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Abstract
One of the key issues for local appearance based face recognition methods is that how to find the most
discriminative facial areas. Most of the existing methods take the assumption that anatomical facial
components, such as the eyes, nose, and mouth, are the most useful areas for recognition. Other more
elaborate methods locate the most salient parts within the face according to a pre-specified criterion. In this
paper, a novel method is proposed to identify the discriminative facial areas for face recognition. Unlike the
existing methods that only analyze the given face, the proposed method identifies the distinctive areas of each
individual’s face by its comparison to the general population. In particular, non-negative matrix factorization
(NMF) is extended to learn a localized non-overlapping subspace representation of the facial patterns from a
generic face image database. In the learned subspace, the degree of distinctiveness for any facial area is
measured depends on the probability of this area is belong to a general face. For evaluation, the proposed
method is tested on exaggerated face images and applied in exiting face recognition systems. Experimental
results demonstrate the efficiency of the proposed method.
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Finding Distinctive Facial Areas for Face
Recognition

Ce Zhan, Wanqing Li, and Philip Ogunbona
School of Computer Science and Software Engineering

University of Wollongong, Australia
Email: {cz847, wanqing, philipo}@uow.edu.au

Abstract—One of the key issues for local appearance based face
recognition methods is that how to find the most discriminative
facial areas. Most of the existing methods take the assumption that
anatomical facial components, such as the eyes, nose, and mouth,
are the most useful areas for recognition. Other more elaborate
methods locate the most salient parts within the face according to
a pre-specified criterion. In this paper, a novel method is proposed
to identify the discriminative facial areas for face recognition.
Unlike the existing methods that only analyze the given face,
the proposed method identifies the distinctive areas of each
individual’s face by its comparison to the general population. In
particular, non-negative matrix factorization (NMF) is extended
to learn a localized non-overlapping subspace representation of
the facial patterns from a generic face image database. In the
learned subspace, the degree of distinctiveness for any facial area
is measured depends on the probability of this area is belong to
a general face. For evaluation, the proposed method is tested on
exaggerated face images and applied in exiting face recognition
systems. Experimental results demonstrate the efficiency of the
proposed method.

Index Terms—Face Recognition, Feature Extraction, Saliency
Detection, NMF

I. INTRODUCTION

Face recognition has been one of the most active research
topics in computer vision for more than 20 years. Although
significant progress have been achieved [1], reliable face recog-
nition under unconstrained conditions still remains a difficult
problem far from being solved. This is mainly due to the
fact that facial appearances are easily affected by variations of
pose, illumination, expression, occlusion and other factors. At
the same time, sample images per subject are often limited in
realistic application scenarios. Insufficient samples (comparing
with the dimensionality of the feature space) makes it even
more difficult to train a robust face recognition system, since
intra-person variations could not be well estimated.

Among numerous methods recently proposed to solve the
face recognition problem in real life environment, local appear-
ance based methods have received more and more attention.
Unlike holistic methods that make use of the global infor-
mation from the entire face and treat all facial areas equally
important (e.g. eigenface [2], LDA [3]), local methods rely
on features extracted from different facial parts. Comparing
with global features, local features are generally more robust
to the above mentioned variations, since most of the variations
in appearance affect only part of the face. Further more, local
based approaches also seem more suitable for handling the
small sample problem, for they provide additional flexibility

to recognize a face based on its parts. However, an additional
challenging issue is brought to local appearance based meth-
ods, that is how to identify the most discriminative facial areas.
The amount of useful information for recognition in one face is
not uniformly distributed within the face image, thus different
facial areas where the local features are extracted from should
not be treat equally important in local methods. For those
methods that extract features only on selected regions (e.g. [4],
[5]), features extracted from non-discriminative image areas
increases the required processing resources, on the other side,
the non-discriminative features may drift or bias the classifier’s
responses. For local methods that simply partition the face
image into sub-regions, and directly extract local features on
each of the sub-regions (e.g. [6], [7]), a weight is always set
for each region based on the importance of the information it
contains. Still, bias is introduced when high weights are set
for non-discriminative facial regions.

Rather than identifying the discriminative facial areas adap-
tively, some of the local based face recognition methods make
an assumption that anatomical facial components, such as the
eyes, nose, and mouth, are the most discriminative areas. For
example, in [6], predefined weights are set to equally parti-
tioned square facial regions. Eyes and mouth areas are given
higher weights while cheek regions are given zero weight. In
the famous Elastic Bunch Graph Matching (EBGM) method
[4], Gabor responses are extracted at predefined fiducial points
(facial landmarks), which are the key points on facial compo-
nents such as eye corners, mouth corners, eyebrow corners and
nostril corners. Unfortunately, the assumption is not always
true, characteristic facial features can not be reduced to just
eyes, nose and mouth. For some of the faces, other facial
features such as philtrums, chins and the gaps around the eyes,
nose and mouth could be more discriminative for recognition,
especially when they contain scars, spots, dimples and lines.
Other more elaborate methods often employ interesting points
detectors to locate salient facial regions, so that features
extracted from the region around the detected points could
be invariant to factors like noise, illumination and viewpoint.
Recently, scale invariant feature transform (SIFT) [8] has been
successfully used in face recognition [5] [9] to extract local
features. The SIFT descriptor detect key points in an image by
means of a local optimization process applied to the difference
of Gaussians image, filtered at different scales and orientations.
Unlike the SIFT descriptor tends to look for blob-like features,
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the Harris-Laplace detector [10] looks for points in the image
whose value of cornerness is locally maximal. Thus, it finds
corner-like or junction-like features in images, and is employed
to select local regions for face recognition in [11]. Kepenekci et
al. [12] detect interesting points based on Gabor features, they
believe that points with high-energized Gabor wavelet response
contain more information on a face image, and only extract
Gabor features at these points to improve EBGM.

In this paper, we propose a novel method to identify the
discriminative facial areas for face recognition. Unlike the
above mentioned “interesting regions” based methods that
only analyze the given face, the proposed method find the
characteristic areas of each individual’s face by its comparison
to the general population. The selected regions are the most
distinctive facial areas that make the given face different from
other faces “we know”. The idea of comparative analysis is in
accordance with the findings of human face perception. Psy-
chologists have suggested that individual faces are represented
in relative terms: human observers store a model of general
face, against which all other faces are compared [13]. This is
why we often use the words “long nose” or “small eyes” to
describe a given face. These judgments are made based on the
comparison to the general known faces, that act like references
and give us the knowledge about how long a nose should be
or how big the eyes should be. Particularly, in the proposed
method, non-negative matrix factorization (NMF) is extended
to learn a localized non-overlapping subspace representation of
the facial patterns from a generic face image database. In the
learned subspace, the degree of distinctiveness for any facial
area is measured depends on the probability of this area is
belong to a general face. Each local area of the general face
is modeled using Gaussian Mixture Model (GMM) based on
the generic face database.

The rest of the paper is organized as follows: In Section II a
brief introduction is given on non-negative matrix factorization
and its major extensions. Detail of the proposed method is
described in Section III. Section IV presents the implemen-
tation of the proposed method and the experimental results.
Conclusions are drawn in Section V.

II. NON-NEGATIVE MATRIX FACTORIZATION

Non-negative matrix factorization (NMF) [14] is a linear,
non-negative approximate data representation. Given a non-
negative data matrix V = (vij)m×n, NMF finds the non-
negative matrix W = (wij)m×r, and the non-negative matrix
H = (hij)r×n, such that V ≈ WH . The rank r of the
factorization is generally chosen to satisfy (n+m)r < mn, so
that the product WH can be regarded as a compressed form of
the data in V . Let V represents a face database, each column
of V contains n pixel values of one of the m face images
in the database. Then, each face in V can be represented by
a linear combination of r columns of W , the columns are
called basis vectors (images). Each column of H is called a
coefficient vector, that is in one-to-one correspondence with a
face in V and describes how strongly each basis is present in
the face. Since entries in W and H are all non-negative, only

a. NMF b. LNMF

c. NMFsc d. Proposed
Fig. 1. Basis images learned from ORL database using different methods
(r = 49), d also shows a group of extended NMF bases related to the “mouth”
area (marked with red squares).

additive combinations of the basis vectors are allowed. Thus,
NMF naturally leads to a part-based representation, the learned
basis images tend to match intuitive facial features like mouth,
nose and eyes.

NMF can be taken as an optimization problem, where W
and H are chosen to minimize the reconstruction error between
V and WH . Various error functions (objective functions) have
been proposed, one widely used is the Euclidean distance
function:

E(W,H) = ‖V −WH‖2 =
∑
i,j

(Vij − (WHij))2 (1)

Although the minimization problem is convex in W and H
separately, it is not convex in both simultaneously. Paatero
and Tapper [15] proposed a gradient decent method for the
optimization, Lee and Seung [16] devised a multiplicative
algorithm to reach a local optimum.

One of the issues of NMF is that it does not always give
a part-based representation. As suggested by Li et al. [17],
[18], when NMF is applied on ORL face database [19], in
which faces are not well aligned, the learned basis images
are holistic rather than local part-based (as can be seen in
Figure 1a, the results are reproduced by us). To improve the
performance of NMF in learning part-based representation,
Li et al. proposed a local NMF method (LNMF) [17], [18],
that adds three additional constraints on NMF: Maximum
Sparsity in H , Maximum Expressiveness of W , Maximum
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Orthogonality of W . Figure 1b shows the basis images learned
from ORL database using LNMF. Comparing with NMF,
we see that features gained by LNMF are more localized.
However, some of the bases are still global and overlapped with
each other. Furthermore, since more constraints are imposed,
the convergence of LNMF is time consuming.

As an effect of part-based decomposition, NMF usually
produces sparse representation. W is sparse since the learned
bases tend to be non-global. H is often sparse due to that any
given sample does not consist of all the available parts (bases).
Hoyer [20] proposed a method called NMF with sparseness
constraints (NMFsc), and suggested that by explicitly control-
ling the sparseness of W and H , NMF could give a more
meaningful part-based representation. In NMFsc, the level of
sparseness is measured based on the relationship between the
L1 norm and the L2 norm:

sparseness(x) =
√
n− (

∑
|xi|)/

√∑
x2
i√

n− 1
(2)

where n is the dimensionality of x. Then NMFsc is defined as
the following optimization problem:

min
W,H

E(W,H) s.t. W,H ≥ 0,
∑
i

Wij = 1 ∀j

sparseness(wj) = Sw,∀j,
sparseness(hj) = Sh,∀j

Where wj is the jth column of W and hj is the jth row
of H; Sw and Sh are the desired sparsenesses of W and H
respectively. We show the basis images learned from ORL
database using NMFsc in Figure 1c, where Sw is set to 0.75
and Sh is unconstrained as the best result achieved in [20]. As
can be seen from the figure, NMFsc does not give a better part-
based representation than LNMF. However, directly control
the sparseness of the representation is very useful for many
applications.

III. THE PROPOSED METHOD

A. Local representation via extended NMF

One of the advantages for NMF based face representation
is that when the basis images are localized and not overlapped
with each other, only limited bases contribute to one local
facial area, at the same time each basis related to limited
facial area. Thus, one facial area can be represented by the
corresponding basis coefficients as a low dimension feature
vector. Further more, each row of the coefficient matrix H
describes how strongly the corresponding basis is present in
all the faces from the database. For localized non-overlapping
bases, the properties of one specific facial area from all faces
in the database can be represented by only few rows of H .
This representation is ideal for us to learn the general model
of each facial area based on the database.

In the proposed method, we extend the NMF for producing
the desired localized, non-overlapping representation. Inspired

by LNMF and NMFsc, our extended NMF impose orthog-
onality constraint on basis matrix W while controlling the
sparseness of coefficient matrix H . To reduce the overlapping
between basis images, different bases should be as orthog-
onal as possible so as to minimize the redundancy. Denote
U = WTW , the orthogonality constraint can be imposed
by minimizing

∑
i,j,i 6=j Ui,j . As introduced in Section II, for

learning localized bases, LNMF adds two more constraints
to maximize the sparsity in H . Maximum sparsity in the
coefficient matrix makes sure that a basis component cannot be
further decomposed into more components, thus the overlap-
ping between basis images is further reduced. However, a high
sparseness in H forces each coefficient try to represent more
of the image, and then the basis images tend to be global.
Consider the extreme case when only one element in each
column of H is allowed to be nonzero, then the NMF reduces
to vector quantization (VQ), and all the basis images turn to
holistic prototypical faces. Therefore, we chose to explicitly
control the sparseness level of H , so that a compromise can
be made between localization and overlapping and the value
of the sparseness could be set based on different application
scenarios.

The objective function of the extended NMF is defined as:

E(W,H) =
1
2

∑
i,j

(Vij − (WH)ij)2 + β
∑
i,j,i 6=j

Ui,j (3)

Where U = WTW , β is a small positive constant. Then the
extended NMF is defined as following optimization problem:

min
W,H

E(W,H) s.t. W,H ≥ 0,
∑
i

Wij = 1 ∀j (4)

sparseness(hj) = Sh,∀j

Where hj is the jth row of H; Sh are the desired sparsenesses
of H; the sparseness is measured based on formula (2). A local
solution to the above minimization can be found by using the
following two step update rules:

1)

Wiα ←Wiα
(V HT )iα

(WHHT )iα + β
∑
iWiα

(5)

2)
Hαµ ← Hαµ − µH [WT (WH − V )]αµ (6)

Then project each row of H to be non-negative, have unit
L2 norm, and L1 norm set to achieve desired sparseness
Sh. (µH is a small positive constant. For the projection
method, please refer to [20].)

Given a new sample face S (same size as the face images in
the database V ), its coefficient vector in the learned subspace
W can be obtained by

L = W−1S (7)

Where W−1 is the pseudo inverse matrix of W . Since the
extended NMF learns localized non-overlapping basis images,
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as discussed above, we are able to represent each local facial
area by corresponding basis coefficients, that is only a small
subset of L. Figure 1d shows an example of the bases used to
represent a “mouth” area. The basis images here are learned
from the ORL database using the proposed extended NMF, Sh
is set to 0.1. As can be seen from the figure, more localized,
less overlapped basis images are obtained, and limited bases
contribute to each specific local facial area.

B. Measuring the distinctiveness

As introduced in Section I, we measure the distinctiveness
of each facial area by its comparison to the general face.
Although it is definitely present in the human visual system and
the concept is clear in our mind, the appearance of a general
face is not easy to be defined in computer vision. An alternative
way is to train a general model for each of the facial area based
on a generic database which consists of images from subjects
other than those under consideration. The generic database
can be considered as a collection of known faces as in the
human visual system. By analyzing these “known faces”, the
knowledge of how each facial area generally looks like can be
obtained.

In the proposed method, the extended NMF is applied on
the generic database to learn a “general face” subspace and
all the analyses are conducted in the subspace. Denote gk as a
local area k of a general face, lk as the local area k sampled
from a face image. Then, the probability of lk belong to gk
can be computed with the Bayes rule

P (gk|lk) =
p(lk|gk)P (gk)

p(lk)
(8)

Where p(lk|gk) is the probability density function (pdf) of gk,
P (gk) is the priori probability and p(lk) is merely a scaling
factor. We approximate the unknow pdf p(lk|gk) by using
Gaussian Mixture Model (GMM) [21]. The GMM is defined
as

p(lk|gk; Θk) =
C∑
c=1

αcN(lk;µc,Σc) (9)

where N(lk;µc,Σc) is the Gaussian pdf with mean value
µc and covariance matrix Σc, αc are positive weights of the
component c and

∑C
c=1 αc = 1. Then, the Gaussian mixture

probability density function can be completely defined by the
parameter list

Θk = {α1, µ1,Σ1, . . . , αC , µC ,ΣC} (10)

In the learned “general face” subspace, by employing the
proposed representation described in Section III-A, lk is a
feature vector that consists of basis coefficients related to facial
area k; the parameters of Gaussian mixture pdf for each gk can
be estimated based on corresponding rows in the coefficient
matrix H . The distinctiveness of a given facial area lk can be
measured based on

dk =
1

P (gk|lk)
(11)

Fig. 2. The normalization process

IV. EXPERIMENTAL RESULTS

A. The implementation

The face region of all images is first detected by the Viola-
Jones face detection method [22]. Then a modified version
of the Viola-Jones face detection method is employed to find
the areas of mouth and eyes within the detected face. For
details on the method, readers are referred to our previous
work [23]. Once the eyes and mouth have been localized, using
the differences between the x and y coordinates, the original
image is rotated so that the centers of eyes and mouth are at
the same pixel coordinates in all images. Then the face area
is cropped and resized to a final 64× 64 face image. Figure 2
shows the whole normalization process.

The BioID face database [24] is used as the generic database
in the implementation. The dataset consists of 1521 gray level
face images from different subjects. All images are taken
in uncontrolled conditions and show roughly frontal view of
faces. Some normalized examples can be seen in Figure 4. We
applied the extended NMF on BioID database with different
parameters, and found that as the number of basis (rank r)
increases, the obtained basis images become more localized.
However too localized bases are meaningless and just reduced
to pixel level. Considering the dimension of feature vector in
the subspace, we choose r = 100 for the normalized 64× 64
faces. With the number of bases fixed, best results are archived
by setting Sh to 0.1. Figure 3 shows the bases used in the
implementation (r = 100, Sh = 0.1). Example of original face
images and their corresponding reconstructed images in the
learned subspaces is showed in Figure 5.

The face image is then partitioned into local facial areas.
The size, shape and overlaps of the facial areas can be
determined by different application scenarios. For each of
the facial area k, a Gaussian mixture model for general face
is trained. The parameters of the Gaussian mixture pdfs are
estimated with Expectation Maximization (EM) algorithm. For
details on the method, please referred to [21], [25] .

B. Exaggerated samples

One direct way to evaluate the efficiency of the proposed
method is to conduct a perceptual experiment that ask human
observers to point out the most distinctive areas on face images
and then compare the results with ours. However, such a
experiment is too expensive to carry out. Here, alternatively,
we apply some random transforms on one local area of face
images so that the facial area is exaggerated and obviously
different from regular ones. Then the proposed method is
applied on the transformed images to see if the exaggerated
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Fig. 3. The bases used in the implementation

Fig. 4. Examples of normalized faces from BioID database

facial area is detected. In the experiment, face images are
divided by a 16×16 sliding-window, the sliding step is set to 4
pixels. Some typical examples are showed in Figure 6, the 10
most distinctive facial areas measured by the proposed method
are marked in red squares. We can see that most detected
distinctive areas converge on the exaggerated facial parts.

C. Applications in face recognition

In Section I, we have grouped the local appearance based
face recognition approaches into two categories: one kind of
the approaches extract features only on selected areas, and the
other simply partition the face image into sub-regions, and
directly extract local features on each of them. In this section,
for each kind of local approaches, one representative work is
modified by employing the proposed method for finding the
discriminative facial areas.

Ahonen et al. [6] extract local binary pattern (LBP) his-

Fig. 5. Examples of original face image and the corresponding reconstructed
image in the learned subspace

Fig. 6. Results for exaggerated faces

tograms from equally partitioned 7 × 7 facial regions, and
employ the nearest neighbor classifier for recognition. In the
computed feature space, a weighted Chi square is used as
the dissimilarity measure for the nearest neighbor classifier.
Due to the stability and simplicity of the LBP based face
representation, this method has attracted plenty of attention
in face recognition domain. In the experiment, we apply the
proposed method in Ahonen et al.’s work to measure the
distinctiveness of each non-overlapped 7 × 7 facial region
for the sample face. Then, in the classification stage, rather
than using the predefined weights (reviewed in Section I),
each of the facial region is weighted based on the obtained
distinctiveness.

In Kepenekci et al.’s work [12] (referred as selected Gabor
method in the rest of paper), 40 Gabor wavelets are convolved
with the face, then interesting points with high-energized
Gabor wavelet response are found on each of the 40 Gabor
filtered images. Instead of using predefined facial points as
in EBGM, Gabor features are extracted at theses interesting
points. Since the number of the points and their locations vary
for different face images, the correspondences of extracted
Gabor jets between two facial images are unknown, thus in
the recognition stage, only Gabor jets with similarity above
a preset threshold are taken into consideration. The image
similarity of two facial images is calculated as the mean of the
similarities of the selected jets. Finally, the overall similarity
of a test image and a sample face is a weighted sum of the
image similarity and the number of similar jets. Still, in the
experiment, the selected Gabor method is modified by using
the proposed method to detect the interesting points. The face
image is partitioned into 8×8 sub-regions with 50% overlaps,
and the distinctiveness of each sub-region is measured. Then
we select the 100 most distinctive regions, and extract gabor
features at the center of each selected region.

Both the LBP and the selected Gabor methods reported
good results based on the FERET database with only one
training sample per subject. To show the efficiency of the
proposed method, the two modified systems are also tested
according to the standard FERET evaluation protocol [26]
with the gallery set including 1196 frontal images of 1196
persons and four probe sets: fafb (1195 images with expression
variations); fafc (194 images with illumination variations);
dup.I (722 images taken in less than 18 months); dup.II (234
images taken about 18 months later). The testing results (in
average recognition rate) as well as the performance of original
methods are showed in Table I. For comparison, reported
results of two SIFT feature based methods, SIFT Grid [5] and
SIFT Person-specific [9] are also included in the Table. It can
be seen that by employing the proposed method to select and
emphasize the distinctive facial areas, the modified approaches
achieved better recognition rate on dup.I and dup.II sets, in
which images are taken in different time.

V. CONCLUSION

Locating the discriminative facial areas is crucial for lo-
cal appearance based face recognition methods, no matter it
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Methods fafb fafc dup.I dup.II
Selected Gabor [12] 0.96 0.70 0.58 0.47

Modified selected Gabor 0.97 0.67 0.64 0.59
LBP [6] 0.97 0.79 0.66 0.64

Modified LBP 0.97 0.77 0.68 0.67
SIFT GRID [5] 0.94 0.35 0.53 0.36

SIFT Person-specific [9] 0.97 0.47 0.61 0.53

TABLE I
THE RECOGNITION RATES OF DIFFERENT METHODS ON FERET PROBE

DATA SETS

extracts features only on selected areas, or simply partitions
the face image into regions. Most of the existing methods
take the assumption that anatomical facial components, such
as the eyes, nose, and mouth, are the most useful areas for
recognition. Other more elaborate methods locate the most
salient parts within the face according to a pre-specified crite-
rion. In this paper, a different method is proposed to find the
characteristic areas of each individual’s face by its comparison
to the general population. The selected regions are the most
distinctive facial areas that make the given face different from
other faces “we know”. In particular, we extend NMF to
learn a localized non-overlapping subspace representation of
the facial patterns from a generic face image database. In the
learned subspace, the degree of distinctiveness for any facial
area is measured depends on the probability of this area is
belong to a general face. Each local area of the general face
is modeled using Gaussian Mixture Model (GMM) based on
the generic face database. When apply the proposed method in
existing face recognition systems, the experiment results show
that it do improve the original approaches, especially for face
images that are taken in different time. Although the method
is proposed for face recognition, it also can be used in other
related applications such as caricature generation and facial
image retrieval.
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