

University of Wollongong Research Online

University of Wollongong Thesis Collection

University of Wollongong Thesis Collections

2003

Late holocene floodplain processes and post-European channel dynamics in a partly confined valley of New South Wales Australia

Timothy J. Cohen University of Wollongong

Recommended Citation

Cohen, Timothy J., Late holocene floodplain processes and post-European channel dynamics in a partly confined valley of New South Wales Australia, Doctor of Philosophy thesis, School of Earth and Environmental Sciences, University of Wollongong, 2003. http://ro.uow.edu.au/theses/1931

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

LATE HOLOCENE FLOODPLAIN PROCESSES

AND

POST-EUROPEAN CHANNEL DYNAMICS

IN

A PARTLY CONFINED VALLEY

OF NEW SOUTH WALES

AUSTRALIA

TIMOTHY J. COHEN BSC (HONS)

.

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

> School of Geosciences University of Wollongong New South Wales, Australia May 2003

© 2003 Timothy J. Cohen All rights reserved. This work may not be reproduced in whole or in part without permission of the author.

Certification

I, Timothy J. Cohen, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Geosciences, University of Wollongong, is wholly my own work except where otherwise acknowledged. The document has not been submitted for qualifications at any other academic institution.

Timothy J. Cohen May 2003

ABSTRACT

The partly confined valleys of south-eastern Australia provide suitable conditions for the formation of vertically accreted floodplains with laterally stable channels. Three reaches in the Bellinger catchment in the New England Fold Belt on the mid-north coast of New South Wales (NSW) provide sites to assess the attributes of confined floodplains and the impact of European settlement on otherwise highly stable systems. The nature of Late Quaternary floodplain processes in a bedrock-dominated landscape are investigated, providing the evolutionary context for contemporary channel processes.

The Bellinger catchment is characterised by an assemblage of stepped Late Quaternary alluvial units. Late Pleistocene terraces represent large more competent rivers that reworked almost entire valley floors, however, a progressive decline in discharge since the Last Glacial Maximum has resulted in the abandonment of these deposits as elevated terraces or residual alluvium onlapped by contemporary floodplains. The Bellinger catchment exhibits evidence of intrinsic controls on floodplain formation superimposed over an early-mid Holocene climatic signature. A fluvially active period from 12 - 3 ka reworked Late Pleistocene terraces and is termed the Nambucca Phase. In the Bellinger catchment, two floodplain surfaces, one higher than the other, both started to vertically accrete from 4 ka onwards, but with some valley locations remaining vulnerable to episodes of reworking resulting in substantial units of younger alluvium. The high floodplain is dominated by horizontally laminated, vertically accreted sequences, while the low floodplain is characterised by pronounced cut-and-fill stratigraphy. In both instances, vertical processes are the dominant mode of floodplain construction. However, an extensive AMS radiocarbon chronology supplemented with a limited OSL investigation suggests that these two surfaces are not chronologically distinct. In contrast, polycyclic terraces and floodplains can share much the same elevation but be very different in age. The assumption that the continuity of terrace or floodplain profiles along a valley represents coeval formation is shown to be frequently invalid for such confined landscapes.

European settlement from c.1840 transformed the fluvial environment, initiating phases of channel metamorphosis that do not correspond to a previously accepted model of channel change based on proposed cyclical changes in flood activity termed flood- and drought-dominated regimes. Largely in response to deforestation, the Bellinger River has undergone rapid adjustment to changing boundary conditions including measurable channel straightening, a three-fold increase in width, a five-fold increase in channel capacity, bed level incision and a re-configuration of riffle-pool units. These changes have occurred in periods of above-and below-average flood activity and are a direct result of landscape clearance for agriculture, compounded by activities such as within-channel aggregate extraction. In the latter part of the 20th century, channel capacity has continued to increase despite recent increases in riparian vegetation and a decline in flood frequency.

Wide-scale post-settlement entrenchment has produced a diverse range of in-channel depositional and erosional landforms that are not the product of particular discharge return-periods. Deposited over gravel-bar platforms, a variety of cut-and-fill benches have developed and their stratigraphy and form are controlled by their position within the channel, local sediment supply and local energy conditions. Bench processes, along with continued channel expansion, are attributes of a highly disturbed post-European system that currently displays non-equilibrium characteristics.

This significant revision of our understanding of the controlling processes and changing environment in the partly confined coastal rivers of northern NSW has important implications for the management and future rehabilitation of these disturbed systems. The future success of river management in these valleys requires a reach-scale assessment of post-European channel responses, but framed within the context of the longer-term channel and floodplain formation processes.

CONTENTS

Abstract	i
Contents	ii
List of Appendices	vi
List of Figures	vii
List of Tables	Х
List of Symbols and Notation	xi
Acknowledgements	xii

1 INTRODUCTION AND LITERATURE REVIEW

1.1	INTRODUCTION	1
1.2	 BOUNDARY CONDITIONS FOR COASTAL RIVERS IN SOUTH-EASTERN AUSTRALIA 1.2.1 Structural control and sediment supply in rivers of south-eastern Australia 1.2.2 Late Quaternary fluvial processes in south-eastern Australia 1.2.3 Floodplain formation processes in a confined landscape 1.2.4 Climatic variability as a dominant control on channel form and process 1.2.5 Post-European channel dynamics 	4 5 21 25 31
1.3	CHANNEL DISTURBANCE IN AN INTERNATIONAL CONTEXT	37
1.4	THESIS HYPOTHESES 1.4.1Study design and thesis structure	38 39

2 PHYSICAL SETTING AND REACH ANALYSIS

2.1 STUDY AREA

2.2	BASIN	-SCALE ATTRIBUTES OF THE BELLINGER CATCHMENT	41
	2.2.1	The morphology and physiographic attributes of the Bellinger catchment	41
	2.2.2	Landscape evolution and lithology of the Bellinger catchment	46
	2.2.3	Longitudinal profiles and grain-size distribution of the Bellinger catchment	50
	2.2.4	Basin-scale channel patterns and channel geometry relationships	52
	2.2.5	Climatic and hydrological parameters	57
	2.2.6	Vegetation, soil distribution and land use	59
2.3	REAC	H-SCALE ATTRIBUTES OF THE BELLINGER CATCHMENT	62
	2.3.1	Channel characteristics of Orama Reach: A reach analysis	63
	2.3.2	Channel characteristics of Wills Reach: A reach analysis	70
	2.3.3	Channel characteristics of Gordonville Reach: A reach analysis	73

41

3 HOLOCENE FLOODPLAIN CHRONO-STRATIGRAPHY IN THE BELLINGER CATCHMENT

3.1	INTRODUCTION	78
3.2	METHODOLOGICAL APPROACH	78
	3.2.1 Spatial analysis of floodplain and terrace distribution	78

	3.2.2 Me 3.2.3 A c lum	thods for str chronologica ninescence (ratigraph al analys OSL)	ic interpret is using A	ation MS radio	ocarbon	and option	cally stim	ulated	79 80
3.3	A PRELI Bellinge	(MINARY CATCH)	LATE MENT	QUATE	RNARY	CHR	ONOLOG	GY IN	THE	82
3.4	HOLOCEN 3.4.1 The 3.4.2 Chi Ora	E FLOODI e morpholog rono-stratigr ama Reach	PLAIN 1 gy and di caphic ar	PROCESSI stribution c id sediment	ES IN TH of confine tological	HE UPI ed flood investig	PER VAI plains in (gations of	LEY Orama Re f floodpla	each ains in	87 87 91
	3.4.3 Inte 3.4.4 Ho	erpretation o locene flood	of the chr Iplain pr	ono-stratig ocesses in t	raphy in the Uppe	Orama) r Valley	Reach / setting: 4	A Summa	ary	100 110
3.5	HOLOCEN WILLS RE	E FLOOD	PLAIN	PROCESS	SES IN	THE	LOWER	VALL	EY -	113
	3.5.1 The 3.5.2 Chi Wi	e morpholog rono-stratigr lls Reach	gy and di aphic ar	stribution of disediment	of confine tological	ed flood investig	lplains in gations of	Wills Rea f floodpla	ach uins in	113 115
	3.5.3 Inte 3.5.4 Ho	erpretation o locene flood	of the chi Iplain pr	ono-stratig	raphy in Wills Rea	Wills R ich: A S	teach Summary			128 132
3.6	HOLOCEN LOWER V	E FLOODI ALLEY	PLAIN	PROCESS	ES IN	GORI	DONVILL	E REA	СН -	135
	3.6.1 The 3.6.2 Chi Goi	e morpholog rono-stratigr rdonville Re	gy and di aphic ar ach	stribution of disediment	of floodpl tological	ains in investig	Gordonvi gations of	lle Reach floodpla	ins in	135 138
	3.6.3 Inte 3.6.4 Hol	erpretation o locene flood	of the chr plain pro	ono-stratig ocesses in C	raphy in Gordonvil	Gordon le Reac	ville Reac ch: A sum	:h mary		156 162
3.7	THE ROLE	E OF STRE	AM PO	wer on 1	FLOODF	LAIN	PROCES	SES		164
3.8	SPATIAL A Processe	AND TEMP S IN THE	ORAL BELLIN	VARIABII IGER CA'	LITY IN TCHME	HOL NT: A	OCENE I Summa	ELOODP RY	LAIN	168
CLIN	MATE VAR	RIABILIT	Y ON T	THE MID	-NOR1	'H CO	AST OF	7 NSW		
4.1	INTRODUC	CTION								170
4.2	RAINFALL A REGION	, PATTERN IAL ANAL	IS ON T YSIS	HE MID-I	NORTH	COAST	f of NS	W:		170
4.3	RAINFALL 4.3.1 Rai	, PATTERN nfall magnit	S OF TI ude-freq	HE BELLI uency patte	NGER (erns in the	CATCH Bellin	MENT ger catchr	nent		179 181
4.4	FLOOD VA 4.4.1 Ter 4.4.2 Mea	RIABILITY nporal trend asures of flo	Y ON T s in floo od poter	HE MID-N d discharge ntial on the	ORTH (on the m mid-nort	COAST hid-nort h coast	OF NSV h coast of of NSW	N NSW		184 184 189
4.5	BELLINGE 4.5.1 His 4.5.2 Gau 4.5.3 Uni	R RIVER l torical flood uged flood d it-discharge	FLOOD l-stage h ata in the relations	FREQUE eights in B Bellinger hips for the	NCY AN ellingen: Basin e Bellinge	ALYS 1870 – er Basin	IS 2001			192 192 196 201
4.6	ALTERNAT CATCHME	ring Ci Ent: A su	LIMATI MMAR	C REG Y	IMES	IN	THE	BELLIN	NGER	203

5 POST-EUROPEAN CHANNEL DYNAMICS IN THE BELLINGER VALLEY

5.1	INTRODUCTION	206
5.2	 METHODOLOGICAL APPROACH 5.2.1 Historical and anecdotal evidence for the Bellinger valley 5.2.2 Palaeochannel analysis 5.2.3 Spatial analysis of channel characteristics 5.2.4 Reach analysis, channel processes and an assessment of prior bed levels 	206 206 206 207 209
5.3	THE BELLINGER RIVER AT THE TIME OF SETTLEMENT: An HISTORICAL ANALYSIS	210
5.4	CHANNEL GEOMETRY AND PLANFORM CHANGES IN THE UPPER AND LOWER BELLINGER RIVER: 1842 - 2000	217
	5.4.1 Channel planform of the upper and lower Bellinger River in the mid 19 th century	217
	5.4.2 The use and limitations of palaeochannels to determine channel characteristics at the time of settlement	217
	5.4.3 Planform changes on the upper and lower Bellinger River: $1842 - 2000$	224
	5.4.4 Channel geometry adjustments on the upper and lower Bellinger River: 1842 – 1943	226
	5.4.5 Channel geometry adjustments on the upper and lower Bellinger River: 1943 – 2000	229
	 5.4.6 Aggregate extraction in the Bellinger valley : Evidence for channel incision 5.4.7 Nature of bar mobility and riparian zone changes: 1943 – 2000 	250 256
5.5	SUMMARY OF POST-EUROPEAN CHANNEL CHANGES: EVIDENCE FOR CYCLIC BEHAVIOUR?	264
BEN	CH DYNAMICS IN AN INCISED LANDSCAPE	
6.1	INTRODUCTION	268
6 2	METHODOLOCICAL ADDOACH, A DDACH ANALYON	0(0
0.2	6.2.1. Hudroulio modelling and the accessment of stage discharge which is the	268
	6.2.2 Sedimentological and the assessment of stage-discharge relationships	269
	6.2.2 Sedimentiological and chronological analysis of benches	269
	6.2.4 Groin aigo apolygis of the armost land have been been been been been been been be	273
	0.2.4 Gram-size analysis of the armour layer and entrainment thresholds	274
6.3	STAGE-DISCHARGE RELATIONSHIPS IN A CONFINED SETTING	277
	6.3.1 Floodplain stage-discharge relationships	277
	6.3.2 Bench stage-discharge relationships	279
6.4	SEDIMENTOLOGICAL CHARACTERISTICS AND TEMPORAL CHANGES TO BENCHES	285
	6.4.1 Classification of benches	200
	6.4.2 Changes to bench volumes: 1943 – 2000	285 300
6.5	THE ROLE OF LARGE FLOODS ON CHANNEL MORPHOLOGY	307
	6.5.1 Hydraulic analysis of the 2001 floods	207

6

6.6	SUMM	ARY OF FORM-PROCESS ASSOCIATIONS IN AN INCIDED	204
	6.5.2	Bed sediment mobility and entrainment thresholds at riffles	316
	6.5.1	Hydraulic analysis of the 2001 floods	307
	1 - 1		507

LANDSCAPE LANDSCAPE

7 LATE QUATERNARY FLOODPLAIN PROCESSES, SHORT-TERM CLIMATIC CHANGE AND POST-EUROPEAN CHANNEL DYNAMICS: A SYNTHESIS

7.1	CHRO LATE	NO-STRATIGRAPHIC EVIDENCE FOR CLIMATE CHANGE IN THE QUATERNARY	328
7.2	HOLO	CENE EVIDENCE FOR HYDRO-CLIMATIC CHANGE	330
7.3	CONT	ROLS AND MORPHODYNAMICS OF CONFINED FLOODPLAINS	33 1
7.4	EPISO	DIC CLIMATE AND FLOW REGIME CHANGE	337
7.5	A POS 7.5.1 7.5.2 7.5.3	T-EUROPEAN MODEL OF CHANNEL DISTURBANCE The post-settlement pattern: evidence for cyclic equilibrium? Bench dynamics Summary of post-European channel dynamics	338 338 343 345
SUMMARY AND CONCLUSIONS 34			
Refe	rences		357

8

APPENDICES

1.1	Summary of Holocene radiocarbon dates in south-eastern Australia	372
3.1	Auger-hole data for the three reaches	374
3.2	Ontical Stimulated Luminescence (OSL) data	387
3.3	Summary of elevation data for the three reaches	394
4.1	Summary of area-discharge relationships for the Bellinger basin (No. 206)	395
5.1	Summary of aerial photographs used in the study	397
5.2	Historical photographs of the Bellinger valley	398
5.3	Parish maps of the Bellinger valley	399
5.4	Estimated volumes of gravel extracted on the Bellinger River	401
5.5	Photographs of aggregate extraction activities	403
6.1	Bankfull discharge estimates for the three reaches	404
6.2	Flood profiles of the 2-year flood from the partial series	407
6.3	Discharge estimates, return periods and elevations for in-channel units	408
6.4	Bench exposure and auger hole data	411
6.5	Hydrological and meteorological assessment of the 2001 floods	412
6.6	Sensitivity analysis of discharge estimates for the March 2001 floods	417
6.7	Cross-sectional changes on the lower Bellinger River 1992 – 2000	420
6.8	Discharge – velocity relationships for the Bellinger River	423

FIGURES

1.1	Map of New South Wales and locations of previous quaternary sites	3
1.2	Episodes of fluvial activity in south-eastern Australia and on the Riverine Plain	13
1.3	Temporal distribution of basal radiocarbon ages for the Holocene	19
1.4	Conceptual model of the valley trough (after Warner, 1992)	23
1.5	Flood frequency curves for Australia vs the world	26
1.6	Model of bench formation and destruction	36
2.1	Satellite image of the Bellinger catchment	42
2.2	Digital elevation model (DEM) of relief distribution of the Bellinger catchment	44
2.3	DEM slope distribution of the Bellinger catchment	45
2.4	Regional drainage patterns on the mid-north coast of NSW	47
2.5	Geology of the Bellinger catchment	49
2.6	Longitudinal profiles of the Bellinger basin sub-catchments	51
2.7	Downstream distribution of grain-size on the Bellinger River	53
2.8	Locality map of the Bellinger catchment and the three study reaches	54
2.9	Channel geometry relationships for the Bellinger catchment	56
2.10	Climatic indices for Bellingen and Dorrigo	58
2.11	Land-use patterns in the Bellinger catchment	61
2.12	Aerial photograph of Orama Reach	64
2.13	Grain-size distributions for riffles in Orama Reach	69
2.14	Aerial photograph of Wills Reach	71
2.15	Grain-size distributions for riffles in Wills Reach	72
2.16	Aerial photograph of Gordonville Reach	74
2.17	Grain-size distributions for riffles in Gordonville Reach	75
3.1	Bellinger River alluvia longitudinal profiles (after Warner, 1972)	83
3.2	Bellinger River longitudinal profile with study reaches	87
3.3	Orama Reach geomorphic map	89
3.4	Downstream distribution of valley and floodplain widths for Orama Reach	90
3.5	Orama Reach thalweg and alluvia longitudinal profile	92
3.6	OrVII chrono-stratigraphic data	93
3.7	OrVI3 chrono-stratigraphic data	95
3.8	OrV14 chrono-stratigraphic data	97
3.9	Or Cauthank analysis	98
3.10	Or o cuidank analysis Or VT5 shrone strationenkie date	99
3.11	Orv 15 chrono-strangraphic data	101
3.1Z	Schematic Interpretation of OrVT1 and OrVT5	102
5.15 2.14	A so to alevation relationship in Orama Desch	103
5.14 2.15	Age to elevation relationship in Oralita Reach	100
3.15	Schemetic Lete Disistence avolutioners model for the upper valley setting	109
3.10	Geomorphia man of Wills Deach	112
3.17	Downstream distribution of alluvial units in Wills Beach	114
3.10	Wills Deach thelwee and elluvia longitudinal profile	115
3.19	Stratigraphy for WV/T1 WV/T2	110
3.20	Strangraphy 101 w $\sqrt{11} = \sqrt{\sqrt{12}}$	110
3.21	Chrono stratigraphy at WVT3	120
3.22	Stratigraphy of the low floodplain between W13 W16	121
3.25	Chrono stratigraphy at $WVTA$	124
3.24	GPD transact at $WVT4$	123
3.25	Schematic interpretation of $WVT3 = WVT4$	120
3.20	Schematic Interpretation of $W = 13 - W = 14$ Elevation of the high and low flood plains in Wills Deach	130
3.28	Late Quaternary schematic evolutionary model for Wills Deach	131
3 20	Geomorphic map of Gordonville Reach	134
3 30	Downstream distribution of alluvial units in Gordonville Deach	130
3 31	Gordonville Reach thalweg and alluvia longitudinal profile	13/
3 32	Chrono-stratigraphy of the low flood plain at GVT1	139
	entere on an Brahad of the few trood plant at O + 1 1	140

3.33	GPR of the low floodplain at GVT1	142
3 34	Chrono-stratigraphy of the low floodplain at GVT2	145
3 35	Chrono stratigraphy of the low floodplain at 0 V 12	146
3 36	Chrono stratigraphy of the low floodplain-terrace assemblage at 0 v 14	148
3.30	Chrono stratigraphy of the light flood lain at CVT5	149
3.37	Children of the attractural real high flood plain at GVT5	151
2.20	Charge structural pool-nigh floodplain assemblage at GVT3	153
3.39	Chrono-stratigraphy of the low and high floodplain assemblage at GV 17	155
3.40	Chrono-stratigraphy of the high floodplain at GV17	158
3.41	Age-to-elevation relationship for the lower valley setting	161
3.42	Elevation of the high and low floodplains in Gordonville Reach	163
3.43	Late Quaternary schematic evolutionary model for Gordonville Reach	165
3.44	Predicted distribution of mean stream power for the 100-year flood	100
4.1	Location of rainfall and flood discharge gauges used in the analyses	172
4.2	Regional residual mass curves for total monthly rainfall on the mid-north coast	173
4.3	Percentage change in mean annual rainfall from 1900 – 1945 to 1946 – 1997	174
4.4	Spatial distribution of percentage change in mean annual rainfall	176
4.5	Filtered Southern Oscillation Index (SOI)	177
4.6	Rainfall characteristics at Bellingen Post Office	180
4.7	Number of 24-hour rainfall events at Bellingen Post Office	182
4.8	Annual series of 2-day rainfall frequency curves at Bellingen Post Office	183
4.9	Normalised residual mass curves for mean daily discharge - regional	186
4.10	Envelope curve of maximum floods recorded on the mid-north coast of NSW	191
4.11	Historical flood stage-height on the Bellinger River at Bellingen bridge	193
4.12	Post-Furopean dimensional change at the Bellingen bridge gauge	195
4.13	Residual mass curve for mean daily discharge on the Bellinger and Nambucca River	198
4.14	Annual maximum and annual exceedance series on the Bellinger and Nambucca Rivers	199
4.15	Annual maximum and annual exceedance series on the Bellinger and Nambucca River for	200
	various time intervals	200
5.1	Historical photographs of the lower Bellinger River in the early 20 th century	215
5.2	Planform of the lower Bellinger River at the time of settlement	218
5.3	Palaeochannels used in the study	220
5.4	Wills palaeochannel in 1943	221
5.5	1921 flood on the lower Bellinger River	225
5.6	Unrectified aerial photographs in Orama Reach 1943 – 2000	232
5.7	Unrectified aerial photographs in Wills Reach 1943 – 2000	235
5.8	Summary of the changes to channel geometry in Wills Reach 1943 – 2000	237
5.9	Unrectified aerial photographs of channel changes at Gordonville cutting	240
5.10	Unrectified aerial photographs in middle Gordonville Reach 1943 – 2000	242
5.11	Summary of planform and cross-sectional changes in Gordonville Reach	244
5.12	Unrectified aerial photographs in lower Gordonville Reach 1943 – 2000	246
5.13	Summary of channel geometry changes in Gordonville Reach	248
5.14	Prior bed levels in Wills and Gordonville Reach	254
5.15	Riparian vegetation changes in Orama Reach from 1943 to 2000	259
5.16	Riparian vegetation changes in Wills Reach from 1943 to 2000	260
5.17	Riparian vegetation changes in Gordonville Reach from 1943 to 2000	261
5.18	Temporal changes in vegetation and active-bar surface areas 1943 to 2000	263
6.1	Delineation of average bench thickness	273
6.2	Longitudinal profile of bars and benches in Orama Reach	213
6.3	Longitudinal profile of bars and benches in Wills Reach	200
6.4	Longitudinal profile of bars and benches in Gordonville Reach	202
6.5	Bar and supra-platform deposits in Orama Reach	204
6.6	Riffle-pool re-configuration and supra-platform denosits in Wills Deach	20/
6.7	Lens-dominated cut-and-fill bench in Wills Reach	288
6.8	Drape-dominated cut-and-fill bench in Wills Reach	290
6.9	Tabular benches in the lower valley setting	292
6.10	Stratigraphy of an erosional ledge	296
6.11	Strath terrace in the upper valley setting	298 200
6.12	Classification of erosional and depositional landforms in the Rellinger valley	299 301
	the benning in the repositional landronny in the benninger value,	201

6.13	Temporal changes in bench morphology	305
6.14	Post-1943 bench accumulation	306
6.15	HEC-RAS summary of the March 2001 flood in Orama Reach	309
6.16	Photographs of the March 2001 flood in Orama Reach	311
6.17	Morphological impacts of the March 2001 flood in Orama Reach	312
6.18	HEC-RAS summary of the March 2001 flood in Wills Reach	314
6.19	Morphological impacts of the March 2001 flood in Wills Reach	315
6.20	HEC-RAS summary of the March 2001 flood in Gordonville Reach	317
6.21	Surface and sub-surface grain size analysis in the three reaches	318
6.22	Shear stress distribution in Orama Reach and entrainment relationships	320
6.23	Shear stress distribution in Wills Reach and entrainment relationships	322
6.24	Shear stress distribution in Gordonville Reach and entrainment relationships	323
7.1	Schematic of confined and unconfined settings	334
7.2	Schematic of floodplain processes in confined valleys	336
7.3	Summary of land use and morphological changes on the Bellinger River	341

TABLES

2.1	Mombological attributes of the four major sub-catchments	46
2.2	Valley characteristics of the three reaches in the Bellinger catchment	65
2.3	Summary of in-channel units in the three study reaches	66
2.4	Channel geometry of the three study reaches	67
2.5	Grain-size characteristics in the three reaches of the Bellinger River	70
31	Summary of radiocarbon data for the Bellinger catchment	84
3.2	Summary of the OSL dating results for the Bellinger catchment	85
33	Summary of the chronological data for the Nambucca catchment	86
34	Minimal vertical accretion rates for Orama Reach	104
3.5	Minimal vertical accretion rates for Gordonville Reach	156
4.1	Long-term rainfall discharge gauges for the mid-north coast of NSW	171
4.2	Long-term flood discharge gauges for the mid-north coast of NSW	185
4.3	Summary attributes of flood potential for the basins of the mid-north coast	190
4.4	Number of flood events over the 6 and 8 m threshold at Bellingen bridge	194
4.5	Flood gauges with the Bellinger basin (Basin No. 205)	197
4.6	Annual and partial series for the Bellinger and Nambucca Rivers	201
4.7	Bellinger basin and regional unit-discharge relationships	202
5.1	Bellinger River palaeochannel geometry and predicted bankfull discharge	222
5.2	Percentage change in W_{bf} and XS_{A} from settlement – 1943	227
5.3	1943 channel geometry for the three reaches	228
5.4	Summary of the channel geometry for the three reaches in 1943 – 2000	230
5.5	Summary of statistical analysis for three reaches	231
5.6	Summary of percentage change to channel geometry	238
5.7	Changes to riparian vegetation and bar areas 1943 – 2000	257
5.8	Summary of % changes to riparian vegetation and 'active bar' surfaces	258
6 .1	Estimates of roughness coefficients for the three reaches	271
6.2	Summary of Q _{bf} estimates/ return periods for the high and low floodplain	277
6.3	Summary of 'benchfull' discharge estimates and their return periods	281
6.4	Sediment storage volumes within benches in Wills and Gordonville Reach	303

SYMBOLS AND NOTATION

The following symbols, notation and units are used unless otherwise specified:

ADR	average-dominated regime - referring to a given hydrological period	
AHD	Australian Height Datum (m)	
BP	conventional radiocarbon age - before present (i.e. AD 1950)	
DDR	drought-dominated regime	
D _{max}	maximum channel depth (m)	
D_{mean}	mean channel depth (m)	
d	intermediate (b-axis) clast diameter (mm)	
d _y	intermediate clast diameter of y percentile (mm)	
d _{5x}	mean size (intermediate diameter) of the five largest boulders sampled (mm)	
ENSO	El Niño Southern Oscillation	
γ	specific weight of water (ρg), assumed to be clear water: 9807 N/m ³	
FDR	flood-dominated regime	
IPO	Inter-decadal Pacific Oscillation	
ka	kiloan, 1 ka = 1000 years	
ka BP	thousands of radiocarbon years	
LGM	Last Glacial Maximum	
MSLP	mean sea-level pressure	
n	Manning's roughness coefficient	
Q_{bf}	bankfull discharge (m ³ /s)	
R	hydraulic radius (m)	
S	energy slope (usually approximated by water-surface slope, or bed slope)	
SOI	Southern Oscillation Index	
SST	sea-surface temperature	
$ au_{c}$	critical boundary shear stress (N/m ²)	
$ au_{o}$	mean boundary shear stress (N/m ²)	
W	water surface width (m)	
W _{bf}	bankfull width (m)	
ω	mean stream power per unit wetted area (W/m^2)	
V	mean flow velocity (m/s)	
XS _A	bankfull cross-sectional area (m ²)	

ACKNOWLEDGEMENTS

Completing my PhD has often seemed like a process of learning how not to do research. The endless garden paths and the initial scope allowed me a never-ending diversity of interesting things to address. Nevertheless, there were those who have always stuck by me and supported both my mental and emotional well being as well as the ideas on which this thesis is based. The scope of this project has indeed encompassed many spatial and temporal timeframes and would not have been possible without the assistance of many individuals and organisations.

I have spent months in the field assisted by many, including Jenny Atchison, David Ball, Simon Clarke, my father Brian Cohen, Ally Dalton, Tim Denby, Matthew Dickinson, Dave Ferguson, Graham Goldrick, John Jansen, Abby and Kate Jeffery, Daniel Loganove, Gerald and Rachel Nanson, Tim Pietsch, Sonia and Aaron Ratcliff.

To many friends and colleagues within the NSW Department of Land and Water Conservation (DLWC), I thank Dave Merrikin, Tony Broderick, Graham Goldrick and Ivars Reinfelds who have always gone out of their way to support this project in what ever way they could.

To the people of Bellingen, landholders and friends, I would like to thank Phil Gilmour and Carol Helman and Sacha Booms for their endless hospitality and friendship. To Bellingen Youth Hostel - Grant and Robin for their support and generously lending me kayaks to become the 'riverman'. To all other landholders for allowing me access to their properties – I thank you. Many thanks to the Bellinger Valley Historical Society for allowing me access to achival photographs.

To my financial sponsors, Land and Water Australia (LWA), I thank you for the patience and support. The then Bellinger Catchment Management Committee and the River Basin Management Society have also supported this project and for that I'm grateful. The tight chronological control would not have been possible without the financial assistance from two ANSTO grants (00/115, 01/108). On the chronological front; Tim Pietsch provided invaluable assistance in refining my OSL samples while Dr. Bert Roberts, Dr. Jon Olley and Dr. Hiro Yoshida, Martine Couapel, and José Abrantes have all been extremely helpful in assisting me through the process of joining the luminescence fold.

A few individuals and organisations have also made the process an easier one and I would like to thank Richard Yelf from GEORADAR RESEARCH for undertaking the GPR work in the Bellinger Valley and Daniel and Eric Yelf for assisting in the GPR fieldwork. I would also like to thank RDM and Hatch technologies for differential GPS and photogrammetry work, while Scott Power and Anthony Kiems freely provided climatic data.

A number of friends and colleagues have freely given their time to editing parts of this thesis. In particular, Dr. Andrew Brooks, Brian Cohen, Dr. Rob Ferguson, Phil Gilmour, Carole Helman, Dr. John Jansen, Kate Jeffery, Anthony Kiems, Ross Macleay, Adam Switzer and of course Professor Gerald Nanson. I am truly grateful to my colleagues Andrew Brooks, Rob Ferguson, John Jansen, Gerald Nanson, Tim Pietsch and Ivars Reinfelds who have all provided additional insight and support throughout the years. Richard Miller and Kevin Randau both provided excellent advice in the cartographic department.

I would like to thank my supervisor Professor Gerald Nanson who has remained supportive from the outset and a friend throughout. His wealth of experience and his outright support for this research at times of difficulty have been invaluable. I am also very appreciative of the support that my parents Sue and Brian Cohen have given from the very earliest of my days right through to the completion of the thesis. A number of special individuals have supported me throughout the journey with John, Leah, Pablo, Abby and Phil and Paul and Virg always there for support. Lastly, to the ever-special Kate Jeffery who has lived through the turmoil, swum through the river and always been there for me, I thank you immensely for seeing this chapter out!

Timothy J. Cohen 2003