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Current magnetorheological(MR) fluids have the limitation that their yield stresses are not strong
enough to meet some industrial requirements. X. Táng, X. Zhang, and R. Tao[J. App. Phys87, 2634
(2000)] proposed a method to achieve high-efficiency MR fluids by study of squeeze-strengthen
effect. But there is little report on its mechanism. This paper aims to investigate this effect through
experimental and theoretical approaches. For this purpose, an apparatus is designed to
experimentally study the mechanism of this squeeze-strengthen effect. Taking account of a modified
magnetic dipole model and the friction effect, a semiempirical model is proposed to explain this
effect. In addition, this model is expected to study the squeeze-strengthen effect in
electrorheological fluids. ©2004 American Institute of Physics. [DOI: 10.1063/1.1773379]

I. INTRODUCTION

As a kind of controllable material, magnetorheological
(MR) fluids have been widely used in various devices, such
as MR dampers and MR clutches.1–4 MR fluids can revers-
ibly change their states between free-flowing, linear viscous
liquids and semisolids having controllable yield strength
within milliseconds after a magnetic field is turned on or off.
This promising feature makes it to be a simple, quiet, rapid
interface between electronic control system and mechanical
system. But the yield stresses of current MR fluids are not
strong enough for some requirements of industry.5

Usually MR fluids are composed of magnetizable par-
ticles (such as iron particles) and nonmagnetic matrix. When
MR fluids are exposed to a magnetic field, the magnetizable
particles acquire a dipole moment aligned with the applied
field that causes the particles to form linear chains parallel to
the field. This phenomenon results in the solidification of the
suspension. Only the applied external shear force is larger
than the yield stress, the suspension can flow again. The
yield stress increases steadily with increasing the magnetic
flux density, but the ultimate strength of the MR fluids de-
pends on the square of the saturation magnetization strength
of the magnetizable particles.1–3 Therefore, the key point to
enhance the yield stress of MR fluids is to choose a particle
material with large saturation magnetization.1–3 The widely
used particle material is simply pure iron with a high satura-
tion magnetization 2.1 T. MR fluids with powders of carbo-
nyl iron can achieve the yield stress of about 100 kPa. In
addition, the yield stress can also be improved by increasing
the volume fraction of magnetizable particles. But the vol-
ume fraction has an upper limit. Ginder and Davis3 used a
finite-element technique to study the effects of magnetic non-
linearity and saturation on the shear stress of magnetorheo-
logical fluids. They found that the local saturation of the
particle magnetization determined the shear stress over a

wide range of magnetic inductions and predicted that the
yield stress of an iron-based MR fluid at 50% volume frac-
tion could reach a maximum of 210 kPa.

To attain higher yield stress, Tánget al.5 compressed
MR fluids along the field direction when a magnetic field
was applied. They reported that the yield stress of MR fluids
could be increased ten times, which was strong enough for
many industry requirements such as flexible fixtures. They
gave a tentative explanation that the particle chains in the
MR fluids were pushed together to form thick columns and
the yield stress of MR fluids was consequently improved by
changing their microstructure. But traditional magnetic di-
pole model cannot explain the fact that the static yield stress
of MR fluids exceeding 800 kPa. Because the reason for this
is that this model is used to deal with the condition when the
distance between the particles is much larger than their size.
In addition, it is also inadequate to explain the squeeze-
strengthen effect by the theory of thick particle column.

In this paper, an apparatus is designed to study the
mechanism of the squeeze-strengthen effect in MR fluids.
The theoretical approach by modifying the traditional mag-
netic dipole model using local field theory and tribology in-
dicates that the MR effect can be improved greatly when the
magnetic particles are pushed closely. This model is also
verified by experiments.

II. EXPERIMENTAL EQUIPMENT

The used MR fluids contain 46% volume fraction carbo-
nyl iron particles, which have an average diameter of
3–5 mm. These particles are suspended in silicon oil. The
equipmental setup is shown in Fig. 1. MR fluids are con-
tained in a copper container, which can adjust the distribu-
tion of magnetic field and let most of the magnetic flux can
pass through the MR fluids. The magnetic field is generated
by a coil by adjusting the electric current density. A Tesla
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gauge is set to measure the magnetic flux density. The Tesla
probe is inserted into the MR fluids to measure the actual
magnetic field in the sample. Because of demagnetization
effects, the flux density measured by the probe in the MR
fluids will be lower than the real flux density in vacuum. But
this phenomenon has little influence on the relative flux den-
sity. Measurement of a series of measurements in both ends
of the sample indicates that the magnetic flux density in the
sample is almost the same, which demonstrates that the mag-
netic field is uniform. The base of the equipment setup is
made of soft iron and all the parts are mounted on it. One
side of the container is blocked with soft iron bar and elec-
tromagnet. The other side is a soft iron block and a bolt that
are used to compress MR fluids along the field direction. The
compression stress in MR fluids is measured by a pressure
sensor. The base, bolt, MR fluids, and electromagnet form a
close electromagnetic path. A thin metal slice(aluminum or
iron slice) is plugged into the MR fluids to measure the
squeeze-strengthen effect. This slice is pulled and the force is
measured by a tensile gauge. In other words, pull the slice
until the structure is broken, and the yield stress can be mea-
sured.

III. EXPERIMENTAL RESULTS

By using this setup, yield stress of MR fluids in different
magnetic flux densitys0–350 mTd and compression stress
s0–10 MPad are obtained. Figure 2 shows experimental re-
sults of MR yield stresses under various compression pres-
sures and different field strengths when an aluminum slice is
used. The measured data are marked by diamond and the
data are fit to a three-dimensional(3D) surface. To explain
the results clearly, some data are extracted and form two-
dimensional(2D) profiles as shown in Fig. 3. When there is
no compression, yield stress increases linearly as the flux
density increases. At low compression stresses of 2.0 MPa
and 4.0 MPa, the curve shows the same tendency. With the
compression stress increasing, the curve of the yield stress
versus flux density goes upward. For example, at the com-

pression stress of 6.3 MPa, the yield stress increases steadily
at low flux density, then increases sharply above a certain
flux density. Further increasing the compression stress, e.g.,
9.9 MPa, the yield stress becomes stable after an initial quick
increase stage. These results are due to the squeeze-
strengthen effect. At low-compression stress(include no
compression) stage, there is no particle saturation, thus the
yield stress increases linearly with increasing field strength.
With the pressure load increasing, the distance of particles
becomes shorter, the interaction of dipoles becomes stronger,
and therefore the yield stress increases because the formed
chain structure is difficult to be broken. The higher the com-
pression stress is, the more obvious the squeeze-strengthen
effect is. Thus, the saturation at high load is more easily
observed than that at low load, which are reflected in Fig. 2.
Similarly, the squeeze-strengthen effect is summarized in
Fig. 4 and 5 when an iron slice is used to replace the alumi-
num one. Except the same increasing tendency, the yield
stress with an iron slice is bigger than that that with an alu-
minum slice. Figure 6 shows the comparison of yield stress
with the iron slice and with the aluminum. Both of these two
cases are measured at the same magnetic flux density of
275 mT. At the same compression stress, the yield stress
with the iron slice is much larger than that with the alumi-
num slice. This difference is because of the wall effect,6

which also results in different structure-break modes. For the
aluminum slice case, structure-break happens between the
slice and the MR fluid; while for the iron slice case it hap-

FIG. 1. Experimental setup. 1, iron bolt; 2, container(copper) 3, iron bar; 4,
coil; 5, base(iron) 6, MR fluids; 7, dc power supply; 8, tesla gauge; 9, tesal
probe; 10, thin aluminum slice(or iron slice) 11, brass wire; 12, tensile
gauge; 13, strain gauge; 14, pressure sensor.

FIG. 2. 3D experimental result surface of yield stress, compression stress,
and magnetic flux density(measured by aluminum slice).

FIG. 3. 2D experimental results(measured by aluminum slice).

2360 J. Appl. Phys., Vol. 96, No. 4, 15 August 2004 Zhang et al.
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pens in MR fluids. This phenomenon means that the binding
stress between the iron slice and MR fluids is larger than the
yield stress in MR fluids, while the binding stress between
aluminum slice and MR fluids is less than the yield stress in
MR fluids.

According to the wall effect6 analysis, additional force
between a particle and a wall can be approximated by the
interaction between the magnetic momentm of the particle
and its imagemim in the wall, whose amplitudemim is equal
to

mim =
msmw − med
smw + med

, s1d

wheremw is the magnetic permeability of the wall andme the
permeability of the suspending liquid. When an iron slice is
used, its permeability is very large compared to unity, the
magnetic dipole induced by the field and its image is parallel
resulting in an attractive force. But when an aluminum slice
is used, its permeability is very close to the oil, so from Eq.
(1), there is no additional force between magnetizable par-
ticles and the wall. Even if the roughness of iron or alumi-
num slice are quite identical, in the first case the particles are
pushed against the defects of the wall where they become
trapped, whereas in the other case they can roll more easily
over small bumps. From this result, if MR fluids are applied
to flexible fixtures, ferromagnetic materials are easier to be
fixed than other materials. Moreover, the yield stress mea-
sured by aluminum slice is only the force between the slice
and the MR fluid. The yield stress measured by iron slice is
the real yield stress of MR fluids. Tánget al.5 used an alu-

minum slice to measure the structure-enhanced yield stress
and got the yield stress of 800 kPa, 10 times the yield stress
without compression. For our experiment with the iron slice,
a much stronger squeeze-strengthen effect is observed. For
example, at the flux density of 325 mT, and compression
stress of 9.6 MPa, the yield stress can reach 1500 kPa, about
25 times of yield stress without compression.

IV. PHYSICAL MODEL AND THEORETIC ANALYSIS

In this section, by considering both the local field theory
employed in electrorheological(ER) fluids7 and the friction
during squeezing, a semiempirical model is developed to
study the squeeze-strengthen effect.

A. Local field model

In a traditional dipole model, magnetizable particles are
magnetized in a magnetic field and the magnetic force
among the magnetic particles cause the MR effect, but only
interaction between adjacent particles in the chain are con-
sidered. As such, by considering the interaction between all
particles at the same chain, the dipole model is modified to
study two cases of both before and after saturations.

1. Model before saturation

The magnetic field causes all particles in the chain to be
induced. The field magnitude includes initial field and the
induced magnetic field caused by these particles. Here a
simple one-chain model is used while the influences of other
chains are neglected.

When a magnetizable particle is placed in a magnetic
field, its dipole moment is

m = 3m fm0bVH loc, s2d

where m0 is the vacuum permeability,b=smp−m fd / smp

+2m fd, mp is the relative permeability of particles, andm f is
the relative permeability of the medium,V is the volume of
particle, V= 4

3pR3, and R is the radius of the particle. The
local magnetic

H loc = H0 + Hp, s3d

where H0 is initial magnetic field andHP is the magnetic
field caused by dipole moment of particles in the chain. A
dipole having moment ofm will induce the magnetic fieldHFIG. 5. 2D experimental results(measured by iron slice).

FIG. 4. 3D experimental result surface of yield stress, compression stress,
and magnetic flux density(measured by iron slice). FIG. 6. Comparison between different work piecessB=275 mTd.

J. Appl. Phys., Vol. 96, No. 4, 15 August 2004 Zhang et al. 2361
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H =
1

4pm fm0r
5s− r2m + 3sm · r dr d, s4d

wherer = ur u. As shown in Fig. 7, when the chain has a shear
strain g=tanu from its initial vertical direction(parallel to
H0), the magnetic field in the center of the particlei caused
by dipoles can be written as

Hp,i =
4 cos3 umi

4pm fm0d
3o

k=1

`
1

k3 s5d

and

Hp,' = −
2 cos3 um'

4pm fm0d
3 o

k=1

`
1

k3 , s6d

Whered is the distance between two particles.
Combining Eqs.(2), (3), (5), and (6), mi and m' are

given by

mi =
4pm fm0R

3bH0 cosu

A
, s7d

m' =
4pm fm0R

3bH0 sinu

B
, s8d

where A=1−4b cos3 usR/dd3z, B=1+2b cos3 usR/dd3z, z
=ok=1

` 1
k3 .1.202.

The interaction energy between particlei and other par-
ticles of the chain is

E =
1

4pm fm0
F2z cos3 um'

2

d3 −
4z cos3 umi

2

d3 G
= 4pm fm0b2H0

2SR6

d3D · 2z cos3 uSsin2 u

B2 −
2 cos2 u

A2 D .

s9d

Fluids with volume ofV and particles volume fraction of
f have energyEt=s1/2fV/4 /3pR3dE. The energy per unit
volume is

Ed = Et/V = s3f/8pR3dE. s10d

The shear stress induced by the application of a mag-
netic field can be calculated by taking the derivative of the

energy density with respect to shear straing. Assume the
shear deformation is small, the shear stress can be written as

tm = 3fm fm0b2H0
2SR

d
D3

zSS10

A2 +
2

B2Dcos6 u sinu

+
48bz

A3 SR

d
D3

cos9 u sinuD . s11d

For small shear strain, the additional shear stress ap-
proximation caused by the applied magnetic field can be ob-
tained from Eq.(11),

tm < 3fm fm0b2H0
2SR

d
D3

zSS10

A2 +
2

B2D +
48b§

A3 SR

d
D3Dg.

s12d

Compare this equation with shear stress from traditional
dipole model

tm < 36fm fm0b2H0
2SR

d
D3

zg. s13d

If R/d!
1
2 (i.e., the distance between particles is large),

A→1 andB→1, Eq.(12) deteriorates for Eq.(13). It means
that if the particles are not closed, the proposed model is
compatible with the traditional dipole model. But if the par-
ticles are closed, according to Eq.(12), the shear stress in-
creases sharply and cannot be neglected. A comparative fig-
ure of the local field model and traditional dipole model is
shown in Fig. 8. When the particles become closed, defor-
mation is sensitive on the magnetic field and the traditional
dipole is no longer suitable. The shear stress increases
sharply when the particles are packed. This result also indi-
cates that if the MR fluids are compressed under a magnetic
field, the MR effect becomes significant.

It should be noted that Eq.(12) is only valid for the
single chain model where the influence of particles in other
chains is neglected. For small volume fractions, this process
is suitable. However, for large volume fractions, it is no
longer valid, which is beyond the scope of this paper.

2. Model after saturation

When the magnetic field is large enough to make the
particles attain saturation, Eq.(2) should be replaced by

FIG. 7. Particles in a chain. FIG. 8. Yield stress of modified dipole model(comparison with traditional
dipole model).

2362 J. Appl. Phys., Vol. 96, No. 4, 15 August 2004 Zhang et al.
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m = m fm0MsV, s14d

where M S is the saturation magnetization. The additional
shear stress caused by the dipole model is

tdm= 4fm fm0Ms
2SR

d
D3

g. s15d

Traditional dipole model considered the particles to be a
point in the center of the sphere. It is suitable only when the
distance between particles is large. When the particles are
closed, the model is modified by integrating the particles
from many thin slices as shown in Fig. 9. The energy be-
tween two particles is

E =E
−R

R E
−R

R cos3 u − 3 cos5 u

4pm fm0sd + z2 − z1d3dm1dm2, s16d

where dm1=pm fm0MssR2−z1
2ddz1, dm2=pm fm0MssR2

−z2
2ddz2.

A similar process is applied to Eq.(16), and the shear
stress is obtained as Fig. 10. The vertical axis is the ratio of
shear stress calculated by the proposed model with that of
the traditional model. When the particles are far enough and
the ratio is unity, two models are compatible. But when the
particles touch each other in the chain, the shear stress is
almost three times as much as the traditional dipole model.
For example, if the carbonyl iron saturation ism0Ms=2.1T,
when the particles touch each other, from Fig. 10, then the
shear stress of MR fluids can betsm=5.264fg sMPad before
it reaches the yield point.

B. Tribology model

Tanget al.5 have used Mohr–Coulomb theory to discuss
the relationship of yield shear stress and normal stress. When
the MR fluids are compressed, the influence of friction
should be considered. If a magnetic particle contacts with a
work piece, it will be deformed under the load.

In fact, when plastic deformation occurs because of
heavy loading, contact area increases linearly with the load.
This normal compression will be loaded on the contact area
and produces friction. Usually magnetizable particles are
covered by special surfactant and soaked in oil. When slip
happens, only friction between the surfactant films occurs.
When the film is broken, friction between the magnetizable
particles happens. Suppose interfacial film has the shear
strengtht f, the particle material has the shear strengtht0, the
ratio C of t f and t0 should vary between 0 and 1. If the
applied shear force isFt, whenFt /A,t f, the junction area
of the particles grow. WhenFt /A=t f, the films are broken
and the junction area will disappear.

Based on the above analysis, the slide condition iss2

+at f
2=ss

2, where s is the compression stress,a<ss
2/t0

2.
Thens2+at f

2=at0
2=st f

2/C2. So the relationship between the
compression stress and the yield stress contributed by fric-
tion in MR fluids is

t f =
C

fas1 − C2dg1/2s. s17d

The factor in this formula is similar to tanf in Ref. 5, but
here the influence of surfactant films has also been consid-
ered based on tribology theory.8

C. Synthetical model and result analysis

Combining above two considerations, the yield stressty

can be expressed as

ty = K1tM + K2t f , s18d

wheretM is the yield stress of modified dipole model,t f is
the yield stress by tribology,K1 is contribution coefficient of
tM and K2 is contribution coefficient oft f, respectively.tM

can be calculated by the modified dipole model[Eq. (19)].
But the state between unsaturated and saturated is too com-
plex to be analyzed. To obtain the results between the before-
saturation-state and the fully-saturation-state, a smoothing
method is employed to interpolate values and to fit the sur-
face between these two kinds of states. As such, a semi-
empirical equation is given to express the yield stresstM at
the general state,

tM = tm max3 s1 − Sd + tsmmax3 S, s19d

wheretm max is yield stress before saturation, it can be cal-
culated from Sec. IV A 1[Eq. (12)], andtsmmax is the yield
stress after fully saturation, it can be calculated from Sec.
IV A 2 (Fig. 10), S is a contribution factor, whentm max

!tsmmax, S=0, and whentm max→tsmmax, S→1. When cal-
culatingtm max andtsmmax, the relation between the distance
of particles and the compression stresss loaded in the MR
fluids is assumed asR/d=0.01s+0.4.

FIG. 9. Sketch map for energy calculation at saturation state.

FIG. 10. Yield stress at saturation state by modified dipole model(compari-
son with traditional dipole model).

J. Appl. Phys., Vol. 96, No. 4, 15 August 2004 Zhang et al. 2363
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t f can be calculated according Sec. IV B[Eq. (17)].
Tánget al. have pointed out that the internal friction seems
to increase slightly with the magnetic field. Here, its contri-
bution coefficient is estimated empirically as

K2 =
1

4
fsgnsB − B0ds1 − es−uB−B0u/Ddd + 3g,

whereB0 is the squeeze-strengthen effect critical magnetic
flux density point,D is the intensity of strength changing.
When the magnetic flux density and compression pressure
reach critical extent, the construction is changed and the con-
tribution of t f is enlarged consumedly.

By using Eq.(18), the yield stress of the experimental
condition is simulated. When an iron slice is used to measure
the stress, because an iron slice has higher permeability and
strength, the squeeze-strengthen effect critical magnetic flux
density point is low andC is high, we assumeB0=50 mT,
D=20 mT,C=0.3,a=9. Because of the wall effects, thetM

can be delivered entirely and we assumeK1=1. Thus the
yield stress can be calculated and shown as in Fig. 11. When
an aluminum slice is used to measure the stress, because
aluminum slice has lower permeability and strength, the
squeeze-strengthen effect critical magnetic flux density point
is high andC is low, we assumeB0=150 mT, D=20 mT,
C=0.1, a=9. Because aluminum slice has no wall effects,
the tM cannot be delivered entirely and we assumeK1=0.3.
Thus the yield stress can be calculated and shown as in Fig.

12. Comparing these two figures with the corresponding ex-
perimental results of Fig. 4 and 2, we can find that they show
a similar outline.

V. CONCLUSION

The squeeze-strengthen effect of MR fluids is experi-
mentally and theoretically investigated. An apparatus is de-
signed to experimentally study the effect and some promis-
ing results are obtained. For example, under the compression
stress of 9.6 MPa, when magnetic flux density of 325 mT is
applied on a MR fluid with volume fraction of 46%, the yield
stress can reach 1500 kPa, 25 times of yield stress without
compression. Such material is expected to meet wide indus-
trial requirements, such as flexible fixture.

By considering the local field theory and the friction
between the magnetizable particles, a semiempirical model is
proposed to model this effect. The comparison between the
simulation result and the experimental results indicates that
this model can accurately predict the squeeze-strengthen ef-
fect.

This study also provides a good guidance to develop
high-efficiency testing devices. To measure the large yield
stress of MR fluids, test slice should be made of ferromag-
netic materials such as iron. Because of the existence of the
wall effect, when ferromagnetic material is used, binding be-
tween the test piece and fluid is strong, the fluid will be
broken, then the measured stress really represents the yield
stress of MR fluids. If a nonferromagnetic material such as
an aluminum piece is used, binding between the test piece
and fluid is weaker than that in MR fluids, then the measured
stress only represents the binding between the test piece and
MR fluids.

In addition, the proposed model may also be used to
explain the squeeze-strengthen effect in ER fluids.9

ACKNOWLEDGMENTS

The authors want to thank S. Fang for his assistance and
Dr. W.H. Li (University of Wollongong of Australia) for his
help in English revisions. This research is supported by
BRJH Project of Chinese Academy of Science and Special-
ized Research Fund for the Doctoral Program of Higher Edu-
cation (No. 20030358014).

1M. Ginder, “Rheology Controlled By Magnetic Fields,”Encyclopedia of
Applied Physies(1996), Vol. 16, pp. 487–503.

2K. D. Weiss and T. G. Duclos, “Controllable fluids: The temperature de-
pendence of post-yield properties,” inProceedings of the 4th International
Conference on ER Fluids, Singapore(1994), pp. 43–59.

3J. M. Ginder and L. C. Davis, Appl. Phys. Lett.65, 3410(1994).
4Y. Chen, H. Conrad, and X. Tang J. Intell. Mater. Syst. Struct.7, 517
(1996).

5X. Táng, X. Zhang, and R. Tao J. Appl. Phys.87, 2634(2000).
6E. Lemaire and G. Bossis, J. Phys. D24, 1473(1991).
7L. C. Davis, J. Appl. Phys.72, 1334(1992).
8F. P. Bowden and D. Tabor,The Friction and Lubrication of Solids(Ox-
ford University Press, Oxford, 1954).

9R. Tao, Y. C. Lan, and X. Xu, “Structure-enhanced yield stress in elec-
trorheological fluids,” inProceedings of the Eighth International Confer-
ence on Electrorheological Fluids and Magnetorheological Suspensions,
Nice, France, 2001, pp. 712–718.

FIG. 11. Simulated yield stress from synthetical model(iron slice).

FIG. 12. Simulated yield stress from synthetical model(aluminum slice).
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