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FlexMix: An R Package for Finite Mixture

Modelling

by Bettina Griin and Friedrich Leisch

Introduction

Finite mixture models are a popular method for
modelling unobserved heterogeneity or for approx-
imating general distribution functions. They are ap-
plied in a lot of different areas such as astronomy;, bi-
ology, medicine or marketing. An overview on these
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models with many examples for applications is given
in the recent monographs McLachlan and Peel (2000)
and Frithwirth-Schnatter (2006).

Due to this popularity there exist many (stand-
alone) software packages for finite mixture mod-
elling (see McLachlan and Peel, 2000; Wedel and Ka-
makura, 2001). Furthermore, there are several dif-
ferent R packages for fitting finite mixture models
available on CRAN. Packages which use the EM algo-
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rithm for model estimation are flexmix, fpc, mclust,
mixreg, mixtools, and mmlcr. Packages with other
model estimation methods are bayesmix, depmix,
moc, vabayelMix and wle. A short description
of these packages can be found in the CRAN task
view on clustering (http://cran.at.r-project.
org/src/contrib/Views/Cluster.html).

Finite mixture models

A finite mixture model is given by a convex combina-
tion of K different components, i.e. the weights of the
components are non-negative and sum to one. For
each component it is assumed that it follows a para-
metric distribution or is given by a more complex
model, such as a generalized linear model (GLM).

In the following we consider finite mixture den-
sities h(-|-) with K components, dependent variables
y and (optional) independent variables x:

K

h(y|x,w,©) = k; 7 (w, &) f (y|x, 9)

where Vw, o

K
m(w,a) > 0Vk A ) m(w,a) =1
k=1

and

£ 0 Vk#IL

We assume that the component distributions f(-|-)
are from the same distributional family with compo-
nent specific parameters 9. The component weights
or prior class probabilities 7, optionally depend on
the concomitant variables w and the parameters «
and are modelled through multinomial logit models
as suggested for example in Dayton and Macready
(1988). A similar model class is also described in
McLachlan and Peel (2000, p. 145). The model can
be estimated using the EM algorithm (see Dempster
etal., 1977; McLachlan and Peel, 2000) for ML estima-
tion or using MCMC methods for Bayesian analysis
(see for example Frithwirth-Schnatter, 2006).

A possible extension of this model class is to
either have mixtures with components where the
parameters of one component are fixed a-priori
(e.g. zero-inflated models; Griin and Leisch, 2007b)
or to even allow different component specific mod-
els (e.g. for modelling noise in the data; Dasgupta
and Raftery, 1998).

Design principles of FlexMix

The main reason for the implementation of the pack-
age was to allow easy extensibility and to have the
possibility for rapid prototyping in order to be able
to try out new mixture models. The package was im-
plemented using S4 classes and methods.
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The EM algorithm provides a common basis for
estimation of a general class of finite mixture mod-
els and the package flexmix tries to enable the user
to exploit this commonness. flexmix provides the E-
step and takes care of all data handling while the user
is supposed to supply the M-step via model drivers
for the component-specific model and the concomi-
tant variable model. For the M-step available func-
tions for weighted maximum likelihood estimation
can be used as for example glm() for fitting GLMs or
multinom() in MASS for multinomial logit models.

Currently model drivers are available for
model-based clustering of multivariate Gaus-
sian distributions with diagonal or unrestricted
variance-covariance matrices (FLXMCmvnorm()) and
multivariate Bernoulli and Poisson distributions
(FLXMCmvbinary() and FLXMCmvpois()) where the
dimensions are mutually independent. flexmix does
not provide functionality for estimating mixtures
of Gaussian distributions with special variance-
covariance structures, as this functionality has al-
ready been implemented in the R package mclust
(Fraley and Raftery, 2006).

For mixtures of regressions the Gaussian, bino-
mial, Poisson and gamma distribution can be speci-
fied (FLXMRglm()). If some parameters are restricted
to be equal over the components the model driver
FLXMRglmfix () can be used. Zero-inflated Poisson
and binomial regression models can be fitted us-
ing FLXMRziglm(). For an example of zero-inflated
models see example ("FLXMRziglm"). For the con-
comitant variable models either constant component
weights (default) can be used or multinomial logit
models (FLXPmultinom()) can be fitted.

Estimation problems can occur if the components
become too small during the EM algorithm. In or-
der to avoid these problems a minimum size can be
specified for each component. This is especially im-
portant for finite mixtures of multivariate Gaussian
distributions where full variance-covariance matri-
ces are estimated for each component.

Further details on the implementation and the de-
sign principles as well as exemplary applications of
the package can be found in the accompanying vi-
gnettes "flexmix-intro" which is an updated ver-
sion of Leisch (2004) and "regression-examples"
and in Griin and Leisch (2007a). Note that this article
uses the new version 2.0 of the package, where the
names of some driver functions have changed com-
pared with older versions of flexmix.

Exemplary applications

In the following we present two examples for using
the package. The first example demonstrates model-
based clustering, i.e., mixtures without independent
variables, and the second example gives an applica-
tion for fitting mixtures of generalized linear regres-
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sion models.

Model-based clustering

The following dataset is taken from Edwards and Al-
lenby (2003) who refer to the Simmons Study of Me-
dia and Markets. It contains all households which
used any whiskey brand during the last year and
provides a binary incidence matrix on their brand
use for 21 whiskey brands during this year. This
means only the information on the different brands
used in a household is available.

We first load the package and the dataset. The
whiskey dataset contains observations from 2218
households. The relative frequency of usage for each
brand is given in Figure 1. Additional information
is available for the brands indicating the type of
whiskey: blend or single malt.

R> library("flexmix")
R> data("whiskey")
R> set.seed(1802)

Singleton
Knockando
White Horse
Scoresby Rare
Ushers
Macallan
Grant's
Passport
Black & White
Clan MacGregor
Ballantine
Pinch (Haig)
Other brands
Cutty Sark
Glenfiddich
Glenlivet

Dewar's White Label
Johnnie Walker Black Label
Johnnie Walker Red Label
Chivas Regal

&

o
=}
o
=

0.‘2 0.‘3
probabiley [ Blend |
Figure 1: Relative frequency of the whiskey brands.

We fit a mixture of binomial distributions to the
dataset where the variables in each component spe-
cific models are assumed to be independent. The
EM algorithm is repeated nrep = 3 times using ran-
dom initialization, i.e. each observation is assigned
to one component with an a-posteriori probability of
0.9 and 0.1 otherwise and the component is selected
with equal probability.

R> wh_mix <- stepFlexmix(Incidence ~ 1,

+ weights = ~ Freq, data = whiskey,

+ model = FLXMCmvbinary (truncated = TRUE),
+ control = list(minprior = 0.005),

+ k =1:7, nrep = 3)

Model-based clustering uses no explanatory vari-
ables, hence the right hand side of the formula
Incidence ~ 1 is constant. = The model driver
is FLXMCmvbinary() with argument truncated =
TRUE, as the number of non-users is not available and
a truncated likelihood is maximized in each M-step
again using the EM-algorithm. We vary the number
of components for k = 1:7. The best solution with
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respect to the log-likelihood for each of the differ-
ent numbers of components is returned in an object
of class "stepFlexmix". The control argument can
be used to control the fitting with the EM algorithm.
With minprior the minimum relative size of the com-
ponents is specified, components falling below this
threshold are removed during the EM algorithm.

The dataset contains only the unique binary pat-
terns observed with the corresponding frequency.
We use these frequencies for the weights argument
instead of transforming the dataset to have one row
for each observation. The use of a weights argument
allows to use only the number of unique observa-
tions for fitting, which can substantially reduce the
size of the model matrix and hence speed up the es-
timation process. For this dataset this means that the
model matrix has 484 instead of 2218 rows.

Model selection can be made using information
criteria, as for example the BIC (see Fraley and
Raftery, 1998). For this example the BIC suggests a
mixture with 5 components:

R> BIC(wh_mix)

1 2 3 4
27705.1 26327.6 25987.7 25683.2
5 6 7

25647.0 25670.3 25718.6

R> wh_best <- getModel(wh_mix, "BIC")
R> wh_best

Call:
stepFlexmix(Incidence ~ 1,
weights = "Freq, data = whiskey,
model = FLXMCmvbinary(truncated = TRUE),
control = list(minprior = 0.005),
k = 5, nrep = 3)

Cluster sizes:
1 2 3 4 5
283 791 953 25 166

convergence after 180 iterations

The estimated parameters can be inspected using
accessor functions such as prior () or parameters().

R> prior(wh_best)

[1] 0.1421343 0.3303822
[3] 0.4311072 0.0112559
[5] 0.0851203

R> parameters(wh_best, component=4:5)[1:2,]

Comp. 4

center.Singleton 0.643431

center.Knockando 0.601124
Comp.5
center.Singleton 2.75013e-02
center.Knockando 1.13519e-32
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Figure 2: Estimated probability of usage for the whiskey brands for each component.

The fitted parameters of the mixture for each
component are given in Figure 2. It can be seen
that component 4 (1.1% of the households) contains
the households which bought the greatest number
of different brands and all brands to a similar ex-
tent. Households from component 5 (8.5%) also buy
a wide range of whiskey brands, but tend to avoid
single malts. Component 3 (43.1%) has a similar us-
age pattern as component 5 but buys less brands in
general. Component 1 (14.2%) seems to favour sin-
gle malt whiskeys and component 2 (33%) is espe-
cially fond of other brands and tends to avoid John-
nie Walker Black Label.

Mixtures of regressions

The patent data given in Wang et al. (1998) includes
70 observations on patent applications, R&D spend-
ing and sales in millions of dollar from pharmaceuti-
cal and biomedical companies in 1976 taken from the
National Bureau of Economic Research R&D Master-
file. The data is given in Figure 3.

Patents
100
!

50
1

o
00 o

o . %
000
@ ©00 mo 00 0% 99000 FR°°C & § 00
\ T T \

-2 0 2 4

IgRD
Figure 3: Patent dataset.

The model which is chosen as the best in Wang
et al. (1998) is a finite mixture of three Poisson regres-
sion models with Patents as dependent variable, the
logarithmized R&D spending 1gRD as independent
variable and the R&D spending per sales RDS as con-
comitant variable. This model can be fitted in R with
the component-specific model driver FLXMRglm()
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which allows fitting of finite mixtures of GLMs. As
concomitant variable model driver FLXPmultinom()
is used for a multinomial logit model where the pos-
terior probabilities are the dependent variables.

R> data("patent")

R> pat_mix <- flexmix(Patents ~ 1gRD,

+ k = 3, data = patent,

+ model = FLXMRglm(family = "poisson"),
+  concomitant = FLXPmultinom(~“RDS))

The observed values together with the fitted val-
ues for each component are given in Figure 4. The
coloring and characters used for plotting the ob-
servations are according to the component assign-
ment using the maximum a-posteriori probabili-
ties, which are obtained using cluster(pat_mix).

Patents
100
!

50

IgRD

Figure 4: Patent data with fitted values for each com-
ponent.

In Figure 5 a rootogram of the posterior proba-
bilities of the observations is given. This is the de-
fault plot of the "flexmix" objects returned by the
fitting function. It can be used for arbitrary mix-
ture models and indicates how well the observations
are clustered by the mixture. For ease of interpre-
tation the observations with a-posteriori probability
less than eps=10~* are omitted as otherwise the peak
at zero would dominate the plot. The observations
where the a-posteriori probability is largest for the
third component are colored differently. The plot is
generated using the following command.
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R> plot(pat_mix, mark = 3)

The posteriors of all three components have modes
at 0 and 1, indicating well-separated clusters (Leisch,
2004). Note that the object returned by the plot func-
tion is of class "trellis", and that the plot itself
is produced by the corresponding show() method
(Sarkar, 2002).

Rootogram of posterior probabilities > 1e-04

0.0 0.2 0.4 06 0.8 1.0
| | | |

| | | | | | | | | | | |
Comp. 1 Comp. 2 Comp. 3

19 |_| -
T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

Figure 5: Rootogram of the posterior probabilities.

Further details of the fitted mixture can be ob-
tained with refit () which returns the fitted values
together with approximate standard deviations and
significance tests, see Figure 6. The standard devi-
ations are only approximative because they are de-
termined separately for each component and it is not
taken into account that the components have been
estimated simultaneously. In the future functionality
to determine the standard deviations using either the
full Hesse matrix or the parametric bootstrap shall be
provided.

The estimated coefficients are given in Figure 7.
The black lines indicate the (approximative) 95%
confidence intervals. This is the default plot for the
objects returned by refit () and is obtained with the
following command.

R> plot(refit(pat_mix), bycluster = FALSE)

The argument bycluster indicates if the clus-
ters/components or the different variables are
used as conditioning variables for the panels.

-3 -2 -1 0 1 2

| | 1
(Intercept) IgRD

3 B
Comp. 3 | B ~

Figure 7: Estimated coefficients of the component
specific models with corresponding 95% confidence
intervals.

The plot indicates that the estimated coefficients
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vary between all components even though the co-
efficients for 1gRD are similar for the first and third
component. A smaller model where these coeffi-
cients are restricted to be equal can be fitted using
the model driver FLXMRglmfix (). The EM algorithm
can be initialized in the original solution using the
estimated posterior probabilities for the cluster ar-
gument. As in this case the first and third component
are restricted to have the same coefficient for 1gRD,
the posteriors of the fitted mixture are used for ini-
tialization after reordering the components to have
these two components next to each other. The mod-
ified model is compared to the original model using
the BIC.

R> Model_2 <- FLXMRglmfix(family = "poisson",
+ nested = list(k = c(1,2),

+ formula = ~1gRD))

R> Post_1 <- posterior(pat_mix)[,c(2,1,3)]
R> pat_mix2 <- flexmix(Patents ~ 1,

+ concomitant = FLXPmultinom(~“RDS),

+ data = patent, cluster = Post_1,

+ model = Model_2)

R> c(M_1 = BIC(pat_mix), M_2 = BIC(pat_mix2))

M_1 M_2
437.836 445.243

In this example, the original model is preferred
by the BIC.

Summary

flexmix provides infrastructure for fitting finite mix-
ture models with the EM algorithm and tools for
model selection and model diagnostics. We have
shown the application of the package for model-
based clustering as well as for fitting finite mixtures
of regressions.

In the future we want to implement new model
drivers, e.g., for generalized additive models with
smooth terms, as well as to extend the tools for
model selection, diagnostics and model validation.
Additional functionality will be added which allows
to fit mixture models with different component spe-
cific models. The implementation of zero-inflated
models has been a first step in this direction.
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