the address was shifted right by

eight, so that only the upper 24 bits are taken into considera-

tion.

eg : value of 6

If the Mask__table is indexed with the value of . 6 then the

value of $0000001f results and this will mask off the bit which

was used to indicate the register set. After masking off that

bit, the offset into this particular segment to be used is

obtained. Thus for $3543, the register set is 6 and the offset

into that segment is $1543

Obtaining the register values

After calculating the register set to use, the Base, Limit

and the Permissions are obtained by indexing into the register

tables. Summing the offset and the Base value gives the physical

address. Before summing the values a check is made for a possi-

ble limit error. After obtaining the physical address, the

access permissions must be checked for any violations. If a

limit error or an access error occurred, then an error indication

is returned.

Tracing of Phase

The execution of the MMU was traced to ascertain where it

was spending most of the time, and to find out where changes

could be made to make the running of the MMU more efficient. The

main concern was to cut down on the number of instructions the

MMU took to complete one translation cycle. A file of addresses

and data was created to simulate input from the ALU, The file

contained 500 sets of data. The same file was used throughout

all the testing and tracing phases.

An example of a set of data is as follows:

uwf $1234 $678

"uwf" - user mode, write, full word

$1234 - Address field

$678 - Data field

Trace Results of Phase , No. £f instructions per function

Mmu 20393

Handle_msg 19298

Access_memory 164340

Set_reg 19851

Total* 247815

*Total includes instructions from other functions.

After the MMU function was traced with the sample data, the

areas that had to be changed were self evident. Analysing the

trace by function output, it was found that the program was doing

the bulk of its work in Access_memory. Analysing the trace by

instruction output it was noticed that most of the instructions

were executed to pass the message to, and return the message

from, functions that needed the message. The initial intention

was to reduce this unnecessary work load of passing the message

to each function.

When the records have to be passed to a function the whole

record must be copied each time it is passed. Copying records

consumes a lot of instructions. Copying a record each time a

function needs it is unnecessary when it can be set up so all

functions have access to it.

I'l'l- Phase 2

The problem of passing the message was affecting all the

functions, so a decision was made to have the message as an

external so that all the functions have access to the message

without having to pass it to each of the functions that used it.

This method was decided upon after considering the option of

passing a pointer to the message. The pointer passing method was

not very efficient because the processes still had to execute

unnecessary instructions to pass a pointer to the message. The

biggest cost with passing a pointer to a record occurs when a

field in the record has to be accessed. When a field within the

record is needed by a function, the address has to be computed

before accessing the field.

Trace Results of Phase £f instructions per function

Mmu 8909

Handle_msg 2430

Access memory 157033

Set__reg 19851

Total* 212132

*Total includes instructions from other functions.

After tracing the execution of phase2 it was distinctly-

noticeable that a large number of instructions had to be executed

to do 32 bit shifts. This was mainly due to the fact the the

8086 processor performs 32 bit shifts by only shifting a single

bit at a time. So multiple shifts have to be done in a loop.

The Access memory function had to do many 32 bit shifts to work

out the high-bit that was on in the 32 bit address given to

Acces s_memory.

The main aim of Phase 3 was to reduce the total number of

instructions executed by reducing the number of 32 bit shifts.

Phase _3

Changes to the function Access memory were centered on where

32 bit shifts occurred. In the previous phases there was a great

deal of unnecessary shifting because 8 bits were shifted each

time around the loop to find out if the bit sought occurred in

those 8 bits. One half of the search area was eliminated by

doing a simple check which did not require any shifting of bits

The pseudo-code for this particular check is as follows.

if (Address bit-wise and with $FFFFOOOO)
upper 16 bits

else
lower 16 bits

From the above check it was possible to decide which half

the high bit was in. Only the bits 16-8 from the lower 16 bits

have to be considered because only 24 bits need to be used.

After it has been decided which half to look at, then a test

value and a mask value have to be created to check the address to

find out the highest bit that was on. The test value is used to

check a particular bit to see if that bit was on, the mask value

is used to find out the offset into the particular segment. This

method is basically a linear search (i.e. each bit starting from

the most significant bit is tested with a new test value each

time down to the least significant bit in that particular half.)

The pseudo version of this check is as follows.

if in upper 16 bits
initialise Test
initialise Mask
if (Address bit-wise and(&) with Test)

work out register set
work out offset

else
shift Test value right by 1
shift Mask value right by I

else in lower 16 bits
initialise Test
initialise Mask
if (Address bit-wise and(&) with Test)

work out register set
work out offset

else
shift Test value right by 1
shift Mask value right by 1

A loop was created to check each bit consecutively. The

starting mask value depends on the starting test value. If a

decision was made to search the upper half, then the starting

test value will be $80000000 and the starting mask value will be

$7FFFFFFF. The test and the mask values will change according to

the search area.

The following trace results were obtained after making

changes.

Trace Results of Phase 2.» £f instructions per function

Mmu 8909

Handlejmsg 2430

Access_memory 94699

Set_reg 19851

Total* 148906

*Total includes instructions from other functions.

2-1-1- Phase ^

This phase of modification uses a similar technique to that

of phase3. It is that of reducing the search area by doing a

bit-wise "and" to check if any bits were on in a particular area

of the address field. This method is very tedious to write but

it should reduce the number of instructions needed to find the

high-bit number. The technique to be used in Phase 4 is a binary

search technique, which eliminates one half of the search area

after each comparison.

The code for searching the high bit number using a binary

search technique was modularised to its extreme. It was written

so that after each check a different function was called. An

example of such a test was mentioned in Phase 3. The technique

of testing and eliminating the search area was used in all the

functions until the appropriate bit was found. This method was

rather complex to implement because of the number of functions

that had to be used. The high number of functions were needed to

cover all possibilities when doing a binary search. The organi-

sation of the functions were similar to a binary tree.

Considering the function calls as a binary tree, each leaf

node contained a mask value and a high-bit number. The values

used for mask value and the high-bit number were assigned to

external variables. This allows all functions free access to

these values. The only drawback to the binary search technique

is the amount of manual work needed to create the functions.

Phase 3 needed the least amount of manual work. This was possi-

ble because only the initial values of Test and Mask had to be

assigned. In phase4 all the possible Test and Mask values had to

be worked out manually. In phase 4, the 32 bit shifts have been

eliminated.

The "Set_reg" function used a loop to assign zeros to all

register sets not in use. It was changed to use the system func-

tion "Zero" which made it more efficient.

Trace Results of Phase £f instructions per function

Mmu 8909

Handlejnsg 2430

Access_memory 41201

Set_reg 4210

Total* 98911

*Total includes instructions from other functions.

From the trace results it can be seen that there has been a

considerable saving in the number of instructions consumed by

Ac c e s s_memo ry.

After analysing the trace results more thoroughly it was

seen that more savings were possible by reducing the number of

functions. This was done by bringing the setting of mask and

high bit numbers functions up by a few levels. Savings could

then be made in the number of instructions needed to make func-

tion calls. In the PORT language this is not a very big saving

(only uses 2 instructions per call and return), but in a language

such as ' C there would be a much bigger saving.

After all the major changes were done, some minor adjust-

ments were done to reduce the number of variables used. This was

basically a clean-up process to. reduce redundancy. The trace

results of the final version follows.

Trace Results of final. No. of instructions per function

Mmu 8909

Handlejnsg 2430

Access_jiiemory 29107

Set_reg 4210

Total* 86818

*Total includes instructions from other functions.

Advantages of tracing

From the above results it is obvious how advantageous it is

to monitor and make programs more efficient. The number of

instructions needed to simulate all the MMU operations have been

reduced from 247815 down to 86818 which is a very large saving.

Since the number of instructions executed have been reduced, the

speed of execution has been increased.

l-l- Arithmetic Logical Unit (ALU)

The main function of the ALU is the execution of instruc-

tions. It is also known as the Instruction Processor (IP). The

ALU talks to the MMU when it has to read an instruction or when

it has to make a reference to data memory. When the ALU needs to

display any information it sends a message to the Front Panel to

display the information on the screen. This is not part of the

hardware definition but rather visualising execution of test pro-

grams. The major parts of the machine that relate to the ALU

will be discussed in detail,

¿•¿•i* Registers

The machine has a basic set of 16 thirty two bit registers.

These registers can be considered in two parts: 8 registers which

are manipulated directly by the program which is defined by those

registers, and another 8, which are hidden from the program but

used for other purposes by the ALU. The machine has two sets of

registers, one for kernel and the other for user processes.

Since the machine has two sets of registers the simulator had to

be written so that values of these registers can be stored and

made available at all times. This could have been done in many

different ways such as linked lists, structures, 32 variables or

vectors. The simulator utilises a vector to hold the active 16

registers that exist in the machine. This method has been chosen

because vectors can be indexed by using values extracted from

instructions. All the register values are displayed on the

screen when the machine is running. More details of the displays

will be discussed in the front panel section. The following

table lists all 16 registers as they have been defined.

Register Name Used for
General Register 0 General purpose
General Register 1 General purpose
General Register 2 General purpose
General Register 3 General purpose
General Register 4 General purpose
Frame Pointer Pointer to Local data Space
Old Frame Pointer Old value of Frame Pointer
Program Counter or Zero Points to the next instruction

treated as zero in ALU
Old Program Counter Old value of Program Counter
Status Register Flags affecting Execution
History Register 0 Contains an Old Program Ctr.
History Register 1 Contains an Old Program Ctr.
History Register 2 Contains an Old Program Ctr.
History Register 3 Contains an Old Program Ctr.
History Register 4 Contains an Old Program Ctr.
History Register 5 Contains an Old Program Ctr.

Figure 3.4 Register Set

The five general purpose registers are used for all arith-

metic and logical operations in the machine. All operations are

conducted with 32 bits of precision. These five registers can be

augmented by the next two, which are the frame pointer(fp) and

old frame pointer (ofp) registers. The only thing which dif-

ferentiates these two registers from the five general purpose

registers is the affect on their contents when certain instruc-

tions are executed, hence they are named differently to distin-

guish them from the other five.

The last of the first eight registers is viewed in two dif-

ferent ways. When instructions are being fetched from memory

this register is treated as a pointer into the area of memory

which contains instructions. It is treated in the same way for

instructions which change the location of execution such as jumps

and calls. However, for all other instructions this register

presents another appearance. It is viewed as a register which

contains the value zero. Thus, for example, it is not possible

to change the program counter (pc) with arithmetic instructions.

Since this restriction applied to the (pc) register, the simula-

tor had to be written to cope with this problem in a simple

manner.

Now that the first eight registers have been discussed, the

second eight registers will be discussed. The old program

counter (opc) is used with call and return instructions to pro-

vide a fast subroutine call mechanism.

The status register contains various bits. The main infor-

mation represented by the bits are:

a) Whether the process is in kernel or user mode

b) The reason for switching to kernel mode from user
mode.

c) Whether to simulate a switch state instruction.

d) The one condition code of the machine
which is the carry bit

The last six registers are history registers, which are

changed by instructions such as jump and call. To see how these

registers are manipulated, a simple algorithm can be looked at.

The assumptions are that the "Destination" has been defined,

either by computing the address from the short version of the

instruction and the current program counter, or by loading the 32

bit value which followed the jump instruction.

Register[HR5] = Register[HR4]
Register[HR4] = Register[HR3]
Register[HR3] = Register[HR2]
Register[HR2] = Register[HRl]
Register[HRl] = Register[HRO]
Register[PC] = Destination

Figure 3.5 History register Algorithm

The History registers which are a part of the 16 registers

could have been implemented using a circular list, but it was

implemented utilising an array to hold the values. Using a cir-

cular list would have made jumps and calls simpler. The array

method was used for the sake of simplicity and code modularity.

Using a circular list in this case would have made other opera-

tions more complex.

Instruction Set

There are 16 basic instructions in this machine. All

instructions are an integral number of half-words in length.

Which of the 16 instructions to perform is indicated by the most

significant non-zero bit of the instruction packet. The follow-

ing diagram gives the basic instructions and specifies which bit

indicates which instruction.

-+

1 1 1 1 1 1
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
X X X X X X X X X X X X X X X X

I +- Switch State
+ Return

Call
Flying Leap
*NCD
*NCD
*NCD
*NCD
Load Store Alternate
*NCD
*NCD
If
Load Address
Jump
Load - Store
Arithmetic

*NCD - Not Currently Defined

Figure 3.6 Basic Instructions

Since the most significant bit (MSB) indicates which

instruction to execute, the simulator had to implement a very

efficient means of obtaining the MSB from a given instruction

packet. Therefore it was decided to write a function to strip

the bits in the instruction and return the MSB that is on.

In the following paragraphs, the details of all the instruc-

tions implemented will be discussed.

Arithmetic

All arithmetic and logical Instructions are of the form

shown In the following figure.

1 1 1 1 1 1
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

l A A A B B C C D E E E F G G G I I I I
I I II Source Register
I
H Negate Source

H—h-H Destination Register

Negate Destination

+--H Carry

Shift

I I H Operation

Figure 3.7 Arithmetic Instruction

These Instructions operate on the contents of the seven

registers, plus the register containing zero. To describe these

Instructions the following notation will be used. This notation

will be discussed before the specific Instructions are dealt

with.

The notation:

Register[X]

denotes the address or contents of the register "X" as appropriate

For convenience, in describing how the arithmetic instruc-

tion works, four pseudo registers will be defined. These are

named "Sourcel", "Source2", "Carry" and "Result". These are all

33 bit registers except for "Carry" which is 1 bit.

The bits of the instruction will be referenced by their

letters which were shown in figure 3.7. Note that the concatena-

tion of bit names implies the concatenation of their respective

bit values, thus AAA denotes a value from 0 to 7 as extracted

from the three bits in the instruction at the location shown in

the figure 3.7.

If the "D" field is on, then the destination register value

is complemented, before being loaded into Sourcel. If the "F"

field is on, then the source register value is complemented

before being loaded into Sourcel.

The "CC" field defines the value of a local variable called

"carry" used within arithmetic operations.

if CC == 0 carry = 0
if CC == 1 carry = 1
if CC == 2 carry = carry bit from status register
if CC == 3 carry = complement of carry bit from

status register

Operations

If AAA is equal to the value 0, the operation requested is

an addition. The sum of Sourcel, Source2 and Carry is placed in

the register Result. This will result in 33 bits of information.

Since the addition is done wi.th 33 bit registers and the 8086

processor only does addition in 32 bits the simulator had to have

a special addition routine to cope with these conditions.

If AAA is equal to the value 1, then the operation requested

is a bitwise "And". The bitwise "And" of Sourcel and Source2 is

placed in the register Result.

If AAA is equal to the value 2, the operation requested is

bitwise "Or". The bitwise "Or" of Sourcel and Source2 is placed

in the register Result.

If AAA is equal to the value 4, then the operation is a

shift to the left of the value of Source2, by the value of

Sourcel. The Result is set equal to Source2. For each bit

shifted the Carry bit is copied to the least significant bit of

the Result.

Result Carry

Figure 3.8 Shift Left

If the value of AAA is equal to 6, then the operation is the

same as Shift Left, except that the Carry is copied to the bit

which was moved from the 33rd position of the result.

Result Carry
Figure 3.9 Rotate Left

If AAA is equal to the value 5, then the operation is a

shift to the right of the value of Source2, by the value of

Sourcel and the Result is set to Source2. For each bit that was

shifted, the Carry bit is copied to the most significant bit of

the Result.

Carry Result

Figure 3.10 Shift Right

If the value of AAA is equal to 7, then the operation is the

same as Shift Right except that the Carry is set to the bit which

was moved from the least significant position of the Result after

each shift.

Result

Figure 3.11 Rotate Right

1-i-l-l* shift field

If the value of BB was 0, then the Result and Carry regis-

ters are left as they were. The Result stays the same.

If the field BB has the value 1, then the Result register is

shifted left one bit and the value of the Carry register is

added.

Result

Figure 3.12 Shift left one bit

If BB has the value 2, then the Result register is shifted

right by one bit and the Carry register is shifted left 31 bits

and added to the result register. The Carry register is set to

the value of the bit which was removed from the least significant

bit of the Result register.

Result

Figure 3.13 Shift right one bit

If BB has the value 3, then the Result register is shifted

right by one bit and the 32nd bit is set to the 31st bit. The

Carry register is set to the value of the bit which was removed

from the least significant bit of the Result register.

Result

Figure 3.14 Shift right one bit

Since the maximum bits per word is 32 bits, and the arith-

metic operations required 33 bits, temporary variables had to be

used in the simulator to store partial values.

I'l'l'l' destination field

The contents of the Result register are placed back into

Register[EEE] and the value of the 33rd bit of the Result regis-

ter is placed into the least significant bit of the status regis-

ter. Since the values obtained from the EEE bits can equal 7,

special precautions had to be taken when writing the simulator to

avoid storing values in register 7.

¿•¿'A* Load Store

The Load and Store instructions are either one, two or three

half words long. The extra half-words are necessary for various

addressing modes and will be discussed later. The discussion of

Load and Store will make reference to the following figure.

l i l i l í

5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

O I A A A B B B C C C C C C C C I I I I I I I I I I I
I I I Addressing Mode

+ - + - + Register

Operation

Figure 3.15 Load or Store

1-i-A-i* Definitions

The BBB field of the instruction specifies one of the eight

registers available to the arithmetic unit. This forms either

the source if the instruction is a Store, or the destination if

the instruction is a Load.

The following table gives the meanings of the operation field

I AAA I Operation Implied I
^ H +

I 000 I Load 16 bit zero fill |

I 001 I Load 32 bit | + H ^
010 I Load 16 bit sign extended

011 I Load 32 b i t I
+
I
+ I
+ I

+

100 1 1 Store 16 bit

101 1 1 Store 32 bit

110 1 1 Store 16 bit

111 1 1 Store 1
32 bit

Table 3.1 Load Store Operations

._2. The Addressing Mode

The following figure displays the assignments of the bits in

the addressing mode.

7 6 5 4 3 2 1 0

A A A B B C C C

— Register

Extra Half-Word

Offset

Figure 3.16 Addressing Mode

The only form of addressing specifies a register and an

offset. The contents of the register are added to the offset,

and the resulting value is the address of the operand. The

offset can be either 3 bits, 4 bits, 16 bits, or 32 bits, depend-

ing on the value of the BB field. The following figure will

explain how the offset is calculated from the bit positions.

Note that the size bit of the instruction is also involved.

instruction iNext Half-Word ¡Third Half-Word |

1OlXXsXXXaaabbXXX|QQQQQQQQQQQQQQQQIPPPPPPPPPPPPPPPP1

sbb

000

001

010

Oil

100

101
+-

110

111

Offset Implied

aaa

laaa |

QQQQQQQQQQQQQQQQ I

PPPPPPPPPPPPPPPPQQQQQQQQQQQQQQQQI

aaaO

laaaO |

QQQQQQQQQQQQQQQQ I

PPPPPPPPPPPPPPPPQQQQQQQQQQQQQQQQL

Figure 3.17 Implied Offsets

The addressing mode function should be able to get the

correct amount of instruction packets when necessary because of

the varying size of the offset.

The following diagram shows the bits in the Jump instruc-

tion.

1 1 1 1 1 1
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

O O I B C C C C C C C C C C C C I I I I I I I I I I I I I I — off^t
I
H Extra Size

Figure 3.18 Jump instruction

If the B field has the value 1, then the destination address

is contained in the two half-words which follow the jump instruc-

tion. This provides for access to any location in memory.

If the B field has the value 0, then the area of memory

which is accessible is limited by the available number of bits.

This implies that when simulating the "jump" instruction,

there has to be a method of obtaining more instruction packets

when necessary. The history registers would also have to be

assigned the correct values. When calculating the short offsets,

the 12 bits have to be sign extended and the program counter must

be incremented at the right time.

^Q^^ Address

The Load Address instruction essentially skips the operand

fetch of the Load instruction. Instead of computing the address

of the memory operand, then fetching the operand, the address is

treated as the operand. The following diagram shows the Load

Address instruction format.

1 1 1 1 1 1
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

O O O I A B B B C C C C C C C C i I I I I I I I I i I I I I — Addressing Mode

Register

Size

Figure 3.19 Load Address

It may be noted that the addressing mode register and size

fields of this instruction are in the same bit position as in the

Load and Store instructions. This makes instruction decoding for

this instruction simply a subsection of the instruction decoding
of the Load and Store instructions. This implies that there

should be a function to work out the addressing mode.

l-i-Z*

This machine has a "If" instruction which is essentially a

combination of a comparison and a conditional branch. The fol-

lowing figure gives the bit assignment for this instruction.

1 1 1 1 1 1
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

O O O O I A A A D E E E F G G G
— Right Register

Negate Register

Left register

Negate left

Relation

Figure 3.20 If instruction

The two operands are specified just as they are for arith-

metic or logical instructions. There is a third operand found in

the following half-word which is a 16 bit signed value which is

to be added to the program counter if the test made is true. The

test is specified in the relation field.

- 5 2 -

AAA

000

1 Do Jump if it is True that

1 Left Equal to Right
= = = = = = = = = =

001 1 Carry bit is zero

010 1 Left Less Than Right (unsigned)

o i l 1 Left Not Greater Than Right (unsigned)

100 1 Left Less Than Right (signed)

101 1 Left Not Greater Than Right

110 1 Carry bit is one

111 1 Left Not Equal to Right

Table 3.2 Relation Definition

Since PORT supports both signed and unsigned tests, the

testing of conditions will not cause much problems.

Access to Alternate Registers

The following figure gives the bit assignments for this

instruction.

1 1 1 1 1 1

5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

O O O O O O O I A B B B C C C C I I I I I I 1
— Alternate Register

Current Register

Operation

Figure 3.21 Load or Store Alternate Registers

The CCCC field indicates which of the 16 registers in the

alternate set is the one in question.

The BBB field indicates which of the 8 registers of the ker-

nel is the other register in question.

If the A field has the value 0, then the alternate register

is loaded from the kernel register. If it has the value 1, then

the kernel register is loaded from the alternate register. This

implies that there has to be a means of storing both sets of

registers, so that depending on the value of "A" the loading of

registers can take place.

Flying Leap

The following figure gives the bit assignments for this

instruction.

1 1 1 1 1 1
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

O O O O O O O O O O O O I A A A
— Register

Figure 3,22 Flying Leap

The value of the destination i s taken from the contents of

the register spec i f ied in the AAA f i e l d . After the destination

address has been determined, the same algorithm used for the Jump

instruction can be used.

2 .^ .10 . Call

The following f igure gives the bit assignments for this

instruct ion.

1 1 1 1 1 1
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

O O O O O O O O O O O O O I A B
Service

Length

Figure 3.23 Call

The A field indicates how the destination is to be computed.

If A has the value 0, then the destination is computed from the

program counter and the 16 bit signed value following the

instruction. If A has the value 1, then the destination is the

value of the 32 bit word which follows the instruction. When the

16 bit number is used, sign extension of the number must be taken

into consideration.

The B field indicates which of two different call instruc-

tions are to be used.

If B has the value 1, then this is a service call and the

value of the program counter is simply stored in the old program

counter register.

If B has the value 0, then the call is more complex. This

requires the simulator to assign the value pointed to by the Old

Frame Pointer to the Frame Pointer. Then store the Program

counter at Frame Pointer + 2, and assign the value of Frame

Pointer back to the Old Frame Pointer.

In both cases mentioned above, the same algorithm for saving

the history registers has to be executed. This implied that the

simulator needed two different functions to handle the two cases

because the service call is much simpler to implement. The func-

tions which handle the "call" instruction must have means of

obtaining more instructions if necessary to work out the offset.

¿•¿•iL* Return

The following figure gives the bit assignments for this

instruction.

1 1 1 1 1 1
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

O O O O O O O O O O O O O O I A I

H — Service

Figure 3.24 Return Instruction

If the A field has the value 1, then this is assumed to be a

return instruction which matches a "call" instruction which also

had the least significant bit as a 1. As such the program

counter is simply set equal to the value of the old program

counter.

If A has the value 0, then a more complex return is needed.

The algorithm is the reverse of the call instruction. Therefore

the function to handle the "return" instruction should be able to

differentiate between the two different calls.

. Switch State

There are two states in the machine which indicate which of

the two register sets is the current set. The execution of the

Switch State instruction changes the current set to the other.

1 1 1 1 1 1
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

O O O O O O O O O O O O O O O l

Figure 3.25 Switch State instruction

If the kernel wishes to dispatch a process it simply loads

the other register set and then executes this statement.

When a non-kernel process wishes to have the kernel perform

some operations it simply executes this instruction and the ker-

nel will continue from the location after the one at which it

executed the switch state instruction that dispatched the pro-

cess.

When this instruction is executed, certain bits in the

status register get set to indicate the reason. Trace trap test-

ing will be disabled until after the next instruction.

The Switch State instruction definition implies that it

could be implemented in two different ways.

1. Two vectors could have been used to hold the values of
the two register sets and access the values through a
pointer.

2. One vector could have been used to hold the values of
one register set and copy the values of the register
set in use.

3 »6.13. Implementation Details

The code for the ALU process was written in different

stages. The stages were as follows :

(i) Wrote a function to initialise all variables called
"Initialise".

(ii) Wrote a function called "Run" to select the
instruction to be executed and then call a function
to execute the instruction.

(iii) Wrote each of the functions which execute an
instruction.

(iv) Wrote all the support functions to do minor tasks.

The "Initialise" function is very small containing all the

necessary initialisation statements. This is the function that

receives the messages from the program "Set_machine" and sets up

the communication path for the ALU. It also initialises the pro-

gram counter register and the frame pointer registers to their

initial values.

The "Run" function has the main control loop. It repeatedly

reads instructions, select the most significant non-zero bit and

calls the appropriate function to execute that particular

instruction.

Originally instructions were executed silently without the

use of the screen. After the Front panel process was created the

ALU could send messages to the front panel to display certain

information. More will be discussed about the Front panel later.

The Run function sends a SERVER READY message to the Front panel

when it is ready to execute instructions. After sending a

SERVER_READY message it calls the function "Get_next_inst" which

gets one instruction from memory. It then calls the function

"Inst_length" which returns the number of instruction packets

needed to execute this particular instruction. If more instruc-

tion packets are needed, either another 1 or 2 are obtained.

After the necessary packets are obtained, and if the

instruction has to be displayed on the screen, the function

"One_instruction" is called to take either 1, 2 or 3 instruction

packets and concatenate them into one string. After the instruc-

tion string has been formatted "Update__inst" is called to update

the instruction display on the screen.

The main purpose of the "Get next inst" function is to

obtain the next instruction from code memory. The original

design of this function was very inefficient because, every time

an instruction was required it had to send a request to memory

which can be a very slow process. To improve the speed an

instruction cache was introduced. At this point in time the

simulator was driving the design of the machine. By observing

the execution of the simulation, improvements to the machine

design were made possible. One such improvement was incorporat-

ing cache memory.

3.6.14. Cache (Memory Prefetch)

The main purpose of having on board cache memory is to

reduce bus contentions. Having a local area of cache for each

processor is very effective particularly in the case of a program

executing a loop which has all the instructions within the cache

area. The maximum capacity of the cache is 256 bits. This is

implemented as a linked list of four nodes based on the following

template.

LINK I &Cache__entry

ADDR : unsigned[32]

VALS[4] : unsigned[16]

The field ADDR contains an instruction or data address, the

vector VALS contains the instructions or data that are at ADDR,

ADDR+1, ADDR+2 and ADDR+3. When the function "Get__next_inst" is

given an address, it checks the linked list to confirm if that

particular address is in the linked list. If the address is

found to be in the linked list, it then moves that particular

node to the head of the list, and returns the values in vector

VALS. As can be seen above, there are four instruction packets

in one node, therefore the probability of finding the next packet

in the same node is very high. This is the main reason for

choosing this data structure as opposed to an array. Using an

array structure would be too slow because every time a value is

required, the search has to start from the beginning of the array

or a wrap around index would have to be used. To avoid such a

situation the array would have to be rearranged each time a value

is found, which would still be uneconomical.

If the value is not found in the linked list, then a request

is sent to memory to obtain another 4 packets of information.

The new information is put at the head of the linked list. Each

time memory is accessed, 4 packets are obtained because the

memory is read 64 bits at a time.

Caching was also done for data memory access. The only data

that cannot be cached is the Input/Output(I/O) data. The

"Get__next__data" function makes certain that the data required is

not I/O data before it checks in the cache. At the initial

stage, the data cache did not exist, but adding the code neces-

sary to implement a data cache was very simple. The only func-

tion that had to be changed was the function "Get__next_data".

This confirms the advantage of using functions and processes to

do different tasks. The only process affected was the ALU,

because the function "Get_next__data" resides as part of the ALU

process. This also takes advantage of the PORT scope rules since

only the function changed could be affected.

When the "Get_next_data" function was first changed to

introduce a data cache, there was a bug which was not obvious.

The linked list used to store the data cache was loaded with the

same value twice. Therefore the program worked but the loading

of the data cache was not executed correctly. When the addresses

of the data cache were displayed on the screen using the Front

Panel process the bug was detected. This was a good example

where the simulator was used to help in debugging the simulator

itself.

The function "Assign__history_regs" was written to modularise

the code because each time the program executes a Jump, Call, or

a Flying_leap, the history registers have to be changed.

Sending Messages to the Screen Process

A function called "Send__to__window" was written which has the

following arguments.

which : unsigned {field number on the screen}

address : unsigned[32] {contents to put on the field}

request : unsigned {how to display the contents}

When the function receives the above arguments from the cal-

ling process it assigns the values to the appropriate fields in a

message and sends the message,to the Front Panel process. This

function is called by many functions which require display infor-

mation on the screen. The function was created to reduce the

code size, so that all the functions that have to send informa-

tion to the screen do not have to set up a message and send the

information. The pseudo-code version of the function follows.

WHICH[message] = field number
ADDRESS[message] = field content
REQUEST[message] = request
send message to Front Panel
return

The same function discussed above was used by various

processes, such as the MMU process. This method would also make

the calls to display information by different processes con-

sistent. By making the function consistent, making changes to

its content is much simpler.

Whenever register contents have to be updated the function

"Update__registers" is invoked. This function uses a variable

called "Base" which is the screen field number of register 0.

When the other registers have to be accessed their manifest con-

stant is added to the Base field to define their screen field

number. The contents of the registers are accessed by their man-

ifest constants. The contents of the registers are in an array

which makes it uncomplicated to refer to a particular register by

simply indexing the array by the manifest constant. Any other

data structure would have been very time consuming to code and to

implement. The function "Update__registers" invokes

"Send to window" each time a register value has to be displayed

on the screen. Registers other than the program counter register

get updated on the screen only when tracing has been turned on.

The function "Redraw_prefetch" is used to display the

addresses that reside in the cache. This function is called each

time an address has changed within the linked list. Similarly

the display is updated only when tracing is required.

3.6.16. Monitoring the Execution of ALU

The monitoring Is done to find out the efficiency of dif-

ferent program modules. This Is Important In order to detect

which parts of the programs are being executed Inefficiently.

The word "efficiency" In this context means the measure of the

number of Instructions taken to execute a certain task. Effi-

ciency Increases as the number of Instructions executed

decreases. To measure the efficiency, a general approach which

Is similar to the tracing of the MMU has been used, therefore

this discussion will be on the modifications that were made to

the program code and not how the tracing was done.

Code size Is very Important when writing programs, but

another equally Important aspect Is the number of actual machine

Instructions that get executed to do a certain task. It Is pos-

sible to write a program which Is rather small In code size, but

the number of machine Instructions It executes Is far too large.

The best way to start to reduce the number of Instructions that

are executed Is to run a sample program and do some experiments.

A test program was written using the new machine's Instruc-

tion set to work out the dates of Easter until the year 2099.

The tracing was done whilst working out Easter for one year. At

the Initial stage the ALU of the simulator used approximately

2958 Instructions for each Instruction packet simulated. When

the trace by function Information was obtained. It was obvious

which functions were executing an excessive amount of Instruc-

tions. The function "Add" used close to 200,000 Instructions.

All the other major usage was in the functions that were used by

the function "One instruction".

The first attempt to reduce the number of instructions was

concentrated on the functions that were used by

"One__instruetion". This was done because the function

"One_instruction" was not part of the actual hardware design of

the ALU. Another reason was that the function "One_instruction"

was invoked many more times than the function "Add". The func-

tion "One_instruction" was invoked for every instruction that was

executed. Looking at the code, it was clear that most of the

functions were doing things that did not need to be done or that

they were written very inefficiently.

After modifying the functions that were inefficient, the

next version used approximately 1447 instructions for each

instruction packet. In the first version, the function

"One__instruction" was called each time an instruction packet was

obtained. After the modification, the "Run" function reads an

instruction and used a function called "Inst__length" to work out

how many more instruction packets it needs to execute. If more

instructions are needed, the next 1 or 2 instructions are read

and then the function "One_instruction" is called to make up the

string which contains all the instruction details to be displayed

on the screen. The function "Inst_length" uses very few instruc-

tions, comparatively the function "One__instruction" uses many

more instructions. Therefore adding a new instruction and reduc-

ing the calls to "One_instruction" reduced the number of instruc-

tions executed.

Looking at the function "Add" it was seen that the algorithm

used to add two binary numbers was very inefficient. The algo-

rithm needed too many 32 bit shifts. Doing 32 bit shifts costs

too much in the number of instructions that are needed to execute

the operation. After improving the algorithm for "Add" and mak-

ing more modifications to the function "One_instruction" and its

member functions, the ratio of machine instructions vs. instruc-

tion packets were reduced down to approximately 1074. Compared

to the original code, the saving on instructions is approximately

60%.

The evidence emphasises the importance of tracing code not

only for debugging purposes, but also for writing better code and

saving computing time. There.is a very high probability that

most programs can be made more efficient after the first attempt

at coding a program. After the code for the ALU was made more

efficient, the execution speed was noticeably higher.

3.7. Memory

The memory process simulates the storage and retrieval of

data and code in the machine. The machine uses different sec-

tions of memory to store related contents. For example, the data

values are stored within a certain address range, and the code is

stored in a different address range. Memory processes receive

messages from the bus requesting certain actions to be performed,

such as reading or writing data. The replies are passed back to

the bus via a gofer. The memory is simulated using files to

store information.

Obtaining values from memory

The contents of simulated memory could have been stored in

memory or on disk. Storing simulated memory in real memory is

impossible because of the size of the physical memory available.

Therefore contents of simulated memory were stored on disk. To

reduce the disk accesses needed to obtain values from memory a

blocking mechanism was used. Each time the disk was accessed a

block of 2048 bytes was obtained. This method has a distinct

advantage over a non blocking system because the memory process

has to access the disk fewer times. Disk accesses can be time

consuming, therefore each time the disk is accessed, a block of

2048 bytes is obtained. Each time memory is read 64 bits of

information from the current block are passed back to the calling

function.

As caching of memory saves on requests to the memory process

and bus contentions, the blocking mechanism implemented in the

memory process saves on disk accesses. In most machines the

input and output are the most time consuming, therefore any sav-

ing on time made in this area is a major advantage. The simula-

tor was used to experiment and work out the optimum block size

for reading information from the disk.

¿'Z'^* Implementation details

The program "Set machine" sends messages to the process

"Memory" with all the information it needs to set up its own com-

munication path. The "Memory" process has to receive these mes-

sages and reply back to the program "Set_jnachine" indicating it

received the information successfully. The initialisation state-

ments are as follows.

receive (Message)
low = ADDRESS[Message]
high = DATA[Message]
receive (Message)
in_id = SRC__ID [Message]
receive (Message)
out id = SRC ID[Message]

The variable "in_id" is the process number from which the

"Memory" process will receive messages. The "low" and "high" are

the address range, "out__id" is the process number to which the

"Memory" will send messages.

After the initialisation has been done, the particular

memory process knows its communication parameters. The process

"Memory" has a main loop to repeatedly receive messages from its

"in id" and executes the instruction. This loop has the follow-

ing structure.

repeat
receive (Msg, in__id)
process the request
send (Msg, out_id)

end;

Memory contents are stored in PORT files on the hard disk as

a sequence of bytes. The contents of the block of memory are

stored in an array data structure. An array data structure has

been used for the purpose of simplicity. Indexing into the array

structure is very simple. The following statement works out the

index.

index = address & $7FF

A bitwise "and (&)" of the address field by $7FF gives an

index between 0 - 2048. The value 2048 is not a magic number,

rather it is an optimum number chosen after testing and timing

the disk accesses.

The PORT file system allows reading or writing to be done on

arbitrary sized blocks. The procedure "Load__block" loads a block

of data into the variable "The_block" which is the variable which

contains the current block of memory. When the function

"Load block" is called, it checks if the required block is the

current block in memory. If the memory required is not in the

current block, then a new block is read in to the variable

"The block". Before the new block is read in, it has to check if

the current block is dirty. If the block is dirty, then it has

to be written out to disk.

l-l* Bus

This is the process which carries data to and from memory.

It sits between one simulated board and the global communication

path. The code for this process provides the interface logic of

the simulated board.

Each memory process has a bus process which belongs to its

address space. The purpose of the bus is to trap addresses that

belong to its board and send the messages to a gofer which will

pass it on to the memory process. The bus processes are con-

nected in a loop, i.e. the design of the communication path is

circular. If an invalid address is sent from the MMU to the com-

munication path, then none of the busses will recognise the

address, therefore the address will go around the path and come

back to the original bus. When an address comes back to the bus

which initiated it then that particular address is invalid. This

is an asynchronous access method where a process waits until it

receives an acknowledgement from the servicing process. The

above method of detecting errors is useful in eliminating con-

trols such as a minimum waiting time for a service to take place

if a synchronous method was used. This also allows the freedom

to order "boards" arbitrarily.

. Initialisation of the bus process

The bus process initialises itself by receiving messages

from the program "Set_jnachine". Even though there is only one

code file to simulate the bus, when the machine starts up more

than one bus process is required. The "Size" field mentioned in

2.4.1.3 are very important for the bus processes because the

sizes define which address space that particular bus accepts.

Changing the address range of a bus process is a very simple

task which only entails changing the address range in the text

file which is used by "Setjnachine" function. This is another

advantage of using the text file to configure the simulator. Not

only is changing the parameters of the existing bus processes

simple, but adding a new bus process is as easy as adding another

line of text in the file.

Outgoing message

The bus processes send messages to two different processes.

They are the next bus process and its board(gofer). The Out_ids

in the text file specify to which processes the bus can send mes-

sages. There are two types of outgoing messages. One is when

the bus sends a request to the next bus because the address did

not belong to its board. The second type is when the bus

requests its board(gofer) to process the message and take some

action because the address was for its own board.

. Incoming messages

The bus process receives messages from two processes. The

two processes are the previous bus and its board(gofer). The

In^ids in the text file specifies from which processes the bus

can receive messages. The following are the types of incoming

messages.

From Gofer to the Bus

1. A request to perform some actions.

2. A reply to indicate it processed a message.

From Bus(n-l) to Bus(n)

1. Request to perform some actions.
The actions are either process the message or pass
it on to the next bus.

2. An invalid message, which has cycled around the
communication path.

When a bus receives a message from the previous bus, it will pro-

cess the message if the address belongs to its board. If the

message belongs to its board, the bus has to request its board to

process the message. After the bus has sent the request to pro-

cess the message and the action requested has been completed the

bus will receive a request from its board(gofer). After the bus

receives the request from its board, it will send the message

along the communication path.

If the address did not belong to its board, then the bus

will request the next bus to process the message. If the

original bus which sent the address receives the same address

from a previous bus, then that address is invalid.

—'2-' ^̂ oî t Panel Process

This process has to perform two major activities :

1. Display simulated information on the screen

2. Handle user input (i.e special keys and alphanumeric
characters)

The front panel process receives from all other processes in

the simulator, but it is the only process which does not send to

other processes created by the simulator. Therefore initialising

the front panel process involves receiving all the In_ids from

the program "Set_jnachine". A vector of local In_ids was created

to store all the In_ids rather than use different names to store

all the data. The vector allows future changes to the In_id list

without having to change the code. Storing the Ids will be dis-

cussed later.

Implementation of the Front Panel

The screen is designed using a program called "fg" provided

by the PORT system. This allows the programmer to designate all

screen details. The details are as follows:

Field Location (i.e. X & Y coordinates)

Field Length

Field Type (i.e. String or Numeric)

The program "fg" uses the above information to create the

following external variables:

Field__numbers

Field rows

Field columns

Field_^types

Field_widths

Screen image

All the above variables are self explanatory, except for

"Screen image" which is a copy of the screen image as designed by

the programmer. This image can be edited and changed by the pro-

grammer. The screen was designed in two stages, at the initial

stage an area was reserved for future use.

Diagram of a screen format follows

- 74a -

i lY ' J^J^K. 6TRACEbN'^ <7TRACE6FF

Instruction Cache Data Cache
$XXXXXXX> $XXXXXXX> $XXXXXXX> $XXXXXX)0 $xxxxxxx> $xxxxxxx> $xxxxxxx> $xxxxxxx>

Current instruction : add r2 - r3 c=0

GrO $00001AB2
Gr1 $XXXXXXXX
Gr2 $00000000
Gr3 $12345678
Gr4 $XXXXXXXX
OFP $XXXXXXXX
FP $00000300
OPC $xxxxxxxx
PC $80000AB4
STAT$XXXXXXXX
HRO $800001FF
HR1 $XXXXXXXX
HR2 $XXXXXXXX
HR3 $XXXXXXXX
HR4 $XXXXXXXX
HR5 SXXXXXXXX

Logical

SXXXXXXXX-
Base + Offset

•SXXXXXXXX sxxxxxxxx-
Physical

-#-$XXXXXXX)i

Memory writes
Address Data
SXXXXXXXX
$xxxxxxxx
$xxxxxxxx
$xxxxxxxx
SXXXXXXXX
$XXKXXXXX
$xxxxxxxx
$xxxxx<xx
SXXXXXXXX
$xxxxxxxx
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
$0000123

SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX
SXXXXXXXX

S0000012

Break At SXXXXXXXX

Output from programs

GR - General Register
FP - Frame Pointer
OFP - Old Frame Pointer
PC - Program Counter
OPC - Old Program Counter
STAT - Status Register
HR - History register

PORT also provides most of the screen initialisation and

startup functions. The Window Manager of PORT provides part of

the building blocks necessary to implement a user driven screen.

The main functions that had to be written and modified were as

follows:

Update_field

Scroll_memory writes

Update__inst

Server_ready

Input__arrived

The function "Update_field" is called when the contents of a

particular field on the screen have to be changed. The function

has to be given the field number to be changed and the data to be

displayed. From the field number, the row and column can be

obtained by indexing into the appropriate vectors created by the

program "fg".

"Scroll_memory_writes" function is used to display the

addresses and contents of memory. When the area allocated for

memory is full, the contents on the screen get scrolled up to

make room for the new values. Except for the scrolling mechan-

ism, this function works in a similar manner as the

"Update field" function.

The function "Update_inst" displays the next Instruction to

be executed. The Instruction Is displayed as a string. The

string to be displayed was concatenated In the function

"One__lnstructlon" as mentioned In the discussion of ALU. The

string contains the machine code value and the assembler

equivalent. The following Is an example of the display:

$8024 add r2 r4

The "$8024" Is the machine Instruction representing the

addition of register "r2" with register "r4" and the result being

placed In "r2".

The function "Server_ready" Is called when the ALU sends the

"SERVER__READY" request. When the ALU Is ready to execute an

Instruction It sends a "SERVERJREADY" request to the front panel.

When this request Is received, the front panel sets the machine

to the appropriate state and redraws the active buttons. If the

current state permits the execution of another Instruction, then

the front panel will give permission to the "ALU to execute the

next Instruction.

The function "Input arrived" handles all keyboard Input.

The keyboard Input consists of alphanumeric keys and special

keys, all control keys are Ignored. When any key on the key-

board Is pressed, this function will Interpret the Input key and

call the appropriate function to handle that particular key.

Screen control keys

To a certain extent the output on the screen can be con-

trolled by the user. The IBM-XT keyboard contains 10 special

keys (pfl - pflO) on the left hand side of the keyboard. These

keys allow the user to select options on the screen when the

simulator is in motion. For this simulator only 7 out of the 10

options are used. The need for alphanumeric characters will be

discussed in the section about break points. The ALU is con-

trolled by the input from the user. Since the user input is han-

dled by the Front panel the execution of the ALU is controlled by

the Front panel. The following is a pseudo code version of the

ALU control.

while there are more instructions to execute
ask front panel for permission to execute
execute the next instruction
update the screen

This allows the user to control the execution of the

machine.

Special Keys

Only certain keys shown in the diagram are recognised by the

program when pressed by a user at any given time. All other key

presses are ignored. The keys that are recognised by the program

are highlighted. As can be seen from the diagram, the "quit"

option is the pfl key. This key is pressed to stop the execution

of the simulator. When the execution is stopped by pressing pfl,

all the processes get destroyed(killed). Destroying the

processes is important because the processes may not terminate

unless specifically destroyed or the system is rebooted. The

processes could have been written so that each process destroys

itself when the processes it communicates were non existent.

This method assumes that the processes are communicating as

expected. If there was a bug in one of the processes however it

may not destroy itself, thereby affecting all other processes

dependent on that particular process.

The pf2 key is the "help" key. The operation of the simula-

tor is self explanatory. A help option still exists to provide

information about the simulator to users. When the pf2 button is

pressed, the program looks for a text file called "help" and

displays the contents of the file. Allowing the user to page

back and forth.

The "Step" option (pf3) key is used to execute the simulator

one instruction at a time. Since the ALU has to ask permission

from the Front panel before it executes an instruction, only when

this button is pressed can the ALU execute the next instruction.

The "step" mode is very useful when the user wants to look at the

changes that took place after a single instruction was executed.

This mode allows the user to observe the changes at his/her own

pace. It also gives the user enough time to write down notes if

necessary.

The "Run" (pf4) key is the automatic mode button. The pf3

is the manual (step) mode, so when the pf4 key is pressed, the

Front panel gives the ALU permission to execute the next instruc-

tion every time. It stops giving permission only when the pf5

button is pressed. This button is necessary because a user may

want to speed up the execution or go away and leave the machine

running. This button essentially simulates an user rapidly

pressing the "pf3" button.

The "Pause" button (pf5) is absolutely necessary because a

user may want to stop the execution of the machine at a given

time. This button will be necessary only when the machine is in

the "Run" mode which was discussed in the previous paragraph.

When the "Pause" button is pressed, the Front panel does not give

permission to the ALU to execute an instruction. Therefore the

ALU waits until it is allowed to execute an instruction.

The "Traceon" (pf6) key turns the tracing mechanism on, and

the "Traceoff" (pf7) key turns the tracing mechanism off. The

trace mechanism discussed here is mainly concerned with running a

program in the machine and observing the execution. When the

trace is on, all changes to the machine are displayed on the

screen. When the trace is off only the program counter changes

are displayed on the screen. When the trace is off, the machine

executes at a much faster speed. This is mainly because most of

the time is spent on making changes to the screen or creating

readable instructions. The program counter is displayed so that

the user knows that instructions are being executed.

Implementation of the special keys

There are seven buttons in total which the user can use to

control the screen displays. Writing the code to handle the user

control inputs can get very complex. When one or more of the

buttons are pressed, the machine is in a particular state, so

when another button is pressed, the state of the machine has to

be considered before any action can be taken on the latest input.

Before writing any code, a state table was built to work out

which buttons are allowed to be pressed at a given point and what

action is to be taken when a particular button is pressed. A two

dimensional table with buttons as columns and states as rows was

created. After designing the transition table on paper, all the

conditions were incorporated into the two dimensional table

called "Trans_table". The following are a few examples from the

"Trans table".

Trans_table[0][2] = 1;

Trans_table[l][3] = 2 + $20;

Trans_table[l][7] = 4;

Trans_table[5][2] = 5 + $10;

A variable called "State" was used to indicate the current state

of the machine. When a new "pf" key is pressed, the

"Trans table" is indexed by the value of "State" and the key

number. The value obtained contains the new State of the machine

and an indication whether to reply to the ALU. The State of the

machine Is in the least significant 4 bits of the value. The

reply details are in the upper 12 bits of the value.

Another one dimensional table called "Soft_buttons" was

created. The table indicates which buttons can be pressed by the

user at a given state of the machine. This table is indexed by

the variable "State" which returns a value which indicates which

buttons are active (i.e. which buttons cannot be pressed). The

following are a few example rows from the table "Soft buttons"

Soft_buttons[0] = PF3_ACTIVE
PF6_ACTIVE

Soft_buttons[3] = PF3_ACTIVE

Soft__buttons[8] = PF3__ACTIVE
PF6 ACTIVE

PF4_ACTIVE I PF5_ACTIVE
PF7_ACTIVE;

PF5_ACTIVE I PF6__ACTIVE;

PF4_ACTIVE I PF5_ACTIVE
PF7 ACTIVE;

When any of the special keys are pressed, the function

called "Input_arrived" is called. This function decides which

key was pressed and calls the appropriate function. Each key is

handled by a different function. Each of the functions call the

function "Change state" and pass their key number (i.e. the

column number to index into "Trans_table"). The function

"Change state" will change the variable "State" to its new value.

The following is an algorithm used by the function "Change_state"

to change the state of the machine and reply to ALU if necessary.

value = Trans_table[State][key]
State = value & $F {get the new state of the machine}
{decide which buttons are active in the current state}

The__active_buttons = Soft__buttons [State]
value = value » 4 {shift down the lower 4 bits}
if (value != 0) {check if the ALU should be replied to}

reply to the ALU

The alternative way of implementing the code to handle the

special key inputs would be to have a string of conditional

checks. This method would entail the code having to check what

the previous state was, and then changing the current state.

After that it has to do a conditional check to work out which

buttons are active in the new state. The code required to imple-

ment this type of algorithm would be too long and difficult to

maintain. In the current implementation, getting the new state

requires only one statement, and working out the active buttons

requires only one statement. This method is also faster because

the external tables "Transitable" and "Soft__buttons" are set up

at compile time and can be simply indexed at execution time.

1-1*1 Break Points

The Front panel's function "Input_arrived" handles

alphanumeric input as well as special key input from the key-

board. The keyboard input is necessary to incorporate break

points. When the simulator is executing in the "Run" mode, the
user may wish to stop the execution when the program counter (PC)

is equal to a certain value. To do this the user could watch the

value of the PC and press the Pause button when the PC value is

equal to a pre determined value. As can be seen this would be

impossible to do because of the speed at which the value of the

PC changes are displayed on the screen. Therefore the concept of

break point was introduced. The user is allowed to type in a

break point value, when the PC is equal to this value the Front

panel pretends the user pressed the pause button at just the

right time. Since the ALU cannot execute without the permission

from the Front panel, the machine will pause.

The break points are a vital part of the simulator. The

break point mechanism allows the user a simple and elegant means

of debugging programs. Any debugging tool would not be complete

if an user was not allowed to set break points.

3.10. On Board Switch (OBS)

As the name suggests, this process only switches the direc-

tion of an address. When an address is sent to the OBS by the

MMU, its only task is to trap a set of addresses and send it to

one of two pieces of hardware depending on certain conditions.

The most common use of the OBS would be for on board memory. The

following pseudo-code explains the task of the OBS.

if (Address >= low && Address <= high)
send Address to first piece of hardware

else
send Address to second piece of hardware

In the initial design of the machine, this process was not

part of the machine. This process came into existence only when

there was a need to display characters on the screen area which

was kept for future use. The OBS process has a very simple func-

tion to perform. In the current implementation, the OBS sits

between the MMU, the Serial Line and the Gofer which sends mes-

sages to the first bus.

Adding this process to the simulator was a simple task.

Since each process can be coded separately the other processes in

the simulator did not have to be modified. This highlights the

advantages of a multiple-process simulator. In the initial

design, the MMU would send a message directly to the gofer which

in turn would send the message to the bus. After the OBS was

introduced the code in the MMU still appears to be sending mes-

sages to a gofer, but the text file was changed so that the MMU

sent messages to the OBS. This was achieved without having to

change the code for the MMU or the gofer.

3.11. Serial Line

Part of the screen was reserved for future use and this is

where that area will be discussed. The Serial Line is a cheap

peripheral attached to the machine which provides simple output

for the machine. The Serial Line process receives input from the

OBS and sends the input received to the Front panel. On receiv-

ing input from the Serial line the Front panel will display the

input in the area reserved for display purposes. Displaying out-

put produced by programs running in the machine was very useful

when testing the machine's execution.

3.11.1. Implementation

The implementation for the Serial Line was very simple

because the only job of the serial line is as follows:

repeat

receive a message from OBS

reply to OBS

send the data to the front panel to display

A function called "Serial_line" was created, this function

receives the In^ids and the Outbids from the program

"Set__machine". After the initialisation has been done, the func-

tion repeatedly receives messages from the OBS. The contents of

the addresses are then passed on to the Front panel to be

displayed on the screen. This process was tested when testing

the whole simulator. To test the serial line, test programs were

written to display messages on the screen. It is also worth not-

ing that the serial line was introduced to the machine only when

there was a need to display output from the test programs. This

peripheral was introduced without having to alter any of the

other functions.

A* Testing The Simulator

To test the simulator to a reasonable extent, many programs

were needed because it was decided to test the simulator with

some real data (i.e to simulate a program that did something sen-

sible). The programs that were used to test the simulator will

be mentioned after discussing the creation of such programs. To

run the simulator, the contents of code and data memory had to

be created. A decision was made to create two files to simulate

code and data memory. The code file had to contain machine

instructions (in binary). The data file had to contain data in

binary. Creating the code file was going to be the major hurdle.

There were two possible ways of creating the code file, they

were:

i) Write a program in machine code by editing a file.

ii) Write a program in assembler and assemble the
program to create a file in machine code.

At first, it may seem that the first option is easier

because an assembler had to be written to implement the second

option. Looking at future needs the second option was the most

sensible. If the first option was chosen, then creating and

checking the code would be a tedious task. This task would have

to be repeated many times.

A'JL* Writing An Assembler

A simple assembling program was written to parse instruc-

tions written in assembler. This program creates both the code

and data files, it also produces an assembler listing for refer-

ence. The intention was to produce the necessary files, there-

fore in some cases efficiency and elegance were sacrificed for

speed of production.

A*JL'-L* Implementation details

The implementation of the assembler was kept as simple as

possible. The main loop reads a line of characters and calls an

appropriate function depending on the first word of the line.

The first word is an instruction name except for a few words.

When the word ".code" is encountered, the code file is chosen as

the output file, when the word ".data" is encountered the data

file is chosen as the output file. The words such as "byte",

"half-word", and "word" are used to set up data values of those

sizes. The word "Label" is also recognised which defines the

position of a label.

When a word matching a defined instruction is encountered, a

function which performs the necessary conversion to machine

language is called. All addressing mode values are worked out

where necessary and written to the appropriate place. If a

reference to a label is made, the parser will check a linked list

of labels to determine the address of the label. If the label is

found, then its address is written adjacent to the instruction.

When forward references are made on instructions such as "call",

"jump" or "if", then the linked list of label definitions will

not contain the label. At this moment the parser writes zeros in

place of the label address and stores the byte position of the

code file, line number and address of the instruction in a linked

list.

At the end of the first pass, the program consults the

linked list with the undefined labels and takes the addresses

from the linked list with the defined labels and writes the

addresses to the code file at the correct byte location. If an

undefined label is not found in the linked list with defined

labels, then an error condition is returned.

An assembler listing is also produced at the end of the com-

pilation. Tliis listing contains the program counter, instruc-

tions in machine code and the assembler version of instructions.

Using the Assembler to create test programs

The assembler program was used to create code and data files

which calculate the dates of Easter for 99 years. This program

used sub routines such as "divide" and "multiply" to test arith-

metic and call instructions. The program utilised every piece of

hardware to perform the required calculations, storage and

display. The date of Easter for every year was displayed on the

screen using the "serial line" process. This was the main pro-

gram that was used to test all the simulated pieces of hardware

and instructions, other minor programs were used when testing

individual pieces of simulated hardware.

A*^* Writing a disassembler

After the assembler was written to produce the code file, it

was rather strenuous to check if all the instructions were

correct. The only way to check the instructions . was to check

each one by hand, or to write a disassembler to produce the ori-

ginal assembler instructions. The second option was more feasi-

ble because of the large number of instructions that had to be

checked.

¿•¿•JL* Implementation Details

An elementary but efficient disassembler program was created

to check the data. This took little time to write and after it

was written it was simple to check the data in the code file.

The disassembler program reads the instructions from the

code file and produces a assembler listing. This program rev-

erses the action taken by the assembler program. The highest bit

that is turned on marks the type of instruction. The other bits

are used in certain instructions to decide if more bytes have to

be read before reading another instruction. This program has a

simple loop which reads an instruction from the code file and

calls an appropriate function to handle that instruction. The

concept of having a different function to handle each instruction

makes it very comfortable to maintain the program. This method

makes debugging a very simple task because it isolates the prob-

lem area to a particular function.

Debugging the two programs

As discussed above, the assembler and the disassembler pro-

grams were built separately. Each program has a unique task to

perform, the two tasks are the reverse of each other. Since the

assembler and the disassembler were both written as separate
entities, the possibility of making the same coding error in both

programs is very remote. Both programs were coded from matching

specifications, therefore any coding error occurring in one pro-

gram will be highlighted by the other program.

Consider the following example:

Load rO r2 [2]

When the assembler program parses the above instruction it

will decode the instruction into the mode, registers and offset.

The disassembler program uses the decoded bits to obtain the ori-

ginal instruction. Therefore if the assembler had decoded the

instruction incorrectly, then the disassembler will not be able

to produce the original instruction correctly. If the disassem-

bler program produced a wrong instruction, this would throw light

on the fact that one of the programs was wrong.

1.' How to use the simulator

The first objective is to create a file with machine code

and a file with data. This can be achieved by creating a file in

assembler (refer to Appendix II for mnemonics). After the file

has been created, it can be assembled by the assembler program.

The simulator program looks for the code and data files in the

temporary directory in the file tree. The code file has to be

named •• and the data file is

" This unusual naming
convention has been chosen to allow different files to be used to

simulate different address ranges in memory. Also to simplify

name generation and not conflict with any useful names. The file

name represents the 32 bits in an address. Every represents

a 1 and the represents a 0 value. Consider the following
example:

Address = $00040000

The file name representing this address would be

The files that are created by the assembler are called

"Code" and "Data". Therefore these files have to be copied to

the above mentioned names in the correct directory before running

the simulator.

After the code and data files have been created, running the

simulator is simple. To start the simulator, simply execute the

program "Set_jnachine". This program will start the simulator,

create all the necessary processes and set up the communication

path. After the simulator has started to execute, the user could

control the execution with the special keys. These keys give the

user full control of the simulator's output on the screen. The

output provided by the simulator is self explanatory, so the

details will not be discussed.

How the simulator works

Details of all the simulated hardware components have been

discussed in chapter 3. The following paragraph will discuss

their usage within the whole machine. The discussion will be

based on specific examples so as to facilitate the understanding

of the simulator's execution.

è. simulation of £ program's execution

The example that will be discueed in detail is as follows:

Please refer to figure 5.1.

P I - P18 Represent ihe C o m m u n i c a l i o n Path

Figure 5.1 Communication Path

The instructions being simulated take a string of data from

memory, add a value to each character and then display each char-

acter. The discussion will be based on the communication that is

required to perform such an operation.

The program is created using the assembler program.

Instructions are typed in using the editor in a format the assem-

bler expects (refer to Appendix II). This file is converted to

machine instructions by the assembler and then written to the

file which contains instruction packets. All data values are

written to another file which stores data packets. Code

addresses start at $80000000 and data addresses start at $0.

When the simulator first starts to execute, the assumption

is that all registers are initialised. ALU sends a request via

PI to the MMU seeking the instruction packet at location

$80000000 (code addresses start at this value). MMU does some

address translation and sends it along P2. The OBS will check

the address and decide to send it along P4. The Gofer will then

pass it along P5. The bus will then pass the address along P8.

If the address does not belong to that particular bus, it then

sends the address along P13. If the address is valid, then the

bus which belongs to that address range will respond and accept

the address. After the address has been accepted, the bus will

send the address along P8. The gofer will then pass the address

along PIO. After the memory receives the address, it converts

the address to a location on the file and reads a block of data

(code file is used for instructions, data file for data values).

It then sends 64 bits of information to the bus via Pll and P12.

The bus that received the contents of memory will send it along

to the next bus (pl3) which in turn will send it to next bus to

be passed along p6. Then the values will be passed along P7 to

the gofer which passes it along, P2 to MMU, which then will pass

the contents via PI back to the ALU.

After the ALU receives the machine instruction, it stores

the information in the instruction cache. If all the details of

this particular instruction have been obtained, the string

representation of the instruction is sent to the front panel to

be displayed. The instruction is then decoded by the "Run" func-

tion and the function "Load" will be invoked to execute that

instruction. To load a character from memory, the ALU has to go

through the same sequence of tasks as mentioned above. The only

difference is that this time the data memory will respond and

pass back 64 bits of data. This data will be then stored in the

data cache.

After the character has been loaded, when the next instruc-

tion is needed, the ALU will first look in the instruction cache

which will contain an "add" instruction. As can be seen, obtain-

ing the next instruction was very much quicker and easier. After

the "add" instruction has been obtained and decoded the function

"Add" will be invoked to add the contents of two registers.

P18

P I - P18 Represent the C o m m u n i c a t i o n Path

Figure 5.2 Communication Path

After the add instruction has taken place, the new value has

to be stored. ALU then sends a request via Pi, on receiving the

request the MMU then sends the address along P2. If the charac-

ter is to be displayed on the screen, then it is sent along P3.

On receiving the character the Serial Line will send it to the

Front Panel to be displayed.

If the character does not have to be displayed, then the

contents and the address reach the memory process via the same

path mentioned above. Memory then writes the contents at the

given location and replies back via P16. When a value is written

to an address in the current block, that block is said to be

"dirty". If a block is "dirty", it has to be written back to the

file before another block of information is obtained from the

file.

The above process continues until the whole string has been

processed. If the loop needs less than 16 instruction packets,

then all the needed instructions will fit into the cache, thereby

eliminating the need to access memory. Another point to note is

the contents of registers; each time the register values change,

the new values are displayed on the screen if the trace has been

turned on.

Concluding Remarks

The simulator has been very helpful in developing this new

personal computer. It has made it possible to highlight many

design errors and better methods of designing the hardware com-

ponents in the machine. For example in the initial design of the

machine cache memory was not part of the design. But after test-

ing some programs using the simulator it was seen that cache

memory would speed the execution of programs. This simulator can

be further utilised to help in designing an Operating System

and/or a compiler. All further development work on the machine

will be done using the simulator as a guide to visually observe

the execution of the machine instructions.

If a compiler were to be designed, the simulator can be used

quite effectively to help in debugging the code. The output pro-

duced by the simulator has been designed to give maximum help in

debugging programs. The disassembler program can also be used to

debug code images produced by a compiler. The development work

on the simulator has been exciting and thought provoking. There

is a lot more work left to be done to complete the design of the

whole machine. Now that the foundation has been laid further

development can be done more easily with the aid of the simula-

tor. This project was the first attempt at the design of the

machine. In the light of these circumstances, writing the simu-

lator was a time consuming task. The method that was chosen to

implement the simulator was the best under those circumstances.

The simulator is so flexible that making changes to each com-

ponent of simulated hardware was rather simple because each piece

of hardware was simulated by a different process. As can be

seen, if any other method was used to simulate the hardware com-

ponents, making changes to the design would be rather laborious.

APPENDIX I

I.l Code for ALU "Run" function

0

Import(IO_request,
IO_requests,
Registers)

high__bit : unsigned
request : IO__request
num : unsigned

{
Pre_base = 18;
repeat

{

Send_to_window(Base_field+PROGRAM_COUNTER,
Current__regs[PROGRAM__COUNTER], MODIFY__BYTES);

Display_pc = Current__regs [PROGRAM__COUNTER];
First = Instruction = Get_next_inst();
num = Inst_length(First);
if(num > 1)

{
Second = Get_next_inst() ;
if(num > 2)

Third = Get next inst();
} "" ~

repeat
{

if(All_changes)
{

One__instruction(Display_pc, First,
Second, Third, Temp_str);

Update i n s t O ; }
REQUEST[request] = SERVERJREADY;
send(request, request, Window_id);
if(REQUEST[request] == $1) {

All_changes = 0;
break; }

if(REQUEST[request] == $2)
{

All_changes = 1;
break;

}
All changes = 1;
Redraw prefetch();
Red raw__da ta_pr ef etch ();
Update all registers();

Send__to_window (Ba se_field+PROGRAM__COUNTER,
Dlsplay__pc, MODIFYJBYTES) ;

high__bit = High_bit();
select (high b i t)

{
case 0 : SpinO;
case 1 : Switch__state();
case 2 : ReturnO;
case 3 : Ca l lO ;
case 4 : Flying leap() ;
case 5 : NcdO;
case 6 : Ncd();
case 7 : Ncd();
case 8 : Ncd();
case 9 : Load store a l t () ;
case 10 : Ncd(T;
case 11 : Ncd();
case 12 : i f () ;
case 13 : Load e f fect ive address();
case 14 : JumpT);
case 15 : Load store () ;
case 16 : Process regs() ;

}
Update registersO;

IL'1. for Mmu process

import(Message set)
()

sendid : Pid

{

}

Rec__rep();
Rec__repO;
sendid = SRC_ID[Msg];
Rec__rep();
Froiii_buss__id = SRC_ID[Msg];
Rec_rep();
Rec^repO;
Receive__id = SRC_ID[Msg];
Rec__rep();
Window_id = SRC__ID[Msg];
Rec_rep();
repeat {

if(receive(Message, sendid))
Handle_msg();

else
DestroyC My_id);

replyC Message, sendid); }

Code for Memory Process

import(Message set, 10 descriptor, 10 modes. 10 requests) () ~ "" - _ H y
f_name : &char = stack(33)
mask : unsigned[32]
i : unsigned
low : unsigned[32]
high : unsigned[32]
in : Pid
out : Pid
bits : unsigned
bytepos : unsigned[32]
lowadd : unsigned[32]
highadd : unsigned[32]
offset : unsigned

{
Rec__rep();
My_number = WIDTH[Msg];
low = ADDRESS[Msg];
high = DATA[Msg];
Rec_rep();
in = SRC__ID[Msg];
Rec_rep();
Rec_rep();
out = SRC__ID[Msg];
Window_id = Rec_rep();
Rec_rep();
mask = $80000000;
for(i=0; i<32; -H-i) {

}

if(mask & low)
else

mask » = 1;

f_name [i] =
f name[i] =

f_name[32] = 0;
Set__current__node("#me"
The file = Open(f name MODIFY, 0, 0);
while(receive(Msg, in))
{
reply(Msg, in);
bytepos = (ADDRESS[Msg]~low) « 1;
Load_block(bytepos & ~$7FF);
bits = WIDTH[Msg];
if(ACCESS[Msg]) {

if(bits == 1) offset = bytepos 6e $7FE;
else offset = bytepos & $7FC;
The_block[offset] = DATA[Msg];
The_block[-H-offset] = DATA[Msg] » 8;
if(bits == 2)
{

}
The_block [-H-of f s e t]
The block[-H-offset]

DATA[Msg] » 1 6 ;
DATA[Msg] » 2 4 ;

}
else
{

Dirty = 1;
Send_to__window(1, ADDRESS [Msg], APPENDJBYTES);
Send to window(0, DATA[Msg], APPEND BYTES);

}

offset = bytepos & $7F8;
lowadd = The block[offset+3];
lowadd = (lowadd « 8) | The_block[offset-l-2];
lowadd = (lowadd « 8) | The__block[offset-l-l];
lowadd = (lowadd « 8) j The_block[of f set-i-0];
hlghadd = The__block[of fset-l-7];
highadd = (hlghadd « 8) | The block[offset+6];
highadd = (highadd « 8)
highadd = (highadd « 8)
ADDRESS[Msg] = lowadd;
DATA[Msg] = highadd;

The__block[offset-4-5];
The block[of f set-l-4];

REQUEST[Msg] = 0;
DES_ID[Msg] = SRC_ID[Msg];
SRC_ID[Msg] = Invalid__id;
send(Msg, Msg, out);

1.4 Code for On Board Switch Process

import(Message_set,
IO__requests)

()
in_id : Pid

{
Rec__rep();
in_̂ id = Rec_rep();
Rec_rep();
Window id = Rec__rep();
Rec_rep();
while(receive(Msg, in_id)) {

replyC Msg, in_id);
Send to window(0, DATA[Msg], HERE_IS_TEXT); } }

1.5 Code for Front Panel "Run" function

import(IO_request,
IO__requests,
Fleld_definltlons,
Active buttons)

0 {
Change_window_height(Window__height=FORM_HEIGHT);
Inltlalize_lmage();
The_actlve__buttons = PF3_ACTIVE | FF4__ACTIVE I FF5_ACTIVE;
Redlsplay_wlndow();
repeat {
FlushO;
Requestor = receive__any(Request);
select(REQUEST[Request]) {

Input_^arrlved();
Update_fleld(Request);
Scro1 l_memory_wr11es(Request);
Update_lnst(Request);
Server readyO;

}

case INPUT_ARRIVED
case MODIFYJBYTES
case APPEND_BYTES
case DISPLAY_MESSAGE
case SERVER READY

1.6 Code for Bus process

import(Message set, Pid, Structure)
()

from_my_board : Pid
to__my board : Pid
nextJEuss : Pid
id : Pid
low : unsigned[32]
high : unsigned[32]

Rec_rep();
low = ADDRESS[Msg];
high = DATA[Msg];
Rec__rep() j
froni_my_board = SRC_ID[Msg];
Rec_rep();
Rec__rep();
to_my_board = SRC_ID[Msg];
Rec__rep();
next_buss = SRC__ID[Msg];
Rec__rep();
repeat {

id = receive__any(Msg);
if(id == from_my_board) {

if(REQUEST[Msg] == 0) {
send(Msg, Msg, next__buss);
reply(Msg, from__my_board);

}
eise
{
SRC_ID[Msg] = My_id;
DES_ID[Msg] = Invalid_id;
send(Msg, Msg, next^buss);
reply(Msg, from_my_board);

} }
eise {

reply(Msg, id);
if(DES ID[Msg] == My id] |SRC ID[Msg] == My__id) { - ~

if(SRC_ID[Msg] == My_id) WIDTH[Msg] = 3;
send(Msg, Msg, to_my__board);
}

eise if(DES_ID[Msg]==Invalid_id && ADDRESS[Msg]

>= low &6f ADDRESS [Msg] <= high) {

send(Msg, Msg, to_iny_board) ;

}
eise

{

send(Msg, Msg, next buss) ;

}
}

}
}

1.7 Code for Serial Line Process

import(Message__set, Pid)
()

mmu id • Pid
gof_id • Pid
outl : Pid
out2 ; Pid
lower • unsigned[32]
upper • • unsigned[32]

Rec__rep();
lower = ADDRESS[Msg];
upper = DATA[Msg];
mmu_id = Rec_rep();
gof__id = Rec_rep();
Rec__rep();
outl = Rec_rep();
out2 = Rec_rep();
Rec_rep();
while(receive(Msg, mmu_id)) {

reply(Msg, mmu_id);
if(ADDRESS[Msg] >= lower && ADDRESS[Msg] <= upper)

send(Msg, Msg, out2);
else {

send(Msg, Msg, outl);
receive(Msg, gof_id);
reply(Msg, gof_id);

}
send(Msg, Msg, mmu_id);

}

1.8 Code for Gofer Process

±mport(Message_set, Pid)
()

in : Pid
out : Pid

{
Rec__rep();
My_number = WIDTH[Msg];
Rec^repO;
in = SRC ID[Msg];
Rec_rep(T;
Rec__rep();
out = SRC__ID[Msg];
Rec_rep();
while(receive(Msg, in))
{
reply(Msg, in);
send(Msg, Msg, out); }

APPENDIX II

II.1 Assembler mnemonics

code - change output to code file
data - change output to data file
add - add the value of two registers
lea - load effective address
shiftl - shift left
shiftr - shift right
roti - rotate left
rotr rotate right
ldul6 - load unsigned 16
ldu32 - load unsigned 32
ldil6 - load signed 16
ldi32 - load signed 32
Idalt - load alternate register
stalt - atore alternate register
stul6 - store unsigned 16
stu32 - store unsigned 32
stil6 — store signed 16
sti32 - store signed 32
if - if condition goto
call - subroutine call
leali - long subroutine call
calls - service cal
Icalls - long service call
jump - long jump absolute value
hop - short jump relative value
leap - flying leap
switch - switch modes
return - return from a subroutine call
or - bitwise or
and - bitwise and
@Label - define a label
word - define a word of data
byte - define a byte of data

Appendix III

III.l Text file used by program "Set machine'

0 //me/Frontpanel
18 19 6

1 #me/Alu
2 #me/Mmu
3 #me/Mem
4 #me/Mem
5 //me/Screen
6 #me/Buss
7 #me/Buss
8 #me/Buss
9 #me/Buss
10 #me/Gofer
11 #me/Gofer
12 #me/Gofer
13 #me/Gofer
14 #me/Gofer
15 #me/Gofer
16 //me/Gofer
17 //me/Gofer
18 #me/Mem
19 #me/Mem
20 #me/Gofer
21 #me/Gofer
22 #me/Gofer
23 #me/Gofer
24 #me/Buss
25 #me/Buss

0

7 8 9 24 25 10
0
0
0

$80000000

0

0

0
0

$80000000

0
0

0
0
0
0
0

0
$40000000
$00000000

0
0
0
0

$40000000

$00000000

0

11 12 13 14 15
0

0

$4000
$80004000

0

0
0

$4000
$80004000

0
0

0
0
0
0

0

0

$40004000
$00004000

0

0

0

0

$40004000
$00004000

16 17 20

1 13
15
17
11

10

12
14
16
5
6
2

7
3
8
4
9

20
22

24
18

25
19
9
24

1 2 3 4
21 22 23

2 0

12 0
14 0
16 0

10

7
8
9
24

11
13
15
17

6
5
7
2

8
3
9
4

21 0
23 0
18
24
19
25
20 25
22 6

REFERENCES

[1] Bornât Richard, Understanding and Writing Compilers, Macmil-

lan Publishers Limited 1984

[2] Bonkowski Bert, Didur Phyllis, Malcolm Michael, Stafford

Gary, Young Terry, Programming in Waterloo PORT, University

of Waterloo.

[3] Gosling J. B., Design of Arithmetic Units for Digital Com-

puters, Macmillan Publishers Limited

[4] Knuth Donald E., The Art of Computer Programming, 2nd Ed.

Addison-Wesley publishing company Sydney 1973.

[5] Lee Graham, From Hardware to Software: An Introduction to

Computers, Macmillan Publishers Limited

[6] McWeeny Paul, Young Terry, The Waterloo PORT programming

Input/Output and Window programming, University of Waterloo.

[7] Walker B. S., Understanding Microprocessors, Macmillan Pub-

lishers Limited.

^^l ib iok Bindery ^
91 Ryedale Road

I West R>de 2114^
r Phone: 807 6026

	A design of a multi-process simulator for a new personal computer: a step in the right direction
	Recommended Citation

	tmp.1448948682.pdf.abpdA

