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A Critique of the Granger Representation Theorem 
 

E. J. Wilson 
 
 

ABSTRACT 
 
The Granger representation theorem states that if a set of non-
stationary variables are cointegrated then they can be 
characterized as generated by an error correction mechanism. 
This paper uses the continuous time equivalent representation 
for two variables to demonstrate the relatively large number of 
restrictions required to represent a cointegrating relationship as 
an error correction mechanism. 
 
It is shown that the restrictions result from placing too much 
importance on the long run, which excludes interesting and 
possibly important short run dynamics. This is surprising 
because these restrictions are at odds with the a-theoretical 
vector autoregressive approach, which criticises the ad-hoc 
specification and identification of the Cowles foundation  style 
structural models. 
 
The second criticism relates to the justification of using 
cointegration because economic theories are mostly about long 
run relationships with little to contribute to modeling short run 
economic behaviour. It is argued in this paper that 
cointegration places too much importance on the long run and 
excludes interesting short run dynamics. After the formal 
presentation of the conditions for stability of an economic 
model, an exchange rate and endogenous growth examples are 
provided. They highlight the importance of short run dynamics 
in modeling economic behaviour and providing policy 
prescriptions. It is then shown that applying the cointegrating 
restrictions eliminates these short run dynamics. 
 
It is also possible that many researchers are not aware of the 
restrictions that this procedure forces on the parameters which 
are to be estimated. This paper demonstrates these restrictions 
on the coefficients of economic relationships. 

 
 
 
Keywords:   VECM, cointegration, short run, dynamics, exchange 
rates, endogenous growth.  
JEL Classifications: . 
 



I Introduction 

 

The influential Granger representation theorem states that if a set of non-stationary 

variables are cointegrated then they can be characterized as being generated by 

an error correction mechanism. Consider the simultaneous vector autoregressive 

(SVAR) system for the 1×n  vector of endogenous variables, ( )x t : 

 

 ( ) ( ) ( ) ( )
1 0

k l

i j
i j

x t x t i z t j u tφ
= =

= + Φ − + Ψ − +∑ ∑  ,       1, 2,....,t T=  (1) 

 

where ( )z t j−  is a vector of stationary exogenous variables, iΦ  and jΨ  are n n×  
and n m×  respectively dimensioned coefficient matrices, φ  is a 1×n  vector of 
intercepts and ( )u t  is 1×n  vector of disturbances with the usual iid properties. 
 

According to Granger’s representation theorem, (1) has an equivalent vector 

error correction mechanism (VECM) representation: 

 

 
( ) ( ) ( ) ( ) ( )

1

1 0

k l

i j
i j

x t x t i x t k z t j tφ ε
−

= =

∆ = + Γ ∆ − +Π − + Ψ − +∑ ∑  (2) 

with 
1

I
k

i
i=

Π = Φ −∑ , where I is the identity matrix. The rank of the Π  matrix can 

be determined using Johansen's trace, eigenvalue and model selection criteria 

and it can be decomposed into αβ ′Π = . The r n×  dimensioned  β  matrix gives 

the 1r×  cointegrating vectors ( )x tβ ′ , which are stationary, ( )0I . 

 

The SVAR given by (1) and the VECM in (2) are powerful analytic devices which 

have had major impacts on how empirical research is conducted.1 Researchers 

working with non-stationary time series are required to transform the variables 

                                                 
1 The (recursively or non-recursively) identified Sim (1980) SVAR procedure uses impulse 

responses to trace the intertemporal effects of shocks on variables and variance decomposition 
to analyse the contribution of a shock to one variable on the forecast variance of other 
variables. There has been surprisingly little criticism of the non-stationary issues inherent 
with the specification (1), perhaps due to the system being identified to be stable with all 
characteristic roots lying within the unit circle. 
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to first differences to avoid the charges of estimating spurious regressions and 

making incorrect statistical inferences using the estimated standard errors. 

However, empirical work using distributed lags of variables in first differences: 

 

 ( ) ( ) ( ) ( )
1

1 0

k l

i j
i j

x t x t i z t j v tφ
−

= =

∆ = + Γ ∆ − + Ψ − +∑ ∑  (3) 

 
have been criticised due to the term, ( )x t kΠ −  being omitted. Ignoring the long 

run cointegrating vector, ( )x tβ ′  and the error correction, ( )x tα β ′⎡ ⎤⎣ ⎦  means the 

SVAR in (3) is mis-specified.2  The potential seriousness of this, and its effective 

policing by academics, has resulted in the widespread specification of the VECM 

(2) in time series research. This paper considers two important consequences of 

the ubiquitous use the VECM in empirical research. 

 

First, it is shown in Section II that a relatively large number of restrictions are 

required to represent a cointegrating relationship as being generated by a VECM.  

Ironically, these restrictions are at odds with the a-theoretical VAR approach 

which criticises the ad-hoc specification and identification of the Cowles 

foundation style structural models. It is also possible that many researchers are 

not aware that this procedure forces these restrictions on the parameters which 

are to be estimated. 

 

The second criticism relates to the justification of using cointegration because 

economic theories are long run and say little about short run economic 

behaviour. It is argued in this paper that cointegration places too much 

importance on the long run and applying the cointegrating restrictions via the 

VECM excludes interesting short to medium run dynamics, which may have 

relevance for policy formulation. This is demonstrated theoretically in Section III. 

Two well known examples, the first with bounded solution and the second with 

                                                                                                                                                 
 
2 This also applies to traditional tests of Granger causality using distributed lags of the variables 

in first differences. 
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an unbounded solution, are considered in Sections IV and V. Conclusions are 

provided in Section VI. 

 

 

II Restrictions Required by the VECM 

 

Consider (1) with only two endogenous variables, 1x  and 2x  ( 2n = ) having only 

one lag ( 1k = ) each, and two stationary exogenous variables, 1z  and 2z : 

 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1 1 12 2 13 1 1

2 1 21 1 2 2 23 2 2

1 1
1 1

x t a x t a x t a z t t
x t a x t a x t a z t t

φ ε
φ ε

= + − + − + +
= + − + − + +

. (4) 

 

Transforming (4) into first differences gives: 

 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 12 2 13 1 1

2 1 21 1 2 2 23 2 2

1 1

1 1

x t a x t a x t a z t t

x t a x t a x t a z t t

φ ε

φ ε

∆ = + − − + + +

∆ = + − − − + +
. (5) 

 

Rather than work with this specification it is preferred to work with the 

continuous time equivalent of (5). The analysis in continuous time allows a 

simpler formal presentation of the conditions for stability of the model, which is 

also consistent with the well known continuous time examples of the Dornbusch 

exchange rate overshooting model and the endogenous growth models. 

 

Defining ( ) ( )
0

limi it
Dx t x t

∆ →
= ∆  in (5) gives the differential equations: 

 

 
( )
( )

1 11 1 12 2 1

2 21 1 22 2 2

( ) ( ) ( )

( ) ( ) ( )

Dx t a x t a x t b t

Dx t a x t a x t b t

= + +

= + +
 (6) 

 

with 11 1 1a a= − , 22 2 1a a= − , 1 1 13 1 1b a zφ ε= + +  and 2 1 23 2 2b a zφ ε= + + . 

 



 6

Without time subscripts (to keep the notation simple) Granger’s representation 

theorem normalizes (6) with respect to 1x  for the cointegrating vector, 1 2x xβ− : 

 

 
( )
( )

1 1 1 2 1

2 2 1 2 2

Dx x x b

Dx x x b

α β

α β

= − +

= − +
 (7) 

 

where 0β > , 1 0α <  and 2 0α > . It is important to note that these requirements 

for (7) can only be achieved when the characteristic roots of the system (6) are 

1 0λ <  and 2 0λ = . To see this, consider the matrix form of (6): 

 

 BAXDX +=  (8) 

 

with ⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡=

2

1

2

1

2221

1211

2

1   and    ,    ,  b
bBx

xXaa
aaADx

DxDX
. 

The restricted reduced 

form solution with the steady state requirement 0DX =  imposed is: 

 

 1X A B−= −  (9) 

 

for 0A ≠ . The dynamic adjustments of 1x  and 2x  to respective steady states 1x  

and 2x  can be determined by solving (8) without imposing 0DX = : 

 

 1( )
DX AX B
X D A B−

= +

∴ = −
 (10) 

 

provided 0 ≠− AD . Note that pre-multiplying both sides by 1)( −− AD  

integrates DX in (8) to give the solution for X in (10). The integral general 

solution therefore needs to include a ‘constant of integration’ term: 3 

                                                 
3 It makes sense when solving a dynamic system to include a growth term as the unknown 

constant of integration. The compound exponential function characterises dynamic 
cumulative growth and decay (as experienced in the biological, physical and social sciences). 
The discrete time compound growth of a principal, C, at r rate of return over t periods given 
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 tCeBADX λ+−=∴ −1)(  (11) 

 

for ⎥⎦
⎤

⎢⎣
⎡=

2

1
c
cC  and suitably defined  parameter λ . The value of λ  determines the 

dynamics of the system and its value can be determined from the homogeneous 

subset of the differential equations (8):  

 

 hh AXDX = . 

 

The general solution for the homogeneous sub-system (11) with 0B =  is: 

 

 
t

h
t

h

X Ce

DX Ce

λ

λ

=

∴ = λ
 (12) 

 

Now, 0h hDX AX− = , and substituting using the two terms in (12) gives: 

 

 

2

0

0
( ) 0

h h

t t

t

DX AX

Ce ACe
I A Ce

λ λ

λ

− =

∴λ − =

∴ λ − =

 

 ( )2 2( ) 0I A C A I C∴ λ − = −λ =  (13) 

 

Ruling out the trivial solution, 0C = , implies that 1
2 )( −− IA λ cannot exist. This 

singularity requires, 02 =− IA λ  such that: 4 

                                                                                                                                                 
by: (1 )tk C r= +  can be represented as the exponential function, tCeλ . To see that these are 
equivalent, equate them and solve for λ  as a function of r: 
 (1 ) (1 ),t t t tCe C r e rλ λ= + ∴ = + . 
Taking Naperian logs (log to the base e) denoted, ln, of both sides: 

 ln( ) ln(1 ) ln(1 ),t te r rλ λ= + ∴ = +  

and so: ln(1 ) (1 )t r t tCe Ce C rλ += = + . 
4 We can use (13) to prove that the additional term tCeλ  in (11) should disappear when this 

solution is differentiated to give the structural equations (8), DX AX B= + . 
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 0
2221

1211 =−
−

λ
λ

aa
aa .  

 

Solving the determinant gives: 

 

 
0)()(

0))((

211222112211
2

21122211

=−++−∴

=−−−

aaaaaa

aaaa

λλ

λλ
 

 0)(2 =+−∴ AtrA λλ  (14) 

 

where 2211 aatrA +=  and 21122211 aaaaA −= . The solutions of this quadratic 

equation are the characteristic roots: 

 

 
2

4)( 2

2,1

AtrAtrA −±
=∴λ . (15) 

 

If AtrA 4)( 2 >  then there are two distinct real roots, 1λ  and 2λ  which need to 

include in the general homogeneous solution (11): 

 

 tt
h eCeCX 21

21
λλ += . (16) 

 

The non-homogeneous solution for X  is the steady state solution, X  shown as 
1X A B−= −  in (9), plus the homogeneous solution, tt

h eCeCX 21
21

λλ +=  in (16): 

 

 hX X X= +  

                                                                                                                                                 
Proof:  Consider solution (11), 1( ) tX D A B Ceλ−= − + . Pre-multiplying both sides by ( )D A−  
effectively differentiates X  with respect to time: 

 
( )

1

2

( ) ( )( ) ( ) t

t t t t t

D A X D A D A B D A Ce

B DCe ACe B Ce ACe B I A Ce

λ

λ λ λ λ λλ λ

−∴ − = − − + −

= + − = + − = + −
 

and from (13), 2( ) 0I A Cλ − =  then ( )D A X B− = , which is the specification of the original 
structural equations (8), namely DX AX B= + .  Q.E.D. 
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 tt eCeCBAX 21
21

1 λλ ++−=∴ −  

 
1 2

1 2

1 1 11 21

2 2 12 22

( )

( )

t t

t t

x t x c e c e

x t x c e c e

λ λ

λ λ

∴ = + +

∴ = + +
. (17) 

 

The signs of the characteristic roots, 1λ  and 2λ  in (17) indicate important 

dynamic properties of the variables.5  If the characteristic roots are both less than 

zero then there will be stable solutions for ( )1x t  and ( )2x t . However, in this case 

the variables will be stationary and therefore cannot be cointegrated. If both the 

roots are greater than zero, then ( )1x t  and ( )2x t  will have unstable solutions. 

The variables will not be stationary and therefore cannot be cointegrated. When 

12 21 0a a= =  and 11 22 0a a= =  then (15) shows trivially that 1 2 0λ λ= = . Whilst the 

variables ( )1x t  and ( )2x t  must be stationary ( 11 22 0a a= = ) they will be unrelated 

( 12 21 0a a= = ) and therefore cannot be cointegrated. 

 

It is argued (Enders, 1995, pp. 368-369 and others) that two variables will be 

cointegrated when one characteristic root is equal to zero, 2 0λ = . The VECM 

requires the other characteristic root must be less than zero, 1 0λ < . Examination 

of (15) shows that 0trA <  and 0A =  must apply. The second condition gives the 

important relationship: 

 

 12 21
11

22

a aa
a

=  (18) 

                                                 
5 The  equivalent discrete  time  conditions  are  given  by  applying  the  lag  operator  L  to  (4)  to 

give
( )

( )
( )
( )

( )
( )

1 12 1 1

21 2 2 2

1

1

a L a L x t b t

a L a L x t b t

− −
=

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. The  inverse  characteristic equation  is  similarly 

derived  from  the  singular matrix with  zero determinant  ( )( ) 2

1 2 12 211 1 0a L a L a a L− − − =   and 

defining  1 Lµ =  gives  the  characteristic  equation,  ( ) ( )2

1 2 1 2 12 21 0a a a a a aµ µ− + + − =  which 

has characteristic roots,  ( ) ( ) ( )2

1,2 1 2 1 2 1 2 12 211 2 4a a a a a a a aµ = + ± + − −⎡ ⎤
⎣ ⎦ . The benchmark for 

the discrete time characteristic roots is unity, which is equivalent to the benchmark of zero for 
the continuous time analogue, ie.  1,2 1,2 1λ µ= − . 
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and substituting into (6) gives: 

 

 
12 21

1 1 12 2 1
22

2 21 1 22 2 2

a aDx x a x b
a

Dx a x a x b

= + +

= + +
. (19) 

 

Normalising with respect to 1x  for the cointegrating vector, 1 2x xβ− , gives the 

error correction (7): 

 

 
( )
( )

1 1 1 2 1

2 2 1 2 2

Dx x x b

Dx x x b

α β

α β

= − +

= − +
 

 

with the parameters for the cointegrating vector, β  and error corrections, 1α  and 

2α  given by: 6 

  22

21

a
a

β = , 12 21
1

22

a a
a

α =  and 2 21aα = . (20) 

 

Figure 1 

 

 

 

 

 

 

 

 

 

 

 

                                                 
6 This is equivalent to the discrete time specification (5) and Footnote 4 with the substitutions, 

11 1 1a a= −  and 22 2 1a a= − . 

22a  

12 21
11

22

a aa
a

=  

11 22 0a a+ =  

0 11a  

0
0

A
trA

=

<
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The restrictions imposed by 0A =  are considerable, for example, the VECM 

requires 0β > , 1 0α <  and 2 0α > . Since 2 21aα =  then 21 0a >  and so 22 0a > , 

because 0β > . For  1 0α <  then 21 0a >  and 22 0a >  means that 12 0a < . Figure 1 

graphs the hyperbola for given 12 21 0a a <  in ( )11 22,a a  space. The other 

requirement, 11 22 0trA a a= + =  is graphed by the straight line and so only the 

points on the thick black line satisfy the joint requirements, 0A =  and 0trA < . 

Clearly these requirements substantially restrict the possible parameter space 

( )11 22,a a .  In addition, these restrictions seriously affect the possible short run 

dynamics of adjustment of the system via the VECM and this will be considered 

in the next section. 

 

 

III Possible Dynamic Solutions 

 

The relationship (15), ( )2
1,2

1 4
2

trA trA Aλ ⎡ ⎤= ± −⎢ ⎥⎣ ⎦
 shows that Granger’s 

representation theorem only applies on the manifold, 0trA <  and 0A = , as 

indicated by the thick black line with label, 1 0λ < , 2 0λ =  in Figure 2. 

 

When 0>A  and 0>trA , the system is globally unstable with 01 >λ  and 02 >λ . 

The exponential terms in (17): 

 

 
1 2

1 2

1 1 11 21

2 2 12 22

( )

( )

t t

t t

x t x c e c e

x t x c e c e

λ λ

λ λ

= + +

= + +
 

 

will grow without bound and the general solutions for x1 and x2 will diverge 

exponentially from the steady state values 1x  and 2x  over time, t. 
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Figure 2 

 
 

When 0>A  and  0<trA  the system is globally stable with 01 <λ  and 02 <λ . 

The inverse exponential terms will decay to zero so that the time paths of x1 and 

x2 must converge to the steady state values, 1 1

2 2

( )lim
( )

x t x
x t xt
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥→∞ ⎣ ⎦ ⎣ ⎦
. Alternatively, 

0=A  means that one root will be zero and the other non-zero. If 0=trA  then 

both roots will be equal to zero, 0=λ . The relationship (17) will reduce to: 

 

 1 1 11 21

2 2 12 22

( ) ( )
( ) ( )

x t x c c
x t x c c

= + +
= + +

 (21) 

 

so that x1 and x2 must always be a constant value away from steady state. 

 

When 0<A  the characteristic roots must be opposite in sign with either ( 01 <λ , 

02 >λ ) or ( 01 >λ , 02 <λ ). These values describe a dynamic saddlepath solution 

with the negative characteristic root characterizing the stable arm and positive 

1

2

0
0

λ
λ
<
=

 

2ω

1ω  
1 2 0λ λ= =  

0

1 2λ λ=  

1

2

0
0

λ
λ
<
<

1

2

0
0

λ
λ
>
>

 

1

2

0
0

λ
λ
<
>

 1

2

0
0

λ
λ
<
>

 

1,2

0
g hi

g
λ = ±

<
 1,2

0
g hi

g
λ = ±

>
 

0h =  

0g =  

2ω

1ω  

A

trA  
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root the unstable arm. These conditions are shown as the areas below the 

horizontal trA  axis in Figure 2. Let’s consider the saddlepath solution with 01 <λ  

and 2 0λ > . To achieve this outcome we can keep the required inequalities of the 

VECM, 11 12 220 ,  0  and  0a a a< < >  but drop the restrictions,  11 12 21 22a a a a=  and 

21 0a < . For 21 0a >  and 01 <λ , the stable arm (22) will be: 

 

 1 2 2 21
2 1

22 1 22 1

( ) ( )x b ax t x t
a a
λ

λ λ
+

∴ = − −
− −

. (22) 

 

It will have positive slope and is shown as the SS schedule in Figure 3. 

According to (23), 2 0λ >  ensures the unstable TT arm will have positive slope: 

 

 ( ) ( )2 1 1 2 11
2 1

12 12

x b ax t x t
a a

λ λ+ −
∴ = − + . (23) 

 

Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

Note that if both of the SS and TT arms are stable (consistent with 0>A  and  

0<trA  causing 01 <λ and 02 <λ ) then the system would be globally stable. 

There would be an infinite number of possible solution paths and so this under-

x2 

Dx1=0 

Dx2=0 

x1 

T

T

S 

S 

1x  

2x  
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identification will result in a non-unique solution. Conversely, if both arms are 

unstable (with 0>A  and 0>trA  giving 01 >λ  and 02 >λ ) then the system 

would be globally unstable. In this case the initial values of 1x and 2x  on either SS 

or TT will cause the variables to diverge from their steady state values. The only 

solution to the system is for the variables to jump to the steady state values 1x  

and 2x . Whilst this solution is unique there are no dynamics of adjustment and it 

is therefore of little interest. 

 

The interesting saddlepath solution (with  0<A  giving either ( 01 <λ , 02 >λ ) or 

( 01 >λ , 02 <λ ) provides a locally stable manifold, SS and a globally unstable 

system.7  The solution requires one of the variables to jump onto the stable arm 

and then both variables to adjust as the system moves along SS to the steady 

state values 1x  and 2x . 

 

Finally if 24 ( )A trA>  then the characteristic roots will be complex numbers: 

 

 

2

1,2

2

( 1)(4 ( ) )
2

4 ( )
2

trA A trA

trA i A trA

λ
± − −

=

± −
=

. 

 

with imaginary part, 1−=i . These complex conjugate solutions are defined to 

include a real part and an imaginary part in linear form, hig ±=2,1λ  where 

2
trAg =  and 

2
)(4 2trAA

h
−

= . Substituting into the general solution (17): 

 

 ( ) ( )thigthig ececBAX −+− ++−= 21
1  

 ( )hithitgt ececeBA −− ++−= 21
1  (24) 

                                                 
7 The stable arm SS represents a U shaped part of the saddle which is a ridge where points off 

the SS schedule will fall away from the schedule. The SS schedule is said to be locally stable 
and globally unstable. The TT schedule is locally unstable. 
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and changing from Cartesian co-ordinates ( )k,g   to polar co-ordinates ( )k, θ  

expressed in trigonometric form, cos ,  sin ,  for 0g k h k kθ θ= = >  gives: 8 

 

 ( )cos sing hi k iθ θ± = ± . 

 

Using the Euler equation, θikehig ±==±  and substituting into (24) gives the 

complex solution: 

 

 
( ) ( )[ ]

( ) ( )[ ]hticchtcceBA

htihthtihtceBAX

gt

gt

sin   cos

sin   cossin   cos

2121
1

1
1

−+++−=

−+++−=

−

−

 

 [ ]htidhtdeBA gt sin   cos 21
1 ++−= −  (25) 

 

where the trigonometric term, htidhtd sin   cos 21 + , specifies the periodic 

fluctuations of the solution.9 

 

Figure 4 

 
 

                                                 
8 The angle, θ , is measured in radians, 0 2 ,   1r rθ π≤ ≤ ≥ , and the trigonometric functions have 

period, 2π and amplitude, k. 

9 The period of the cycle is 2 hπ , so that higher values of ( )21 2 4h A trA= −⎡ ⎤
⎣ ⎦  increase the 

frequency, that is, shorten the time the cycle repeats itself. 
 

g < 0 g > 0 

time time 

1x  

*x1  *x1  

1x  
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The sign of g in (25) determines the stable (g < 0) and unstable (g > 0) dynamic 

paths. These cases can be viewed in Figure 4 as dynamic oscillations along the 

stable saddlepath SS for 0g <  and unstable oscillations along the unstable path 

TT for 0g > . The complex solution occurs when ( )2 4 0trA A− < , which descibes 

all points vertically above the parabola in Figure 2. 

 

To summarise, of all the possible outcomes in ( ),trA A  space, Granger’s 

representation theorem substantially restricts the possible parameter space for the 

VECM to the ( )0, 0trA A< =  manifold, as indicated by the thick black line 

(labeled as 1 0λ < , 2 0λ = ) in Figure 2. 

 

 

IV Example of Overshooting Exchange Rate 

 

The seminal model of Dornbusch (1976) demonstrates that exchange rates may 

overshoot (even with continuous asset market clearing and rational 

expectations). This is brought about by different relative speeds of adjustment 

between asset and goods markets. Domestic and foreign assets are assumed to be 

perfect substitutes reflecting perfect international capital mobility (and relative 

fast adjustment) whilst real output is assumed fixed so that domestic prices are 

required to adjust (relatively slowly). 

 

The model comprises interest rate parity, the demand for money (asset market) 

and a Phillips curve (goods market).10 Interest rate parity ( 1
e es Dx=& ) is given by: 

 

 *es i i= −&  (26) 

 

where s is defined as the domestic price of foreign exchange for the small open 

economy. The demand for money (with money supply m assumed exogenous) is: 
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 0, 0m p ky i kθ θ= + − > > . (27) 

 

Subtracting the long run equilibrium in the money market, m p ky iθ= + − , from 

(27) gives, ( ) ( ) ( )*p p m m i iθ− − − = −  and substituting for ( )*i i=  using (26) 

derives the first equation of motion: 

 

 ( ) ( )1es p p m m
θ

= − − −⎡ ⎤⎣ ⎦&  (28) 

 

An increase in price p increases the domestic interest rate, i which appreciates the 

spot exchange rate, s and increases the expectation of a depreciation of the 

forward rate es&. An unexpected increase in the money supply, m has the 

opposite effect by depreciating the spot rate and increasing the expected future 

appreciation. 

 

The final equation is the Phillips curve: 

 

 ( ) 0, 0p s p yγ δ ϕ γ ϕ= + − − > >⎡ ⎤⎣ ⎦&  (29) 

 

where excess aggregate demand, ( )s pδ ϕ+ − , over the fixed supply, y , will be  

inflationary.11 

 

In long run equilibrium, ( )0 s p yγ δ ϕ⎡ ⎤= + − −⎣ ⎦  and subtracting from (29) 

gives the second required equation of motion: 

 

 ( ) ( ) ( )p s s p pγϕ γϕ γ δ δ= − − − + −&  (30) 

                                                                                                                                                 
10 This demonstration differs from the original model in order to make clearer the differences 

with the requirements of the cointegrating VECM specification.  
11 This differs from the Mundell-Fleming model, where AD affects real output, because here 

only movements in the price level, p equilibrates the goods market. 
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Equations (28) and (30) comprise the dynamic continuous time system: 

 

 
( )

( )

110e m ms ss
p pp

θθ
γ δ δγϕ γϕ

−⎡ ⎤⎡ ⎤ −−⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎣ ⎦ −− ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

&
&

. (31) 

 

The stability of the system is determined by 0A γϕ
θ

= − <  for 0, 0, 0θ γ ϕ> > > , 

which means there is a saddlepath solution. 

 

Steady state occurs when 0es =&  which means that p p= , when there are no 

unexpected changes in the money supply, m m= . For 0p =&  then p s=  when 

p s=  and there are no unexpected changes in autonomous AD, δ δ= . These 

steady states are graphed in Figure 5. 

 

Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

Solving for the stable saddlepath SS in terms of the exchange rate gives: 12 

                                                 
12 The quantitative solution can be obtained by integrating (31) to give the general solution (17): 

p 

0es =&  

0p =&  

p  

slope = 1 

s s  
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 ( ) ( )
1 1

1 1s s p p m m
λθ λθ

= + − − −  (32) 

 

The value of the stable characteristic root is given by: 

 

 
( )2

1

4

2

γϕγϕ γϕ
θ

λ

−⎛ ⎞− − − ⎜ ⎟
⎝ ⎠= . (33) 

 

Completing the square and simplifying gives, 1λ γϕ= − , which for 0γ >  and 

0ϕ >  ensures 1 0λ < . The equation for the saddlepath is therefore: 

 

  ( ) ( )1 1s s p p m m
γϕθ γϕθ

= − − + −  (34) 

 

and rearranging gives the saddlepath in terms of price, as shown in Figure 6: 

 

 ( ) ( )p p s s m mγϕθ γϕθ= − − − − . (35) 

 

                                                                                                                                                 

 
1 2

1 2

11 21

12 22

t t

t t

s s c e c e

p p c e c e

λ λ

λ λ

− = +

− = +
. 

 Selecting the stable arm, 1 0λ < , setting 0t =  and differentiating gives, 11 1s c λ=&  and 12 1p c λ=& . 
Equating with (31) eliminates s& and p& to give: 

 ( ) ( )11 1

1 1
c p p m mλ

θ θ
= − − −   and  ( ) ( ) ( )12 1c s s p pλ γϕ γϕ γ δ δ= − − − + − . 

Eliminating 11c  and 12c  by setting 0t =  for the stable arm, 1

11

ts s c eλ− =  and 1

12

tp p c eλ− =  

gives, 11s s c= +  and 12p p c= + . Substituting gives: 

 ( ) ( ) ( )1

1 1
s s s p p m mλ

θ θ
= − = − − −&  

 ( ) ( ) ( ) ( )1p p p s s p pλ γϕ γϕ γ δ δ= − = − − − + −& . 
 Solving the first equation for the exchange rate gives: 

 ( ) ( )
1 1

1 1
s s p p m m

λθ λθ
= + − − −  (32) 
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An unexpected increase in the money supply, m will lower the domestic interest 

rate, i  and depreciate the exchange rate, s. The SS saddlepath schedule will shift 

to the right on impact to S’S’, as shown in Figure 6. Since goods prices will be 

fixed on impact and because s m∂ = ∂ , the size of the rightward shift is according 

to (34): 

 1 11s s m m⎛ ⎞
∂ = ∂ + ∂ = + ∂⎜ ⎟

⎝ ⎠γϕθ γϕθ
 (36) 

 

Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

The spot exchange rate will therefore need to depreciate all the way to point s′ , 

where 11s s m
γϕθ

⎛ ⎞′− = + ∂⎜ ⎟
⎝ ⎠

. As prices rise over time, the interest rate will 

increase, appreciating the exchange rate back to s′′ . The subsequent increase in 

prices to p′  necessitates the exchange rate to overshoot in order to factor in the 

future appreciation. The slope of the saddlepath (35) is γϕθ− , so lower values of 

these parameters will flatten the saddlepath schedule and increase the required 

overshooting. According to (27), m p ky iθ= + − , as θ  falls, the interest rate will 

need to fall by more to equilibrate the money market and so the exchange rate 

will depreciate by more. Lower values of γ  and ϕ  in (29), ( )p s p yγ δ ϕ= + − −⎡ ⎤⎣ ⎦&  

p 

0es =&  

0p =&  

p  

s s  

S 

S 

S’ 

S’ 

s′  s′′  

p′
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mean that prices do not have to increase by as much in order to offset the 

depreciation and equilibrate the goods market. 

 

Now compare this with the Granger representation of the VECM (7):  

 

 
( ) ( ) ( )
( ) ( ) ( )

1 1 1 2

2 2 1 2

Dx t x t x t

Dx t x t x t

α β

α β

= −⎡ ⎤⎣ ⎦
= −⎡ ⎤⎣ ⎦

. 

 

In this example, the VECM requires the first equation in relationship (31) to 

include the real exchange rate: 

 

 ( ) ( ) ( )1 1es s p s p m m
θ θ
−

= − + − − −⎡ ⎤⎣ ⎦&  (31’) 

 

and the second equation in (31) needs to be rearranged to show the presence of 

the real exchange rate : 

 

 ( ) ( ) ( )p s p s pγϕ γϕ γ δ δ⎡ ⎤= − − − − −⎣ ⎦&  (31) 

 

Comparing (31’) and (31) with (7) shows the real exchange rate, e p−  is the 

cointegrating vector. So 1β =  and the error corrections, 1
1α
θ
−

=  and 2α γϕ=  

have the required signs, 1 1α <  and 2 0α >  for 0θ > , 0γ >  and 0ϕ > .13 Putting 

into matrix form: 

 

 
( ) ( )

( ) ( )

11 1e s p m mss
pp s p

θθ θ
γϕ γ δ δγϕ γϕ

−⎡ ⎤−⎡ ⎤ − − −⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎣ ⎦⎢ ⎥⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ − − + −− ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

&
&

 (31’) 

 

                                                 
13 Note that these values are consistent with the requirements in (21), 22 21 1a aβ γϕ γϕ= − = = , 

1 12 21 22 1a a aα γϕ γϕθ θ= = − = −   and 2 21aα γϕ= = . 
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shows that 0A =  since the matrix of coefficients are linearly dependent. From 

(15), one root will be zero, 2 0λ = , and the other non-zero, 

2

1
( ) 1 0

2
trA trA

trAλ γϕ
θ

+ ⎡ ⎤= = = − + <⎢ ⎥⎣ ⎦
. The system will therefore be globally 

stable and this can be verified by differentiating the first equation in (31’) with 

respect to s to give 1 0s
s θ
∂ −

= <
∂

&
 and differentiating the second equation in (31’) 

with respect to p to give,  0p
p

γϕ∂
= − <

∂
&

, for 0, 0, 0θ γ ϕ> > > . Figure 7 

demonstrates the global stability with no unique long run steady state values of 

1x  and 2x , because any positions on the long run cointegrating vector, 0p =&  are 

possible.14 

 

Figure 7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The VECM specification only explains the long run monotonic movement from 

of the exchange rate depreciating from s  and the price level increasing from p  

along the 0p =&  cointegrating vector. 

                                                 
14 If the system is shocked off the cointegrating locus then the VECM ensures monotonic 

movement back to it. 
 

p  0p =&  

s  s  

p  
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Note also that complex (oscillatory) solutions are not possible for the VECM 

since 0A =  cannot satisfy the requirement complex conjugate solution 

requirement, ( )24 A trA> . Figure 8 shows the only possible VECM solution is the 

(thick lined) unbounded monotonic locus.15 

 

Figure 8 

 

 

 

 

 

 

 

 

 

 

 

 

The nature of equilibrium and the dynamic paths by which an economy moves 

from one equilibrium to another are important. Counter intuitively, the concept 

of global instability is an important and desirable property. For policy makers 

and others, the dynamic paths of adjustment are at least as important as the 

changing equilibrium. 

 

So what is the solution for the dilemma of the acceptance of Granger’s 

representation theorem and the widespread use of the VECM in modeling and 

empirical estimation? The VECM in (7) for this example: 

 

                                                 
15 The nonlinear path is due to the exponential, 1teλ  effect for 1 0λ <  in the adjustment (32). 

s′  

s 

At  time 

s′′  

s  



 24

 
( ) ( )

( ) ( )

11 1e s p m mss
pp s p

θθ θ
γϕ γ δ δγϕ γϕ

−⎡ ⎤−⎡ ⎤ − − −⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎣ ⎦⎢ ⎥⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ − − + −− ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

&
&

 (31’) 

 

compares with the saddlepath solution: 

 

 
( )

( )

110e m ms ss
p pp

θθ
γ δ δγϕ γϕ

−⎡ ⎤⎡ ⎤ −−⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎣ ⎦ −− ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

&
&

. (31) 

 

To omit the long run cointegrating vector in (31) means the SVAR will be mis-

specified. However, re-arranging  (31): 

 

 
( )

( ) ( )

110e p m mss
pp s p

θθ
γϕ γ δ δγϕ γϕ

−⎡ ⎤⎡ ⎤ + −⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎣ ⎦⎢ ⎥⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ − − + −− ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

&
&

 

 

shows that it includes the long run real exchange rate relationship, s p−  in the 

second equation: 

 

 ( ) ( ) ( )p s p s pγϕ γϕ γ δ δ= − − − + −&  

 

So the cointegrating vector (with a constant) is included in the p& equation and 

importantly, 1β =  and the error correction, 2α γϕ=  are the same as for the 

VECM. In fact, including the error correction in the first equation would 

misspecify the relationship. The stable saddlepath SS given by (31) can be 

considered as a short run ‘cointegrating vector’ which reflects the interest rate 

parity condition (16), *es i i= −&  which links to prices via (27), m p ky iθ= + − . This 

moves the variables s and p to the steady state on the long run cointegrating 

vector, 0p =& . The cointegrating vector in the second equation of (31) is therefore 

binding on the first equation in the long run steady state. In comparison, the 

cointegrating relationship provides an unbounded solution path. The next brief 
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example shows that a saddlepath solution can also meet this requirement if 

necessary. 

 

 

V Example of Endogenous Growth 

 

This short example considers an endogenous growth model with increasing 

returns to scale. Costs of adjustment means that Tobin’s q is the adjustment 

variable and capital accumulates as the marginal valuation of capital, relative to 

its replacement cost, is greater than unity. This derives the unstable saddlepath 

TT as the endogenous growth path (unlike the stable saddlepath SS of the 

previous example). Growth can therefore be consistent with unbounded capital 

accumulation, k& and real output, y in the long run. 

 

INCLUDE MATHS HERE 

 

 

VI Conclusion 

 

The Granger representation theorem states that a set of non-stationary cointegrated 

variables can be characterized by an error correction mechanism. The VECM is a 

powerful analytic device which has been universally adopted by many empirical 

researchers. The analysis of VARs without the VECM being included are  

criticized as being misspecified. 

 

It is demonstrated in Section II that a relatively large number of restrictions are 

required to represent a cointegrating relationship as being generated by a VECM.  

The presence of these restrictions on the parameters to be estimated does not 

appear to be well known or understood by applied researchers. This is possibly 

due to the preference for the reduced form VAR approach over the frequently 

criticised the ad-hoc specification and identification of structural models.  
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There is also justification for using cointegration because economic theories are 

put forward as being long run in nature with little to contribute to the 

understanding of short run economic behaviour. It is argued in this paper that 

cointegration places too much importance on the long run and applying the 

cointegrating restrictions via the VECM excludes interesting short to medium 

run dynamics, which may have relevance for policy formulation. 

 

This is demonstrated theoretically in Section III using a continuous time 

analogue. It is shown that the VECM means the system is globally stable which 

significantly restricts the allowable parameter space and the possible short run 

dynamics of adjustment of the system via the VECM. Other possible globally 

stable and unstable outcomes are detailed, including saddlepath and complex 

oscillatory solutions. 

 

Two well known examples, which are not restricted to the VECM outcomes, are 

considered, the first being Dornbusch’s bounded exchange rate overshooting 

solution in Section IV. The second example of an endogenous growth model 

with unbounded solution is briefly considered in Section V. 

 

These examples show that including the VECM in all equations of motion may 

misspecify the dynamic relationships. The stable saddlepath can be considered 

as a short run ‘cointegrating vector’ which reflects short run parity conditions. 

Including the cointegrating vector in the other equation is therefore binding on 

the first equation in the long run steady state. 

 

 

This paper claims the nature of equilibrium and the dynamic paths by which an 

economy moves from one equilibrium to another are important. Counter 

intuitively, the concept of global instability is an important and desirable 

property. This contrasts with many economic models which have the property of 

global stability, consistent with discrete time models where comparative static 

analysis jumps the variables from an old equilibrium to a new equilibrium. The 
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actual path of adjustment is usually not specified and the centre of focus is on the 

net changes in the endogenous variables required to achieve the new 

equilibrium. There is also no specification of the time required for the adjustment 

except to say it will take so many periods. These periods are discrete in terms of 

logical time, not chronological time, and therefore say little about the relative 

speeds of adjustment of the variables. For policy makers and others, the dynamic 

paths of adjustment are at least as important as the changing equilibrium. 

 

The other main point is the extensive use of pre-testing time series in the form of 

tests for stationarity which are driving the research process. It has been shown 

that these tests are not robust under the presence of structural change. Whilst the 

ARDL procedure allows mixed stationary and non-stationary processes the 

VECM is enforced on all equations. More flexible estimation procedures are 

required which will allow a greater range of possible dynamic specifications. 
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Appendix 
 

 
Consider two endogenous variables, 1x  and 2x  ( 2n = ) having only one lag 

( 1k = ) each: 

 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1 12 2 13 1 1

2 21 1 2 2 23 2 2

1 1
1 1

x t a x t a x t a z t t
x t a x t a x t a z t t

ε
ε

= − + − + +
= − + − + +

 (4) 

 

where 1z  and 2z  are stationary exogenous variables. Granger’s representation 

theorem normalizes (4) with respect to ( )1x t  for the cointegrating vector, 

( ) ( )1 21 1x t x tβ− − − , to give the equivalent error correction: 

 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1 2 13 1 1

2 2 1 2 23 2 2

1 1

1 1

x t x t x t a z t t

x t x t x t a z t t

α β ε

α β ε

∆ = − − − + +⎡ ⎤⎣ ⎦
∆ = − − − + +⎡ ⎤⎣ ⎦

 (5) 

 

with 0β > , 1 0α <  and 2 0α > . 

 

Now consider the restrictions the cointegrating vector places on the VECM by 

applying the lag operator L to (4): 

 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 1 12 2 13 1 1

21 2 2 2 23 2 2

1

1

a L x t a Lx t a z t t

a Lx t a L x t a z t t

ε

ε

− − = +

− + − =
 

 

 
( )

( )
( )
( )

( )
( )

( )
( )

1 12 1 13 1 1

21 2 2 23 2 2

1
1

a L a L x t a z t t
a L a L x t a z t t

ε
ε

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
∴ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (6) 

 

The inverse characteristic equation is derived from the singular matrix with zero 

determinant:  

 

( )( ) 2
1 2 12 211 1 0a L a L a a L− − − =  
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and defining 1
Lµ =  gives the characteristic equation: 

 

( ) ( )2
1 2 1 2 12 21 0a a a a a aµ µ− + + − =  

 

which has characteristic roots: 

 

 
( ) ( ) ( )2

1 2 1 2 1 2 12 21
1,2

4
2

a a a a a a a a
µ

+ ± + − −
= . (7) 

 

The values of the roots indicate important properties of the variables and their 

possible relationships for (4). If the characteristic roots are both less than unity 

(ie. lie within the unit circle) then there will be stable solutions for ( )1x t  and 

( )2x t . However, the variables will be stationary and therefore cannot be 

cointegrated. 

 

If the roots are both greater than unity, then the solutions for ( )1x t  and ( )2x t  will 

be unstable. The variables will not be stationary in first difference and therefore 

cannot be cointegrated. 

 

Substituting 12 21 0a a= =  and 1 2 1a a= =  in (7) shows 1 2 1µ µ= = , so that the roots 

will be equal to unity and the variables ( )1x t  and ( )2x t  must be first difference 

stationary. However, they will be unrelated and therefore not cointegrated. 

 

It is argued (Enders, 1995, pp. 368-369 and others) that for the variables to be 

cointegrated then one characteristic root must be equal to unity. We will consider 

this latter point by letting 2 1µ =  and solving for (4): 

 

( ) ( )
( )( )

2 1 12 2
1

1

1
1 1

a L a
x t

L L
ε ε

µ
− +

=
− −

. 
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Multiplying both sides by ( )1 L−  gives: 

 

 ( ) ( ) ( )
( )
2 1 12 2

1
1

1
1

1
a L a

L x t
L

ε ε
µ

− +
− =

−
 

 

so that ( ) ( ) ( )1 11x t L x t∆ = −  will be stationary only for 1 1µ < . 

 

Using (7) to solve for 2 1µ = : 

 

 
( ) ( ) ( )2

1 2 1 2 1 2 12 21
2

4
1

2
a a a a a a a a

µ
+ + + − −

= =  

 

gives the important relationship: 

 

 ( )2 12 21
1

2

1
1
a a a

a
a

− −
=

−
. (8) 

 

Transforming (4) into first differences: 

 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1 1 12 2 13 1 1

2 21 1 2 2 23 2 2

1 1

1 1

x t a x t a x t a z t t

x t a x t a x t a z t t

ε

ε

∆ = − − + + +

∆ = − − − + +
 (9) 

 

and substituting (8), where 12 21
1

2

1
1
a aa

a
− = −

−
, into (9) gives: 

 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

12 21
1 1 12 2 13 1 1

2

2 21 1 2 2 23 2 2

1
1

1 1

a ax t x t a x t a z t t
a

x t a x t a x t a z t t

ε

ε

∆ = − − + + +
−

∆ = − − − + +
. (10) 
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Normalising with respect to ( )1x t  for the cointegrating vector: 

( ) ( )1 21 1x t x tβ− − − , gives the error correction: 

 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 2 1

2 2 1 2 2

1 1

1 1

x t x t x t t

x t x t x t t

α β ε

α β ε

∆ = − − − +⎡ ⎤⎣ ⎦
∆ = − − − +⎡ ⎤⎣ ⎦

 (5) 

 

with the parameters for the cointegrating vector, β  and error corrections, 1α  and 

2α : 

  2

21

1 a
a

β −
= , 12 21

1
21

a a
a

α = −
−

 and 2 21aα = . (11) 
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