Spatial and temporal distribution and pollution assessment of trace metals in marine sediments in Oyster Bay, NSW, Australia

Yasir M. Alyazichi
University of Wollongong, ymmay555@uowmail.edu.au

Brian Jones
University of Wollongong, briangj@uow.edu.au

Errol McLean
University of Wollongong, errol@uow.edu.au

Publication Details
Spatial and temporal distribution and pollution assessment of trace metals in marine sediments in Oyster Bay, NSW, Australia

Abstract
The disposal of untreated urban and industrial wastewater has a deleterious effect on both the water and sediment quality of Oyster Bay located in south Sydney, Australia. The present investigation was undertaken to evaluate the potential pollution of marine sediments in Oyster Bay. The results of metals were compared with adverse biological effect values effect range low (ERL) and effect range median (ERM). Spatial distribution of trace metals was estimated by applying geographic information system. The results indicated that the sediments were polluted with Cu, Zn, As and Pb, which exceeded ERL levels. However, these metals were still below ERM values, and other metals Cr and Ni were below ERL. Moreover, the highest concentrations of metals were around discharge points and in the inner bay. Further, trace metals could be attributed to human activities within the bay as they declined in concentrations with increasing sediment depth.

Keywords
Oyster Bay, sediments, trace metals, Hierarchical cluster analysis and pollution

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

This journal article is available at Research Online: http://ro.uow.edu.au/smhpapers/2366
Spatial and Temporal Distribution and Pollution Assessment of Trace Metals in Marine Sediments in Oyster Bay, NSW, Australia.

Yasir M. Alyazich1,2, Brian G. Jones1; Errol McLean1
1 School of Earth and Environmental Sciences, University of Wollongong, NSW, Australia.
2 Dams and Water Resources Research Centre, University of Mosul, Mosul, Iraq.

Abstract
The disposal of untreated urban and industrial wastewater has a deleterious effect on both the water and sediment quality of Oyster Bay located in south Sydney, Australia. The present investigation was undertaken to evaluate the potential pollution of marine sediments in Oyster Bay. The results of metals were compared with adverse biological effect values Effect Range Low (ERL) and Effect Range Median (ERM). Spatial distribution of trace metals was estimated by applying geographic information system. The results indicated that the sediments were polluted with Cu, Zn, As and Pb, which exceeded ERL levels. However, these metals were still below ERM values, and other metals Cr and Ni were below ERL. Moreover, the highest concentrations of metals were around discharge points and in the inner bay. Further, trace metals could be attributed to human activities within the bay as they declined in concentrations with increasing sediment depth.

Keywords:
Oyster Bay, Sediments, Trace metals, Hierarchical cluster analysis and Pollution.

1. Introduction
Many anthropogenic sources cause trace metal contamination of aquatic environments such as estuaries, bays, rivers, lakes and lagoons. Pollution results from the discharge of waste from urbanization, industrialization, municipal wastewater, atmospheric deposition, agricultural uses and various other sources (Hosono et al., 2011; Morelli et al., 2012). Trace metals are dispersed into aquatic habitats, are then deposited in and soils by various processes such as absorption, ion exchange and metal substitution. Clay minerals are considered to be the ultimate sinks for accumulated metals. Therefore, the levels of trace metals in the sediments play an important role in the contamination of aquatic environments. This is due to their toxicity, persistence and easy accumulation (Hu et al., 2011). However, trace metals can also be released again into the water column as free ions and/or complex compounds from sediments under processes such as physical disturbance, chemical and digenesis factors (Zoumis et al., 2001). Consequently, increasing levels of metals can be harmful for marine flora and fauna. This increase may lead to reduced growth and impaired reproduction leading to a decline in species diversity. In addition, trace metals may enter into human bodies through the food chain, resulting in serious health problems such as brain damage and various other types of illness (Alves et al., 2013; Huang et al., 2014). The objective of the present research was, firstly, to measure the spatial distribution of trace metals within the sediments using a geographic information system (the Kriging method) as well as temporal distribution, and secondly, to evaluate the ecological risk of trace metals posed by these sediments by comparing them with deleterious biological effect values guidelines (effect range low and effect range median) and previous studies.

2. Methods and Materials
Oyster Bay, which is located 15 km south of Sydney (Fig.1), is one of the bays along the coast of Botany Bay. It is affected by activities from the Georges River catchment area 800 km². In Oyster Bay water depths are generally shallow. It has maximum tidal ranges of about 2 m (Kingsford and
Suthers, 1996). The catchment area of Oyster Bay is highly urbanised, with commercial, light industrial and domestic land use areas.

Fig. 1: Sediment samples and core locations in Oyster Bay off Botany Bay area, NSW, Australia.

Surface sediment samples were collected using a grab sampler. The 5cm of surface sediment was reserved for analysis. A total of 55 samples were collected during the summer of 2012 (Fig.1). Water depth and location were recorded at each site using sonar and Geographical Position System (GPS). Subsurface sediment cores were collected later from the sites with the highest heavy metal concentrations using a push core. Grain size measurements were determined for all sediment samples (sand, silt and clay) using a Malvern Mastersizer 2000. Trace metal concentrations were measured using a x-ray fluorescence (RF-SPECTRO-XEPOS) energy dispersive spectrometer fitted with a Si-dicele detector, and following the established procedure of Norrish and Chappell, (1977). Hierarchical cluster analysis was used to distinguish between the characteristic of samples (Zhang et al., 2013), this analysis was undertaken using JMP software to consider all variables (trace metals and sediment particles).

GIS software was used to plot the sample sites within the study area, and advanced geostatistical analysis (Kriging) were applied to create maps. Kriging is a moderately quick interpolator that can be exact or smoothed depending on the measurement error model. It is a flexible means to evaluate graphs of spatial autocorrelation. The Kriging method uses statistical models that generate a variety of map outputs, predictions, prediction standard errors, and probability. Kriging interpolation can be rigorously evaluated according to several cross-validation indicators as follows: the absolute value of the average mean standardized error (MSE) should be close to 0; there should be a minimal root mean square prediction error (RMSE), which should be close to the mean standard error (AME), and the standard root mean square (RMSS) should be close to 1.
(Krivoruchko, 2011; Chen et al., 2013). These parameters are calculated by using the following equations:

\[
\text{ME} = \frac{1}{n} \sum_{i=1}^{n} (P_i + M_i) \quad \ldots 1
\]

\[
\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (P_i - M_i)^2} \quad \ldots 2
\]

\[
\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} [(P_i - M_i)/\sigma_i] \quad \ldots 3
\]

Where: \(n \) is the number of the sites; \(P_i \) and \(M_i \) are the predicted and measured values at sites \(i \) respectively; \(\sigma_i \) is the Kriging standard error at sites.

In the interpretation of geochemical data, the choice of background values plays an important role. Several authors have used the average shale values or the average crustal values because they did not have local background values. In this study, the background values obtained from the core were used as a reference baseline for each trace metal.

3. Results and Discussion

As can be seen in Fig.2, sediment grain size and water depth varied within the bay. Fig.2a shows that the highest percentages of sand were at the edges and shoreline of the bay, where the water depth was shallow (< 0.7 m; Fig.2b), and which had high tidal and current activity. The muddy (silt and clay) percentages were concentrated within the inner bay (Fig.2c), where water depths were higher (0.9 m - 1.9 m; Fig. 2b), and the waves had more limited lower effect on the bottom sediments. Therefore, the fine and very fine particles settle within the inner bay.

Fig.2: a- Percentage of sand, b- water depth and c- percentage of mud.
As shown in Table 1, trace metal concentrations were compared with the deleterious biological effect values in marine sediments. Based on guidelines suggested by the U.S. National Oceanic and Atmospheric Administration Ligero et al. (2002) and ranged from effect range low (ERL) to effect range median (ERM).

Table 1: Basic statistics of trace metals (µg/g) within the bay, with ERL and ERM values.

<table>
<thead>
<tr>
<th>Trace metals</th>
<th>Cr</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
<th>As</th>
<th>Ba</th>
<th>Sr</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>8.9</td>
<td>7.0</td>
<td>9.8</td>
<td>43.4</td>
<td>1.9</td>
<td>45</td>
<td>29</td>
<td>14.2</td>
</tr>
<tr>
<td>Max.</td>
<td>126.9</td>
<td>38.8</td>
<td>62.7</td>
<td>385.9</td>
<td>25.7</td>
<td>217</td>
<td>138</td>
<td>198.2</td>
</tr>
<tr>
<td>Mean±SD.</td>
<td>51±32</td>
<td>18±7</td>
<td>35±12</td>
<td>204±84</td>
<td>15±6</td>
<td>150±48</td>
<td>100±31</td>
<td>98±48</td>
</tr>
<tr>
<td>ERL</td>
<td>81(13)</td>
<td>20.9(20)</td>
<td>34(24)</td>
<td>150(40)</td>
<td>8.2(44)</td>
<td>NA</td>
<td>NA</td>
<td>46.7(45)</td>
</tr>
<tr>
<td>ERM</td>
<td>270</td>
<td>51.6</td>
<td>270</td>
<td>410</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>218</td>
</tr>
</tbody>
</table>

NA: not available.
(N): number of samples exceeded ERL and no sample exceeded ERM.

Overall, the mean concentrations of all metals were below their ERM guidelines. However, the concentrations of copper (Cu), zinc (Zn), arsenic (As) and lead (Pb) were above the ERL in most of the sample locations. These effects represent contamination in most locations. On the other hand, chromium (Cr) and nickel (Ni) were below the ERL levels, representing no significant contamination by these metals. In addition, the concentration of trace metals varied widely within the bay, depending on sources of pollution (discharge and stormwater outlets) and sediment types. Prediction maps of trace metals such as Cr, Ni, Cu, Zn, Pb and As are shown in Fig.3 and the concentration of these metals generally exhibit variable patterns of distribution. The highest concentrations of these trace metals were in the inner and middle parts of the bay, which also contained high percentages of mud particles.

These trace metals were also concentrated in close proximity to discharge points from the catchment area, while the lowest levels of trace metals were found along the edges and shoreline, as well as in the mouth of the bay, areas with abundant clean quartz sand.
Generally, the concentrations of trace metals increased with decreased sediment depth. Between 45-40cm, concentrations of trace metals remained constant, which indicates a natural background of trace metals. From 40cm to 20cm both Zn and Pb concentrations rose rapidly, and Cr, Cu and Ni increased moderately. From 20cm upward surface sediment metals remained stable at the same concentrations, while As showed a gentle increase (Fig.4). The decline in the level of metals with increasing sediment depth indicates the accumulation of trace metals since the first European settlement, which includes sewage runoff, atmospheric emissions and gas-fumes from both vehicles and boat exhaust (Irvine and Birch, 1998; Birch, 2011).

![Fig.4: Variations of trace metals with depths (cm) in a sediment core in Oyster Bay.](image)
Hierarchical cluster analysis (Fig. 5, Table 2) enabled the classification of the samples into three groups. The main variables that defined the red group were high percentages of mud, low sand content and high levels of trace metals. As illustrated in Table 2, both strontium and barium were highly concentrated in the sediments, which is related to the abundance of organisms with shells (molluscs, foraminiferal and ostracods), which are more tolerant of pollution, such as *Ammonia tepida* (For.) and *Cyprideis torosa* (Ost.); (Foster et al., 2012). The green group contained lower concentrations of variables than the red group with high percentages of sand, low percentages of mud and lower levels of trace metals except for chromium, which may be derived from heavy minerals such as hematite, contained in silty sand (Johnston and Chrysochou, 2014). However, the blue group differed completely, with high percentages of sand, low percentages of mud and low concentrations of trace metals. Therefore, the red and green groups were considered to be moderately to highly polluted with samples located in the inner bay, while the blue group represents areas with low or no pollution and samples located at some of the edges of the bay.

The trace metal concentrations that were measured in Oyster Bay were compared with the levels of trace metals determined in a range of studies (Table 3; Birch and Taylor, 1999; Jones et al., 2003). Huon estuary is essentially a non-industrialised zone and consequently should contain a low level of potentially toxic trace metals Jones et al. (2003). In contrast, the Port Jackson estuary has a high concentration of trace metals and would be expected to have toxic metals, due to high amounts of waste water discharged into the estuary (Irvine and Birch, 1998).

Table 2: Depth, percentages and concentrations of variables in different classification groups.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Cluster A</th>
<th>Cluster B</th>
<th>Cluster C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
<td>1.1</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Sand</td>
<td>6.9</td>
<td>26.1</td>
<td>54.3</td>
</tr>
<tr>
<td>Silt</td>
<td>75.7</td>
<td>59.5</td>
<td>36.3</td>
</tr>
<tr>
<td>Clay</td>
<td>17.4</td>
<td>14.4</td>
<td>9.4</td>
</tr>
<tr>
<td>Cr</td>
<td>47.7</td>
<td>66.3</td>
<td>28.9</td>
</tr>
<tr>
<td>Ni</td>
<td>20.1</td>
<td>19.6</td>
<td>8.8</td>
</tr>
<tr>
<td>Cu</td>
<td>40.2</td>
<td>33.1</td>
<td>14.0</td>
</tr>
<tr>
<td>Zn</td>
<td>242.5</td>
<td>193.3</td>
<td>68.6</td>
</tr>
<tr>
<td>As</td>
<td>20.0</td>
<td>11.7</td>
<td>4.5</td>
</tr>
<tr>
<td>Sr</td>
<td>124.0</td>
<td>84.7</td>
<td>38.8</td>
</tr>
<tr>
<td>Ba</td>
<td>185.3</td>
<td>126.2</td>
<td>57.3</td>
</tr>
<tr>
<td>Pb</td>
<td>132.7</td>
<td>67.4</td>
<td>24.4</td>
</tr>
</tbody>
</table>

Fig. 5: Classification map for all variables.

As Table 3 illustrates, the sediment quality in Oyster Bay is considered to be polluted with trace metals especially for Cu, Zn and Pb compared to the sediments in the Huon estuary, but to have less pollutants than sediments in the Port Jackson estuary. The main anthropogenic pollution...
sources of trace metals in the samples of the study area can be attributed to discharge points and stormwater drains from roadways and residential areas, as well as the number of boatyards and the large numbers of moored watercraft. Oyster Bay provides a good instance of the distribution of pollutant concentrations by current and wave activity, which is deemed to be a sheltered environment, protected from high winds and thus having low tides and wave activity. As a consequence, fine and very fine particles are gradually precipitated within the Bay (Mc Lusky, 1989).

Table 3. Comparison of trace metal from Huon estuary and Port Jackson with study area.

<table>
<thead>
<tr>
<th>Trace metals (μg/g)</th>
<th>Cr</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
<th>As</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huon / Range</td>
<td>5-80</td>
<td>2-28</td>
<td>7-32</td>
<td>2-66</td>
<td>4-25</td>
<td>2-48</td>
</tr>
<tr>
<td>Mean</td>
<td>71</td>
<td>20</td>
<td>17</td>
<td>40</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>Port Jackson / Range</td>
<td>BDL</td>
<td>5-24</td>
<td>9-1053</td>
<td>108-7622</td>
<td>BDL</td>
<td>38-3604</td>
</tr>
<tr>
<td>Mean</td>
<td>22</td>
<td>188</td>
<td>651</td>
<td>364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This study / Range</td>
<td>9-127</td>
<td>7-39</td>
<td>10-63</td>
<td>43-386</td>
<td>2-26</td>
<td>14-198</td>
</tr>
<tr>
<td>Mean</td>
<td>51</td>
<td>18.5</td>
<td>35</td>
<td>204</td>
<td>15</td>
<td>98</td>
</tr>
</tbody>
</table>

Where: BDL= below detection limit.

4. Conclusions
In order to evaluate the environmental status of the trace metals Cr, Ni, Cu, Zn, Pb and As, these metals were analysed in both surface and subsurface marine sediments from Oyster Bay, NSW, Australia. Statistical analysis such hierarchal cluster analysis was used. In general, the findings show that the bay is highly contaminated with Pb > Zn > Cu respectively and there is also moderate contamination from As. However, there was low or no contamination from Cr and Ni. Three groups were defined. The first and second groups represented moderately to highly polluted environments, while the third group represented unpolluted environments. The trace metals in Oyster Bay have accumulated over time from source such as discharge points and boats, and especially gas fumes from the exhausts of vehicles and boats.

5. Acknowledgements
This paper is a part of the first author's PhD. thesis undertaken at the School of Earth and Environmental Sciences, University of Wollongong. It was financially supported by the Ministry of Higher Education and Scientific Research, Iraqi Government and University of Wollongong.

6. References

