2008

Modelling digestive constraints in non-ruminant and ruminant foregut-fermenting mammals

Adam Munn
University of Sydney, amunn@uow.edu.au

W Jürgen Streich
Leibniz Institute of Zoo and Wildlife Research (IZW) Berlin

Jurgen Hummel
University of Bonn

Marcus Clauss
University of Zurich

Publication Details

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Modelling digestive constraints in non-ruminant and ruminant foregut-fermenting mammals

Abstract
It has been suggested that large foregut-fermenting marsupial herbivores, the kangaroos and their relatives, may be less constrained by food intake limitations as compared with ruminants, due mainly to differences in their digestive morphology and management of ingesta particles through the gut. In particular, as the quality of forage declines with increasing contents of plant fibre (cellulose, hemicelluloses and lignin; measured as neutral-detergent fibre, NDF), the tubiform foregut of kangaroos may allow these animals to maintain food intakes more so than ruminants like sheep, which appear to be limited by fibrous bulk filling the foregut and truncating further ingestion. Using available data on dry matter intake (DMI, g kg\(^{-0.75}\) d\(^{-1}\)), ingesta mean retention time (MRT, h), and apparent digestibility, we modelled digestible dry matter intake (DDMI) and digestible energy intake (DEI) by ruminant sheep (Ovis aries) and by the largest marsupial herbivore, the red kangaroo (Macropus rufus). Sheep achieved higher MRTs on similar DMIIs, and hence sheep achieved higher DDMIs for any given level of DMI as compared with kangaroos. Interestingly, MRT declined in response to increasing DMI in a similar pattern for both species, and the association between DMI and plant NDF contents did not support the hypothesis that kangaroos are less affected by increasing fibre relative to sheep. However, when DEI was modelled according to DDMIs and dietary energy contents, we show that the kangaroos could meet their daily maintenance energy requirements (MER) at lower levels of DMI and on diets with higher fibre contents compared with sheep, due largely to the kangaroos’ lower absolute maintenance and basal energy metabolisms compared with eutherians. These results suggest that differences in the metabolic set-point of different species can have profound effects on their nutritional niche, even when their digestive constraints are similar, as was the case for these ruminant and non-ruminant foregut fermenters.

Keywords
Kangaroos, Marsupials, Foregut, Hindgut, Herbivore, Nutrition, Ruminant, Non-ruminant

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

This journal article is available at Research Online: http://ro.uow.edu.au/smhpapers/2117
Modelling digestive constraints in non-ruminant and ruminant foregut-fermenting mammals

Adam J. Munn¹*, W. Jürgen Streich², Jürgen Hummel³, Marcus Clauss⁴

¹Faculty of Veterinary Science, The University of Sydney, Sydney Australia 2006
²Leibniz Institute of Zoo and Wildlife Research (IZW) Berlin, Germany
³Institute of Animal Science, University of Bonn, Germany
⁴Clinic of Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Switzerland

*To whom correspondence should be directed

Keywords: Kangaroos; marsupials; foregut; hindgut; herbivore; nutrition; ruminant; non-ruminant.
Abstract

It has been suggested that large foregut-fermenting marsupial herbivores, the kangaroos and their relatives, may be less constrained by food intake limitations as compared with ruminants, due mainly to differences in their digestive morphology and management of ingesta particles through the gut. In particular, as the quality of forage declines with increasing contents of plant fibre (cellulose, hemicelluloses and lignin; measured as neutral detergent fibre, NDF), the tubiform foregut of kangaroos may allow these animals to maintain food intakes more so than ruminants like sheep, which appear to be limited by fibrous bulk filling the foregut and truncating further ingestion. Using available data on dry matter intake (DMI, g kg$^{-0.75}$ d$^{-1}$), ingesta mean retention time (MRT, h), and apparent digestibility, we modelled digestible dry matter intake (DDMI) and digestible energy intake (DEI) by ruminant sheep (*Ovis aries*) and by the largest marsupial herbivore, the red kangaroo (*Macropus rufus*). Sheep achieved higher MRTs on similar DMIs, and hence sheep achieved higher DDMIs for any given level of DMI as compared with kangaroos. Interestingly, MRT declined in response to increasing DMI in a similar pattern for both species, and the association between DMI and plant NDF contents did not support the hypothesis that kangaroos are less affected by increasing fibre relative to sheep. However, when DEI was modelled according to DDMIs and dietary energy contents, we show that the kangaroos could meet their daily maintenance energy requirements (MER) at lower levels of DMI and on diets with higher fibre contents compared with sheep, due largely to the kangaroos’ lower absolute maintenance and basal energy metabolisms compared with eutherians. These results suggest that differences in the metabolic set-point of different species can have profound effects on their nutritional niche, even when their digestive constraints are similar, as was the case for these ruminant and non-ruminant foregut fermenters.
Introduction

Mammalian herbivores cannot breakdown plant fibre auto-enzymatically, and they rely on the fermentation of fibrous components by intestinal microbes, which yield the short-chain fatty acids that are absorbed and metabolised by the host (Stevens and Hume 1998). However, fermentation takes time (Hummel et al. 2006) and mammalian herbivores have evolved specialised gut compartments that assist the retention of fibrous materials for efficient digestion. There are two broad morphophysiological types of mammalian herbivores, defined according to where fermentation takes place along the gastro-intestine; i.e. in the forestomach anterior to the acid-stomach (as in ruminant and non-ruminant foregut fermenters), or in the hindgut distal to the acid-stomach (as in colon and caecum fermenters). Foregut and hindgut fermentation systems each have their own benefits and drawbacks with regard to digestive efficiency, and these are discussed in detail elsewhere (e.g. Stevens and Hume 1995).

However, for both types of herbivore, body size is thought to play a key role in their ecology and evolution, principally via its impacts of energy/nutrient requirements and gut capacity (Demment and Van Soest 1985; Illius and Gordon 1992).

Gut capacity is thought to limit food residence time in gut, constraining the intensity of fermentation and subsequent assimilation of digestible nutrients. However, in a recent analysis, Clauss et al. (2007a, 2008) argued that for mammalian herbivores gut-residence time of food is less impacted by body size than previously thought, suggesting that oft-cited models defining herbivore constraints (e.g. Parra 1978; Demment and Van Soest 1985; Illius and Gordon 1992; Cork 1996) may be inappropriate for large mammalian herbivores. Instead, interactions between food intake (rather than body mass) and food residence time (i.e. mean retention time; MRT), may be more important for understanding the evolution and ecology of large herbivores and, ultimately, for predicting the cost-benefit boundaries that define their nutritional niches.
Herbivores can differ in the way they respond to different levels of feed intake, depending primarily upon food quality and on their ingestive and digestive morphophysiology. In particular, changes in food intake levels can have different effects on the MRT and digestibility (fermentation) of ingested particles. On the one hand, an increase in food intake (measured as dry matter intake; DMI, g kg\(^{-0.75}\) d\(^{-1}\)) can lead to shorter ingesta MRT (h) and subsequently lower digestive efficiency (i.e. nutrient extracted per unit of material ingested). Consequently, reduced MRTs associated with increasing DMIs can impose an intrinsic limit on the amount of feed the animal can ingest, thus limiting digestible dry matter intake (DDMI, g kg\(^{-0.75}\) d\(^{-1}\)). For example, Clauss et al. (2007b) found a particularly steep negative relationship between MRT and DMI in ruminant (sheep and cattle) and non-ruminant (hippopotamus) foregut fermenters, which truncated their DDMIs at increasing levels DMI.

Alternatively, increasing levels DMI may have only a mild influence on MRT and digestive efficiencies, as seen in the hindgut-fermenting equids (horse and donkey) and elephants. Horses and elephants, for example, achieve nearly constant MRTs over a wide range of DMIs (e.g. Fig. 1). As such, these hindgut fermenters can sustain digestive efficiencies and hence DDMIs over a broader range of food intake levels as compared with ruminants and other foregut fermenters (Clauss et al. 2007b). Recently, another hindgut fermenter, the marsupial koala (*Phascolarctos cinereus*) was shown to have a MRT similarly unaffected by increased food intake (Krockenberger and Hume 2007). For these species, the apparent uncoupling of MRT from DMI suggests that other factors may dominate their feeding patterns and diet selections, such as activity budgets, mechanical or anti-nutritive constraints.

Clauss et al. (2007b) focussed comparisons of the MRT-DMI patterns on non-ruminant foregut (hippo) *versus* hindgut (elephant) fermenters, and speculated that their findings supported the so called “Bell/Janis/Foose” model of niche separation between two other
major herbivore groups, the foregut fermenting ruminants and the colon/large intestine fermenting equids. The Bell/Janis/Foose model predicts that equids can more easily compensate for reductions in forage quality (increased fibre) as compared to ruminants (Bell 1971; Janis 1976; Foose 1982; Duncan et al. 1990). This is probably because ruminants must reduce ingesta particle sizes via regurgitation and re-chewing before material can flow from the rumen-reticulum (via the omasum) to the lower gut. Thus, for ruminants coarse fibrous diets can impair DMI as bulky material fills the gut. On the other hand, the colon-fermenting equids may not be as limited by fibrous bulk, which passes from the gut more quickly, freeing space for further DMI. However, it is uncertain whether differences in the cost/benefit structure of fore- versus hind-gut fermentation systems (see Stevens and Hume 1998) or differences in how ruminants and horses manage ingesta particles may dominate their niche partitioning. Therefore, in this contribution we have examined the DMI-MRT patterns in two distinctly different types of foregut fermenting herbivore, the ruminant sheep (*Ovies aries*) and the macropodid marsupial the red kangaroo (*Macropus rufus*).

Kangaroos and their relatives possess a foregut fermentaion set-up that has been compared with that of ruminants (e.g. Kinnear et al. 1979). However, in form and function the tubiform foregut of kangaroos is more like the hindgut of the colon-fermenting horse (Fig. 2; Hume 1999). Like the horse colon, the kangaroo foregut is typified by numerous haustrations that likely provide elastic support for flexibility in DMI under different nutritional circumstances (Munn and Dawson 2006). Most notably, kangaroos differ from sheep in that, like equids, they are not limited by the particle-size restrictions that control the flow of material from the foregut (see Hume 1999), and they do not exhibit the regurgetation/re-chewing behaviours that typify ruminant feeding. Additionally, when compared directly to sheep, red kangaroos are able to maintain body condition for longer during drought conditions when mainly poor-quality, high fibre forages dominate (Edwards et al. 1996), reminiscent of differences between cattle and horses; unquantified observations indicate that when diet
quality is very low cattle lose body condition, but sympatric horses are less affected (Abaturov 2005; Koene 2006). As such, we speculated that the relationship between DMI and MRT in kangaroos may be expected to resemble that of equids (Fig. 1), with concomitant implications for their ecology and niche specialisations.

Methods

We collated data on DMI, MRT and digestibility in sheep and macropods to model the interactions between these parameters and impacts on DDMI. Additionally, we evaluated the relationship between dietary fibre content (neutral-detergent-fibre, NDF) and forage intake (DMI) by sheep and kangaroos. We collated data on DMI and particle MRT from feeding trial experiments with domestic sheep (Foot and Romberg 1965; McIntosh 1966; Forbes and Tribe 1970; Udén et al. 1982; Udén and Van Soest 1982; Cherney et al. 1990; Cherney et al. 1991; Kennedy et al. 1992; Bartocci et al. 1997) and captive red kangaroos (Macropus rufus) (Foot and Romberg 1965; McIntosh 1966; Forbes and Tribe 1970; individual data on adult and weaned juveniles from Munn and Dawson 2006). The red kangaroo was the only macropodid for which a reasonable number of DMI and MRT measurements were available in the literature. Differences in slope and intercept of the DMI-MRT regression were tested with ANCOVA using SPSS 12.0 (SPSS Inc., Chicago, IL, USA).

Data on MRT and apparent digestibility (aD) of dry matter (DM) was available for sheep and kangaroos for two diets, chopped lucerne hay (Medicago sativa) and chopped oat hay or straw (Avena sativa), from three comparative studies that fed these forages to M. rufus and sheep under comparable conditions (Foot and Romberg 1965; McIntosh 1966; Forbes and Tribe 1970). There is a systematic difference in nutrient composition between lucerne and oaten hay, and therefore these forages were evaluated separately for their potential impacts on DMI-MRT coupling. The relationship between aD of DM and MRT was characterized for each forage type using an exponential function typical of fermentation rates (Blümmel and
Ørskov 1993). In theory, a simple linear regression could have been applied to the data to describe the relationship of MRT and aD DM. However, as linear equations could be extrapolated to digestibility coefficients above 100 %, the exponential function is more biologically meaningful because digestibility cannot be optimized endlessly (Blümmel and Ørskov 1993). Subsequently, the associations between DMI and MRT, and between MRT and aD of DM, were used to model the influence of DMI on each species’ digestible dry matter intake (DDMI). The DDMIs modeled for sheep and kangaroos were then converted to digestible energy intakes (DEI; kJ) according to standardized gross energy contents of 18.4 kJ g⁻¹ DM for plant forage (ARC 1980; SCA 1990; Ostrowski-Meissner 1987), and assuming that the digestibility of gross energy was equivalent to that for dry matter (Robbins 1993; Munn and Dawson 2003; Munn and Dawson 2006). To evaluate the potential energetic limitations of the MRT-DMI continuum we used maintenance energy requirements (MER) for each species according to published data derived from feeding trials using diets comparable those described here; red kangaroos MER = 390 kJ digestible energy (DE) kg⁻⁰.⁷⁵ d⁻¹ (Munn and Dawson 2003), sheep MER = 569 kJ DE kg⁻⁰.⁷⁵ d⁻¹ (Hume 1974).

To investigate the potential for forage quality (fibre content) to effect DMI patterns, we compared data for sheep taken from Van Soest (1965) who, using a dataset from 83 intake trials, found a correlation between DMI (VDMI; g kg⁻⁰.⁷⁵ d⁻¹) and dietary NDF (%DM) of

\[\text{DMI} = 110.4 - 1716 / (100 - \text{NDF}) \]

(1)

Similar descriptions for DMI-NDF interactions do not exist for kangaroos. Therefore, we collated data from feeding trials from a range of macropodid species offered a variety of forages ad libitum. However, several of these studies pre-dated modern fibre analysis methods (see Van Soest et al. 1991) and so did not report on NDF contents specifically, but they did include values for crude fibre (CF); others only presented data for acid detergent fibre (ADF). For trials that gave only CF values, an ADF value was assumed by choosing forage of the same botanical composition and similar CF and crude protein value from Australian feed.
composition tables (Ostrowski-Meissner 1987), which was then converted to a NDF content estimated using the following equations (NRC 2001):

Grass forage (oaten hay): \(\text{NDF} = 2.0 \times \text{ADF} - 13.78 \) \hspace{1cm} (2)

Legume forage (lucerne hay): \(\text{NDF} = 1.2 \times \text{ADF} + 0.89 \) \hspace{1cm} (3)

Results

There was no difference in the slope of the DMI-MRT relationship between sheep and red kangaroos (Fig. 3; ANCOVA, \(P = 0.632 \)). For any given level of DMI, sheep had longer MRTs than the kangaroos (\(P < 0.001 \)).

There was no significant relationship between MRT and \(aD \) of DM for either the lucerne or oaten hay forages by sheep and red kangaroos (Fig. 4). Nonetheless, these curves describe the relationships between \(aD \) of DM and MRT that are directly applicable to our models for DDMI (i.e. Fig. 5). Due to the shortage of data, we did not consider the digestive efficiency of sheep and kangaroos separately, but our procedure is in accord with the assumption that time available for digestion is the major determinant of forage digestion if the sequence of fermentation and auto-enzymatic digestion is similar. Because both sheep and kangaroos are foregut fermenters, this condition was met.

The relationship between DMI and DDMI (Fig. 5) was modelled for oaten and lucerne hays using the equations derived from Fig. 3 and Fig. 4. Theoretically, sheep could achieve higher DDMIs at any level of DMI as compared with red kangaroos (Fig. 5). However, because DDMI is also dependent on the content of hard-to-digest, fibrous material in a given diet, we compared kangaroo and sheep DMIs relative to forage NDF content (Fig. 6). Overall, it was apparent that the potential for increasing forage NDF (%DM) to limit DMI was similar in both sheep and kangaroos (Fig. 6), and the kangaroos did not show a marked advantage
compared with sheep. In other words, feed intake was depressed by NDF (%DM) in a similar
fashion and to a similar extent in both the ruminant and the kangaroos.

While differences were not apparent in the MRT-DMI coupling or the impact of diet
NDF on DMI between sheep and kangaroos, differences in their potential to satisfy daily
energy requirements (for maintenance; MER) on a given diet were detected. On either the
lucerne (Fig. 7a) or oaten (Fig. 7b) hay diets, we found that kangaroos could, theoretically,
satisfy their MER at intake levels lower than those required by sheep. Moreover, for both
lucerne and oaten hay models, the kangaroos could, theoretically, satisfy their MERs at NDF
contents (%DM) in excess of those that would limit sheep intakes. For example, in the lucerne
hay model, kangaroos could satisfy MERs even when NDF was in excess of ca. 80% DM, but
sheep would fail to acquire sufficient energy at NDF contents of around 70% DM. This
difference was more pronounced for the oaten hay model, where kangaroos could meet MER
at diets containing as much as 67% NDF, but sheep would require a diet with less than 54%
NDF (Fig. 7).

Discussion

The tubiform foregut of kangaroos is comparable in form and function to the haustrated
equine colon, and as such we predicted that the slope of the MRT-DMI curve for red
kangaroos would be more like that of horses (Fig. 2) rather than sheep. This was not the case
and there was little difference in the food-intake patterns between sheep and macropodid
kangaroos generally. The slope of the DMI-MRT-relationship for sheep and the red kangaroo
were not significantly different (Fig. 3). Consequently, our data did not support the suggestion
that kangaroos could maintain high intake levels with a lesser reduction in digestive
efficiency as compared with sheep. Moreover, our data suggest that there is little difference
between the sheep and kangaroos in their ingestive responses to diet NDF contents (Fig. 6); in
other words there did not appear to be any fundamental difference in the intake limitations of
sheep and kangaroos due to dietary NDF content, despite sheep possessing the particle-size
limitations on digesta flow unique to ruminants. Therefore, factors other than differences in
the particle-flow mechanisms of ruminants and kangaroos must affect their DMI-MRT slope.
Like the hindgut fermenting equids, kangaroos are less restricted by particle-size dependent
flow of ingesta, but their DMI-MRT slope resembles that of the ruminants.
An important factor that determines the slope of the DMI-MRT-relationship is the spare
capacity available in the gastrointestinal tract. For elephants and horses, the potential for the
abdominal cavity to expand (“swell”) has been cited as a major facilitator in increasing gut
capacity where MRT is kept more or less constant. Similarly, an increase in forestomach
volume with higher DMIs has been reported in ruminants (reviewed in Clauss et al. 2007b),
though the magnitude of “swelling” is probably less so than in hindgut fermenters, echoing
suggestions that the magnitude of ‘spare capacity’ in the gut of different herbivore groups
probably plays is key role in niche partitioning (Karasov and McWilliams 2005). Complex
intestinal haustra, for example, are considered an adaptation for gut volume expansion
(Langer and Takács 2004), and occur in both equids and macropods (Fig. 2). However, if the
gastrointestinal tract and abdominal cavity of macropods was more suitable for compensatory
distension, we would expect the slope of the DMI-MRT relationship of macropods to be
shallower than that for sheep. While mature red kangaroos are known to increase gut-fill in
response to low-quality (high fibre) diets (Munn and Dawson 2006), the degree to which their
abdominal cavity can accommodate such increases is unknown, but is probably much less
than that seen in horses. The small body size and tight abdominal musculature (necessary for
the hopping gait), and the additional rigidity provided to the abdominal wall by the epipubic
bones of kangaroos (Dawson et al. 1989), probably limit potential for gut-distension, leading
to their MRT-DMI curve resembling that of sheep (Fig 3.) rather than equids (Fig. 1).
Interestingly, complex haustra are not seen in the foregut of hippopotamus (Langer 1975;
Langer 1976), which also exhibit a steep MRT-DMI curve comparable to sheep and
kangaroos (Clauss et al. 2007b). Overall, our models suggest that differences in the ability of herbivore types to expand gut-fill in response to diet quality (fibre content) plays a key role in defining their food intake limitation.

Based solely on DMI, MRT and the aD of DM, our model predicts maximum forage intakes by red kangaroo of 70-80 g kg\(^{-0.75}\) d\(^{-1}\) (Fig. 5), which are comparable to reported maximum DMIs of 62-66 g kg\(^{-0.75}\) d\(^{-1}\) for red kangaroos feeding on pasture in experimental yards (Short 1985; Short 1986). For other free-ranging macropods, maximum DMIs of 85-87 g kg\(^{-0.75}\) d\(^{-1}\) have been documented (Prince 1976; Short 1986), and the intake of roughages measured in feeding trial with captive animals does not exceed 70 g kg\(^{-0.75}\) d\(^{-1}\) (Fig. 5). Thus, the DMI-DDMI model presented here for the red kangaroo appears to reflect the maximum DMI in this species, similar to the calculation for hippopotamuses (Clauss et al. 2007b).

Our model predicted that sheep should have an upper limit to DMI of 110-120 g kg\(^{-0.75}\) d\(^{-1}\), regardless of forage type (Fig. 5); yet, in the data presented by Van Soest (1965), maximum intakes of only ca. 90 g kg\(^{-0.75}\) d\(^{-1}\) were observed (Fig. 6). Furthermore, free-ranging sheep feeding on pasture had maximum DMIs as low as 61 g kg\(^{-0.75}\) d\(^{-1}\) (Short 1985). That our model predicts higher intakes by sheep than are actually observed suggests that factors additional to DMI, MRT and aD of DM must determine their intake limitations, at least under some circumstances. It is generally accepted that the intake limitations of ruminants like sheep revolve around the need to reduce ingesta particle sizes before material can flow from the foregut to free-up space for further ingestion, and this is harder to achieve on high-fibre diets (Lechner-Doll et al. 1991; Jung and Allen 1995; Allen 1996).

The selective retention of particles as a function of their density and size is considered a peculiarity of the ruminant forestomach (Shaver et al. 1986; Welch 1986; Shaver et al. 1988; Lechner-Doll et al. 1991, Schwarm et al. 2008), and it has been shown that the grinding of forages can greatly enhance their intake (Minson 1967; Laredo and Minson 1975). In contrast to ruminants, no mechanical outflow limitation has so far been demonstrated in any other
herbivore. Indeed, the absence of a mechanical intake limit is considered an important
classic of both hindgut fermentation systems (Janis 1976; Hume and Sakaguchi 1991)
and, to some extent, of the kangaroo gut (Hume 1999). Nonetheless, intake limitations
related to increasing NDF have been demonstrated in kangaroos (McIntosh 1966; Hume
1974; Hollis 1984) and horses (Lawrence et al. 2001). Whereas the limitation by rumen fill
due to NDF-rich forages appears reasonably understood (see Allen 1996), no concept has
been proposed for that would explain the limiting effect of NDF on intake in herbivores that
are presumably not constrained in the same mechanical way as ruminants (i.e. particle-
size/density limiting outflow from the foregut). However, such a mechanical constraints
simply may have not been demonstrated, and indeed, grinding and pelleting food (i.e. relaxing
the particle-size restrictions) increases food intake not only in sheep, but also in kangaroos
(Freudenberger and Hume 1992) and horses (Haenlein et al. 1966; Schurg et al. 1978).
Nonetheless, how such mechanical constraints or limitations might operate within each the
different herbivore groups, or if they reflect common mechanism, remains to be investigated.

Our results do not support the suggestion that on high-fibre forages intake is less reduced in
kangaroos and their relatives than it is in ruminants (see Hume 1999, p. 250). For that, further
studies using forages of higher fibre content than those cited here would need to be conducted
to fully appreciate differences in the responses of sheep and kangaroos at extreme limits to
their digestive capabilities. Results from studies in which sheep and macropods were directly
compared are not unanimous. For example, food intake by macropods decreased less so than
in sheep with decreasing forage quality (Foot and Romberg 1965; Hollis 1984). Intakes of
straw-based forages of increasing fibre content decreased in a similar way in macropods and
goats when the forages were fed chopped, but macropods could maintain comparatively
higher intakes when these forages were offered in pelleted form (Freudenberger and Hume
1992). Other studies have found that reductions in food intake of non-pelleted forages in
response to increasing NDF (%DM) were comparable for ruminants and kangaroos (McIntosh
Clearly, further research is required to fully appreciate differences in the limitations of the sheep and kangaroo digestive system, but we did predict that red kangaroos should be able to maintain body condition for longer than sheep or other ruminates if offered diets particularly high in fibre.

Our model suggests that the lower energy requirement of the marsupial kangaroos (Dawson and Hulbert 1970; Munn and Dawson 2001) presents them with advantages over sheep as diet quality declines. Specifically, on an energetic basis, kangaroos are predicted to meet their maintenance energy requirements at higher forage NDF levels than sheep, even though they apparently share the sheep’s’ intake limitation linked to NDF content (Fig. 6). This is due to the comparatively lower energetic requirements of the kangaroos (Munn and Dawson 2003) relative to sheep (Hume 1974). Other factors that contribute to the ‘low-energy’ lifestyle of kangaroos include their energetically-economical hopping gait, which affords them long distance movements (Dawson and Taylor 1973; Baudinette et al. 1992) to food and water, lower protein requirements (Hume 1974; Munn et al. 2006), and low daily water turnovers (Dawson et al. 1975). Thus, the major point from our study is that despite similar digestive constraints with regard to MRT-DMI and intake limits related to forage fibre content, variations in the metabolic energy requirements of kangaroos and sheep is probably the primary factor influencing their nutritional niche.

References

Abaturov BD (2005) Forage resources, food supply, and viability of populations of herbivorous mammals. Entomological Review 85:S199-S215

Cherney DJR, Mertens DR, Moore JE (1990) Intake and digestibility by wethers as influenced by forage morphology at three levels of forage offering. Journal of Animal Science 68:4387-4399

Cherney DJR, Mertens DR, Moore JE (1991) Fluid and particulate retention times in sheep as influenced by intake level and forage morphological composition. Journal of Animal Science 69:413-422

Foose TJ (1982) Trophic strategies of ruminant versus nonruminant ungulates, PhD.
University of Chicago, Chicago

Foot JZ, Romberg B (1965) The utilization of roughage by sheep and the red kangaroo

Journal of Zoology 18:247-256

Freudenberger DO, Hume ID (1992) Ingestive and digestive responses to dietary fibre and
nitrogen by two macropodid marsupials (Macropus robustus erubescens and M. r. robustus) and a ruminant (Capra hircus). Australian Journal of Zoology 40:181-194

Haenlein GFW, Holdren RD, Yoon YM (1966) Comparative response of horses and sheep to
different physical forms of alfalfa hay. Journal of Animal Science 25:740-743

Hollis CJ (1984) The ability of two macropods (Macropus eugenii and M. robustus robustus)
of different body size to utilize diets of different fibre content compared with sheep,
PhD. University of New England, Armidale

Hume ID (1974) Nitrogen and sulphur retention and fibre digestion by euros, red kangaroos

Hume ID, Sakaguchi E (1991) Patterns of digesta flow and digestion in foregut and hindgut
fermenters. In: Tsuda T, Saasuki Y, Kawashima R (eds) Physiological aspects of

Hummel J, Südekum KH, Streich WJ, Clauss M (2006) Forage fermentation patterns and
their implications for herbivore ingesta retention times. Functional Ecology 20:989-1002

Illius AW, Gordon IJ (1992) Modelling the nutritional ecology of ungulate herbivores:
evolution of body size and competitive interactions. Oecologia 89:428-434

Janis C (1976) The evolutionary strategy of the equidae and the origins of rumen and caecal
digestion. Evolution 30:757-774

In: Starck JM, Wang T (eds) Physiological and ecological adaptations to feeding in

Kennedy PM, McSweeney CS, Welch JG (1992) Influence of dietary particle size on intake,
digestion, and passage rate of digesta in goats and sheep fed wheaten (Triticum
aestivum) hay. Small Ruminant Research 9:125-138

Kinnear JE, Cockson A, Christensen P, Main AR (1979) The nutritional biology of the
ruminants and ruminant-like mammals - a new approach. Comparative Biochemistry
and Physiology A 64:357-365

V (ed) Feeding in domestic vertebrates: from stucture to behaviour. CAB
International, Wallingford, pp 84-107

Krookenberger AK, Hume ID (2007) A flexible digestive strategy accommodations the nutritional
demands of reproduction in a free-living folivore, the koala (Phascolarctos cinereus).
Functional Ecology 21:748-756

Langer P (1975) Macroscopic anatomy of the stomach of the hippopotamidae. Zentralblatt für
Veterinärmedizin C 4:334-359

African Journal of Science 72:12-16

Langer P, Takács A (2004) Why are taeniae, haustra, and semilunar folds differentiated in the
gastrointestinal tract of mammals, including man? Journal of Morphology 259:308-315

McIntosh DL (1966) The digestibility of two roughages and the rates of passage of their residues by the red kangaroo and the merino sheep. CSIRO Wildlife Research 11:125-135

Minson DJ (1967) The voluntary intake and digestibility, in sheep, of chopped and pelleted Digitaria decumbens (pangola grass) following a late application of fertilizer nitrogen. British Journal of Nutrition 21:587-597

Prince RIT (1976) Comparative studies of aspects of nutritional and related physiology in macropod marsupials, PhD Thesis. University of Western Australia

Figure 1. Relationship between dry matter intake (DMI, g/kg^{0.75/d}) and particle mean retention time (MRT, h) in the total gastrointestinal tract of two ruminant and two equid species. From Clauss et al. (2007), note the less drastic decrease in MRT with increasing DMI in equids.

Figure 2. Gastrointestinal tract of a typical large macropodid marsupial, the eastern grey kangaroo (Macropus giganteus), and an equid, the pony (Equus caballus). From Stevens and Hume (1995).

Fig. 3. Relationship between the relative dry matter intake (DMI in g/kg^{0.75/d}) and the particle mean retention time (MRT in h) in the total gastrointestinal tract in sheep and red kangaroos (Macropus rufus) collated from different sources (see Methods). Note the parallelity of the slopes.

Fig. 4. Relationships between the particle mean retention time (MRT, h) and the apparent digestibility (aD of DM, %) of dry matter (DM) for a) lucerne hay (LH) and b) oaten straw (OS) in sheep and kangaroos used for the model calculation in Figure 5.

Fig. 5. Relationships between dry matter intake (DMI in g/kg^{0.75/d}) and digestible dry matter intake (DDMI in g/kg^{0.75/d}) modelled according to the equations from Figs. 3 and 4 for a) lucerne hay and b) oaten straw in sheep and kangaroos. The interrupted lines indicate the extrapolated range. Filled and open symbols represent the values actually measured in digestion trials (see Methods for sources).
Fig. 6. Relationship between forage cell wall content (measured as NDF in dry matter) and the food intake (DMI) in sheep (Van Soest 1965) and different macropodid species (Foot and Romberg 1965; McIntosh 1966; Forbes and Tribe 1970; Hume 1974; Dellow 1982; Dellow and Hume 1982; Hollis 1984; Munn and Dawson 2006).

Fig. 7. Theoretical digestible energy intake (DEI) limit at different levels of dietary fibre contents (neutral-detergent fibre; NDF) levels, using information from Figure 5 for kangaroos and sheep feeding on a) lucerne hay or b) oaten hay. (MR = daily metabolic energy needed to maintain body mass)
Fig 1
Fig. 3

$y = 83.5 - 0.55x$
$R^2 = 0.59$

$y = 55.3 - 0.49x$
$R^2 = 0.39$
Fig. 4

\[aD \ DM = 19.99 + 44.71 (1 - e^{-0.0458 \times \text{MRT}}) \]

- LH M. rufus
- LH Sheep

\[aD \ DM = 0.0006 + 47.93 (1 - e^{-0.0484 \times \text{MRT}}) \]

- OS M. rufus
- OS Sheep
Fig. 6
Fig. 7