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Identity-Based On-line/Off-line Signcryption

Dongdong Sun, Xinyi Huang, Yi Mu and Willy Susilo
School of Computer Science and Software Engineering

University of Wollognong
Wollongong, NSW 2522, Australia

{dds03, xh068, ymu, wsusilo}@uow.edu.au

Abstract

We present an identity-based on-line/off-line signcryp-
tion scheme, where most of computations are carried out
when the message is not available(i.e., off-line stage) and
the on-line part of our scheme does not require any expo-
nent computations and therefore is very efficient. It com-
bines the functionalities of signature and encryption and
is provably secure in the random oracle model. We also
show that our scheme is indistinguishable against adaptive
chosen-ciphertext attacks (IND-IDSC-CCA2) and is exis-
tentially unforgeable against adaptive chosen-message at-
tacks (EF-IDSC-ACMA).

1. Introduction

In public key systems, the authenticity of informa-
tion can be guaranteed by digital signatures, whereas the
information confidentiality is achieved using encryption
schemes. One can first sign and then encrypt a message
when both authenticity and confidentially are desired. This
approach is known as sign-then-encrypt. The main disad-
vantage of this solution is that it expands the final cipher-
text’s size and increase the sender and receiver’s computing
time, as signing and encryption are preformed in two sep-
arate steps. This motivated Zheng [21] to propose a cryp-
tographic primitive signcryption. The idea of this kind of
primitive is to perform encryption and signature in a sin-
gle logical step in order to obtain confidentiality and au-
thentication more efficiently than the sign-then-encrypt ap-
proach. Based on discrete algorithm problem, signcryp-
tion costs 58% less in average computation time and 70%
less in message expansion than sign-then-encrypt does. Us-
ing RSA cryptosystem, it costs on average 50% less in
computation time and 91% less in message expansion than
sign-then-encrypt does. After the introduction of signcryp-
tion, many efficient signcryption schemes have been pro-
posed [2, 18, 11, 6, 4, 20, 10, 12, 15].

Earlier signcryption schemes were only considered in
traditional public key cryptography, where there is a cer-
tificate authority (CA) who generates certificates to bind a
user with its public key. History has shown that the cer-
tificates in traditional PKI are costly to use and manage.
Shamir [16] introduced the notion of Identity-based (or ID-
based) cryptography to easy the above problem. In the new
setting, the user’s public key is some unique information
about the identity of the user (e.g., a user’s email address)
which is assumed to be publicly known. The ability to use
identities as public keys avoids the need to distribute pub-
lic key certificates. This can be very useful in applications
such as email where the recipient is often off-line and un-
able to present a public-key certificate while the sender en-
crypts a message. In ID-based system, a trusted third party,
called the Private Key Generator (PKG), generates users’
private keys. The PKG first publishes a master public key,
and retains the corresponding master secret key. To ob-
tain a private key, one should contact PKG, which uses the
master secret key to generate the corresponding private key.
Encryption or verification in ID-based cryptography only
needs PKG’s master public key and the user’s identity in-
formation. In [16], Shamir proposed a concrete ID-based
signature (IBS) scheme, but the construction of Identity-
based encryption (IBE) remained as an open problem un-
til the first efficient and fully functional identity-based en-
cryption scheme proposed in [3]. This construction is built
from a bilinear map (for example, the Weil pairing on el-
liptic curves). After that, identity-based cryptographic pro-
tocols from pairings have been extensively investigated by
researchers [13, 5].

The first identity-based signcryption scheme was pro-
posed in [11]. In this construction, the signature of the
plaintext is visible in the ciphertext and thus, does not sat-
isfy the semantic security. This flaw was fixed by Lib-
ert and Quisquater [10] by proposing a new construction.
Boyen [4] proposed a multipurpose identity-based sign-
cryption and formally defined the security notions of sign-
cryption in identity-based cryptography. After that, Chen
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and Malone-Lee [6] proposed a more efficient scheme in
the model defined in [4].

The notion of on-line/off-line signature was introduced
by Even, Goldreich, and Micali [8]. The idea is to di-
vide the signature generating procedure by two phases. The
first phase is performed off-line (before the message to be
signed is known) and the second phase is performed on-line
(after the message to be signed is given). On-line/off-line
signature schemes are useful, as in many applications the
signer has a very limited response time once the message
is presented, but he can carry out costly computations be-
tween consecutive signing requests. On-line/off-line signa-
ture schemes are particularly useful in smart card applica-
tions: The off-line phase is implemented either during the
card manufacturing process or as a background computation
whenever the card is connected to power, and the on-line
phase uses the stored result of the off-line phase to sign ac-
tual messages. The on-line phase is typically very fast, and
hence can be executed efficiently even on a weak processor.

Some signature schemes can be naturally partitioned into
on-line and off-line phases. For example, the first step
in the Fiat-Shamir, Schnorr, El-Gamal and DSS signature
schemes does not depend on the given message, and can
thus be carried out off-line. Even, Goldreich, and Micali [8]
proposed the first generic method to convert any signa-
ture scheme into an on-line/off-line one. Their construc-
tion is not efficient as it increases the length of each signa-
ture by a quadratic factor. In 2001, Shamir and Tauman
proposed another generic method to achieve on-line/off-
line signing [17]. They use the notion of a trapdoor hash
function to develop a paradigm called ”hash-sign-switch”,
which can convert any signature scheme into a highly effi-
cient on-line/off-line signature scheme. The on-line signing
phase of their scheme maintains the efficiency of Even, Gol-
dreich and Micali’s scheme(requiring only one hash func-
tion), but the size of each signature increases only by a fac-
tor of two. Chen et al [7] proposed a much more efficient
generic on-line/off-line signature scheme. Compared with
Shamir-Tauman’s signature scheme, their scheme has the
advantages of the lower computation and storage cost for
the off-line phase, and the lower communication cost for
the on-line phase.

The notion of on-line/off-line signcryption was intro-
duced by An, Dodis, and Tabin [1]. They did not give any
concrete method in their work but general security proofs
on signcryption schemes. They gave the security analysis
of “encrypt-then-sign”, “sign-then-encrypt” and “commit-
then-encrypt-and-sign” under both insider and outsider at-
tack models. The latter method can be combined with
the “hash-sign-switch” technique to produce a generic on-
line/off-line signcryption. The first practical on-line/off-
line signcryption was proposed by Zhang, Mu, and Susilo
in 2005 [20]. Their scheme is efficient as the on-line part

does not require any exponent computations. They also em-
ployed the notion of short signatures, which contributes to
the short signature length of the on-line signature part.

Motivation and Contribution
To date, there is no construction of identity-based on-

line/off-line signcryption protocol in the literature. How-
ever, it would be of great practical interest to design an
identity-based on-line/off-line signcryption. As it avoids
the need to distribute public key certificates, identity-based
cryptography has found many advantages in the systems as
Adhoc networks, Mobile networks, etc. However, entities
in these systems are normally less powerful than their coun-
terparts such as desktops. This limits their ability to perform
public key operations as encryption and signing. It will be
certainly desirable if the above operations can be done in
an efficient manner and, entities are able to perform some
of operations beforehand. All these desirable properties can
be achieved in identity-based on-line/off-line signcryption.

Our contributions of this paper are twofold. We first
formally define the identity-based on-line/off-line signcryp-
tion and its security models. We specify two security
notions, namely ciphertext indistinguishable and existen-
tially unforgeable, in identity-based on-line/off-line sign-
cryption. Both two notions capture the practical require-
ments of identity-based on-line/off-line signcryption. We
then propose an ID-based on-line/off-line signcryption. Our
construction is based on pairing on elliptic curves. It can
achieve authenticity and confidentiality simultaneously in
an efficient manner. All costly operations are performed in
the off-line phase. The on-line part does not require any op-
erations in the pairing group G, and only includes one sym-
metric key encryption and the addition operations modular
q, where q is a prime and its length depends on the system
security parameter. We give a rigorous proof to show that
our scheme is ciphertext indistinguishable under decisional
Bilinear Diffie-Hellman assumption and is existentially un-
forgeable under computational Diffie-Hellman assumption.
We finally show the potential application of our scheme in
secure communications in wireless sensor network (WSN).

The rest of this paper is organized as follows. Next section
briefly reviews the preliminaries required in this paper. In
Section 3, we formally define the identity-based on-line/off-
line signcryption. We present our scheme and prove its se-
curity in our model in Section 4 and Section 5. Section 6
shows the potential applications of our scheme. We con-
clude this paper in Section 7.

2. Preliminaries

Before presenting our results we briefly review the de-
finition for groups equipped with a bilinear map, and the
definitions of CDHP and DBDHP.
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2.1. Bilinear Mapping

Let k be a security parameter and q be a k-bit prime
number. Let us consider groups G1 and G2 of the same
prime order q. For our purposes, we need a bilinear map
e : G1 ×G1 → G2 satisfying the following properties:

1. Bilinearity: ∀P,Q ∈ G1,∀a, b ∈ Z∗
q , e(aP, bQ) =

e(P,Q)ab.

2. Non-degeneracy: for any point P ∈ G1, e(P,Q) = 1
for all Q ∈ G1 iff P = O.

3. Computability: there exists an efficient algorithm to
compute e(P,Q), for P,Q ∈ G1.

Such non-degenerate admissible maps over cyclic groups
can be obtained from the Weil or the Tate pairing over su-
persingular elliptic curves [3] or abelian varieties [14].

2.2. Security Assumptions

The security of our scheme relies on the hardness of the
following problems.

Definition 1. Computational Diffie-Hellman Problem
(CDHP) Given (P, aP, bP ) ∈ G

3 as the input, output abP .

An algorithm A has advantage ε in solving CDHP in
group G if Pr[A(P, aP, bP ) = abP ] ≥ ε, where the prob-
ability is over the random choices of (a, b), and the coin
tosses of A. We say an algorithm A (t, ε)-breaks CDHP in
G if in time t, A has advantage ε in solving CDHP.

Definition 2. Decisional Bilinear Diffie-Hellman Prob-
lem (DBDHP) Given two groups G1 and G2 of the same
prime order q, a bilinear map e : G1 ×G1 → G2, a gener-
ator P of G1, (aP, bP, cP ) ∈ G1

3 and an element h ∈ G2,
decide whether h = e(P, P )abc or not.

An algorithm D has advantage ε in solving DBDHP in
(G1, G2) if |Pra,b,c∈RZ∗

q ,h∈RG2 [1← D(P, aP, bP, cP, h)]
− Pra,b,c∈RZ∗

q
[1 ← D(P, aP, bP, cP, e(P, P )abc)]| ≥ ε.

We say an algorithm D (t, ε)-breaks DBDHP in (G1, G2)
if in time t, D has advantage ε in solving DBDHP.

3. Syntax and Security Models of Identity-
based On-line/Off-line Signcryption

We define the syntax and the security models of identity-
based on-line/off-line signcryption.

3.1. Syntax of ID-based On-line/Off-line
Signcryption

Definition 3. ID-based on-line/off-line signcryption
scheme is comprised of five algorithms: Setup, Extract,
OffSign, OnSigncrypt and UnSigncrypt.

1. Setup(k)→ (params, s). Given a security parameter
k as input, the private key generator (PKG) generates
the system’s public parameters params and the master
secret key s, where params is published in the system
and s is kept as secret by PKG.

2. Extract(params, ID, s) → dID. Given an identity
ID and the master secret key s as input, the PKG
computes the corresponding private key dID and trans-
mits it to its owner in a secure way.

3. OffSign(params, IDS , IDR, dIDS
) → σ′. Given

params, IDs’s secret key dIDS
and the receiver’s

identity IDR as input, this algorithm outputs an off-
line signature σ′.

4. OnSigncrypt(params,m, IDR, σ′) → C. Given a
message m, receiver’s identity IDR and an off-line
signature σ′ as input, this algorithm outputs the cipher-
text C.

5. UnSigncrypt(params,C, IDS , IDR, dIDR
)→ {m

,⊥}. Given params, a ciphertext C, the sender’s iden-
tity IDS and the receiver’s secret key dIDR

as input,
this algorithm outputs the plaintext m or the symbol
“⊥”. “⊥” denotes that C is an invalid ciphertext be-
tween IDS and IDR.

For simplicity, we omit the notation of params from the
inputs of OffSign, OnSigncrypt and UnSigncrypt in the
rest of this paper.

Correctness. The algorithm UnSigncrypt will output a
plaintext if the ciphertext and the off-line signature are
generated as defined above.

m← UnSigncrypt(params, OnSigncrypt(params,m,
IDR, OffSign(params, IDS , IDR, dIDS

)), IDS , IDR,
dIDR

)

3.2. Security Models of Identity-based On-
line/Off-line Signcryption

We now state the security of identity-based on-line/off-
line signcryption.

The first security notion is the ciphertext indistinguisha-
bility against adaptive chosen-ciphertext attacks. It is de-
fined by the game as follows.
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Definition 4. We say that an identity-based on-line/off-
line signcryption scheme (IDSC) has the ciphertext indis-
tinguishability against adaptive chosen-ciphertext attacks
property (IND-IDSC-CCA2) if no polynomially bounded
adversary has a non-negligible advantage in the following
game.

1. The challenger runs the Setup algorithm with a se-
curity parameter k and sends the system parameters
params to the adversary A.

2. The adversary A performs a polynomially bounded
number of requests:

(a) Signcryption request: A produces two identi-
ties IDi, IDj and a plaintext m. The chal-
lenger first computes IDi’s secret key dIDi

=
Extract(IDi, s). Then, it runs the algorithm
OffSign(params, IDi, IDj , dIDi

) to obtain an
off-line signature σ′. Finally, it returns OnSign-
crypt(m,σ′, dIDi

, IDj) to A.

(b) UnSigncryption request: A produces two iden-
tities IDi and IDj , a ciphertext C. The
challenger generates the private key dIDj

=
Extract(IDj) and sends the result of UnSign-
crypt(C, dIDj

, IDi) to A (this result could be
the ⊥ symbol if C is an invalid ciphertext).

(c) Key extraction request: A produces an identity
ID and receives the extracted private key dID =
Extract(ID, s).

A can present its requests adaptively: every request
may depend on the answers to the previous ones.

3. A chooses two plaintexts m0,m1 in the message space
specified in params and two identities IDA and IDB

on which he wishes to be challenged. The restriction
is that A cannot choose IDA or IDB as a one of Key
extraction requests.

4. The challenger takes a random bit b ∈R {0, 1} and
generates the ciphertext C∗ for mb as he responds the
signcryption request.

5. A asks again a polynomially bounded number of re-
quests just like in step 2. This time, he can not make a
key extraction request on IDA or IDB and he cannot
make an unSigncrypt query of (IDA, IDB , C∗).

6. Finally, A produces a bit b′ and wins the game if b′ = b.

The adversary’s advantage is defined to be Adv(A) =
|2Pr[b′ = b]− 1|.

Definition 5. An ID-based on-line/off-line signcryption
scheme (IDSC) is said to be existentially unforge-
able against adaptive chosen-message attacks (EF-IDSC-
ACMA) if no polynomially bounded adversary has a non-
negligible advantage in the following game.

1. The challenger runs the Setup algorithm with a se-
curity parameter k and gives the system parameters
params to the adversary A.

2. The adversary A performs a polynomially bounded
number of requests as same as Def. 4.

3. Finally, A produces a triple (C∗, IDA, IDB). The re-
strictions are (C∗, IDA, IDB) is not the response of
A’s signcryption requests and IDA has not been cho-
sen as one of the key extract queries.

A wins the game if Unsigncrypt(C∗, dIDB
, IDA) �=⊥.

The adversary’s advantage is simply its success probability
Adv(A) = P [A wins].

Remarks. In Def. 5, the adversary is allowed to ask the
private key corresponding to the identity IDB in the chal-
lenging trip (C∗, IDA, IDB). This prevent a dishonest re-
cipient IDB to send a ciphertext to himself on behalf of
IDA and to try to convince a third party that IDA was the
sender.

4. The Scheme

In this section, we present our ID-based on-line/off-line
signcryption scheme that satisfies the model introduced in
Section 3. Assume that Alice and Bob are the sender and the
receiver, respectively. The protocol is described as follows.

Setup: Given security parameters k, n and G1, G2 of order
q and generator P of G1, picks a random s ∈R Z∗

q , and sets
Ppub = sP . Chooses cryptographic hash functions H0 :
{0, 1}∗ → G1, H1 : {0, 1}∗ × G1 × G1 → Z∗

q , H2 :
Z∗

q → {0, 1}n and H3 : G2 → Z∗
q × Z∗

q . The system
parameters are (P, Ppub,H0,H1,H2,H3). The master key
is s. H0, H1, H2 and H3 will be regarded as random oracles
in security analysis.

Extract: Given an identity ID, the algorithm computes
dID = sH0(ID) and outputs it as the private key related
to ID corresponding to QID = H0(ID).

OffSign: To send a message m to Bob, Alice follows the
steps below. (1) Computes QIDB

= H0(IDB). (2) Picks
random x, y ∈ Z∗

q , and sets k = H3(e(Ppub, QIDB
)x). (3)

Splits k into k1, k2 such that k1 ∈ Z∗
q and k2 ∈ Z∗

q , then
stores them for future use. (4) Given a secret key dIDA

,
outputs the off-line signature (S,U), where S = dIDA

−
xPpub, U = (y − k1)P ; also stores x, y for future use.
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OnSigncrypt: Given a message m ∈ Z∗
q and an off-line

signature (S,U), Alice sets k3 = H2(k2) first. The mes-
sage encryption is done with k3 and a symmetric-key en-
cryption algorithm E such as AES. The ciphertext is c =
Ek3(m). Computes r = H1(c, S, U) and on-line signature
σ = rx + y; returns ciphertext (c, S, U, σ).

UnSigncrypt: Given ciphertext (c, S, U, σ), (1) Computes
T = e(−S,QIDB

)e(QIDA
, dIDB

). (2) Sets k = H3(T ),
then splits k into k1, k2. (3) Sets k3 = H2(k2) and decrypts
the message Dk3(c) = m. The correct verification requires
to verify the equality e(σPpub + rS, P ) = e(U + k1P +
rQIDA

, Ppub), where r = H1(c, S, U).

Correctness: The consistency is easy to verify by the
bilinearity of the map as follows:

e(σPpub + rS, P )
= e((rx + y)Ppub + r(dIDA

− xPpub), P )
= e(rxPpub + yPpub + rsQIDA

− rxPpub, P )
= e(yPpub + rsQIDA

, P )
= e(U + k1P + rQIDA

, Ppub)

e(−S,QIDB
)e(QIDA

, dIDB
)

= e(−dIDA
+ xPpub, QIDB

)e(sQIDA
, QIDB

)
= e(−dIDA

+ xPpub + dIDA
, QIDB

)
= e(Ppub, QIDB

)x

Performance and size: the proposed algorithms satisfy the
requirement of on-line/off-line signcryption as all expensive
computations are done in the off-line phase. The on-line
phase consists of only two hashings, one multiplication, and
a symmetric-key encryption. The size of our signature part
(c, S, U, σ) is 2 log2 ρ + log2 q + 160, in which ρ stands for
the safe length of group G1.

5. Proofs of Security

We now provide the security analysis of our scheme. Our
proof for IND-IDSC-CCA2 is inspired by the proof in [10].

Theorem 1. In the random oracle model, we assume we
have an IND-IDSC-CCA2 adversary calledA that is able to
distinguish ciphertexts during the game of definition 4 with
an advantage ε when running in a time t and asking H0, H1,
H2, H3, key extraction oracle, on-line/off-line signcrypt or-
acle and on-line/off-line unsigncrypt oracle q0, q1, q2, q3,
qe, qs and qu times respectively. Then, there exists a dis-
tinguisher B that can solve the Decisional Bilinear Diffie-
Hellman problem in a time O(t+(2qs+2qu(q3+qs+qu))T )
with an advantage

Adv(B)DBDH(G1,P ) > 2(ε− (q1 + qs + qu)/2k−1)/q4
H0

where T denotes the computation time of the bilinear map.

Proof. The distinguisher B receives a random instance
(P, aP, bP, cP, h) of the Decisional Bilinear Diffie-
Hellman problem. His goal is to decide whether h =
e(P, P )abc or not. B will run A as a subroutine and act
as A’s challenger in the IND-IDSC-CCA2 game. B needs
to maintain lists L0, L1, L2 and L3 that are initially empty
and are used to keep track of answers to queries asked byA
to oracles H0, H1, H2 and H3. We assume that any Sign-
crypt or Unsigncrypt request on a pair of identities happens
after A asked the hashing H0 of these identities. Any key
extraction query on an identity is also preceded by a hash
query on the same identity. We also assume A never makes
an unsigncryption query on a ciphertext obtained from the
signcryption oracle. He only makes unsigncryption queries
for observed ciphertexts.

At the beginning of the game, B gives A the system pa-
rameters with Ppub = cP (c is unknown to B and plays the
role of the PKG’s master key). Then, B chooses two distinct
random numbers i, j ∈ {1, ..., qH0}. A asks a polynomially
bounded number of H0 requests on identities of his choice.
At the ith H0 request, B answers by H0(IDi) = aP . At
the jth, he answers by H0(IDj) = bP . The private keys
dIDi

and dIDj
(which are not computable by B) are respec-

tively acP and bcP . For requests H0(IDe) with e �= i, j, B
chooses be be ∈R Z∗

q , puts the pair (IDe, be) in list L0 and
answers H0(IDe) = beP .

We now explain how the other kinds of requests are
treated by B.

H1 requests: for a query H1(ce, Se, Ue), B first ensures
the list L1 does not contain a tuple (ce, Se, Ue, re). If such
a tuple is found, B answers re, otherwise he chooses r ∈R

Z∗
q , gives it as an answer to the query and puts the tuple

(ce, Se, Ue, r) into L1.

H2 requests: on a H2(k2e
) request, B searches a pair

(k2e
, k3e

) in the list L2. If such a pair is found, B answers
by k3e

, otherwise he answers A by a random binary se-
quence k3 ←R {0, 1}n such that no entry (., k3) exists in
L2 and puts the pair (k2e

, k3) into L2.

H3 requests: on a H3(ge) request, B searches a pair
(ge, ke) in the list L3. If such a pair is found, B answers
by ke, otherwise he answersA by a random k ←R Z∗

q such
that no entry (., k) exists in L3 and puts the pair (ge, k) into
L3.

Key extraction requests: when A asks a query
Extract(IDA), if IDA = IDi or IDA = IDj , then B fails
and stops. If IDA �= IDi, IDj then the list L0 must contain
a pair (IDA, be) for some be (this indicates B previously
answered H0(IDA) = beP on a H0 query on IDA). The
private key corresponding to IDA is then bePpub = cbeP .
It is computed by B and returned to A.
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Signcrypt requests: At any time A can perform a Sign-
crypt request for a plaintext m and identities IDA and IDB .

In the case IDA �= IDi, IDj , B computes the private
key dIDA

corresponding to IDA by running the key extrac-
tion request algorithm and retrieves the (IDB , be) to get
public key corresponding to IDB from L0. B can simply
run the OffSign and OnSigncrypt algorithms.

In the case IDA = IDi or IDA = IDj and IDB �=
IDi, IDj , B has to simulate the execution of OffSign and
OnSigncrypt algorithms. In OffSign phase: (1) Ran-
domly chooses ye, re ∈R Z∗

q . (2) Sets Se = yePpub

and Ue = reP + reyeP − reQIDA
. (3) Computes Te =

e(−Se, QIDB
)e(QIDA

, dIDB
) where dIDB

is the private
key corresponding to IDB (B could obtain it from the key
extraction algorithm because IDB �= IDi, IDj). (4) Runs
the H3 simulation algorithm to find ke = H3(Te). (5) Splits
ke into k1e

and k2e
. In OnSigncrypt phase: (1) Runs the

H2 simulation algorithm to find k3e
= H2(k2e

). (2) Com-
putes ce = Ek3e

(m). (3) Computes σe = k1e
+ re. (4) Puts

(ce, Se, Ue, re) into L1 and the ciphertext (ce, Se, Ue, σe) is
returned to A.

If IDA and IDB are the identities IDi and IDj . B
has to simulate the execution of OffSign and OnSign-
crypt algorithms. In OffSign phase: (1) Randomly chooses
ye, r

∗
e ∈R Z∗

q . (2) Sets S∗
e = yePpub and U∗

e = r∗eP +
r∗eyeP − r∗eQIDA

. (3) Randomly chooses T ∗
e ∈R G2

and ke ∈R Z∗
q such that no entry (., ke) in L3 and puts

(T ∗
e , ke) in L3. (4) Splits ke into k1e

and k2e
. In OnSign-

crypt phase: (1) Runs the H2 simulation algorithm to find
k3e

= H2(k2e
). (2) Computes c∗e = Ek3e

(m). (3) Com-
putes σ∗

e = k1e
+ r∗e . (4) Puts (c∗e, S

∗
e , U∗

e , r∗e) into L1 and
the ciphertext (c∗e, S

∗
e , U∗

e , σ∗
e ) is returned to A.

Unsigncrypt requests : When receiving an unsigncryp-
tion query for a ciphertext (ce, Se, Ue, σe) for identities
IDA and IDB that are not IDi and IDj , B first checks
if the list L1 contains (ce, Se, Ue, re). If no such tu-
ple is found, B rejects the ciphertext. Otherwise, he
computes Te = e(−Se, QIDB

)e(QIDA
, dIDB

) where
dIDB

is the private key corresponding to IDB (B could
obtain it from the key extraction algorithm because
IDB �= IDi, IDj). He runs the H3 simulation algorithm
to find ke = H3(Te) and split ke into k1e

, k2e
. B verifies if

e(σePpub + reSe, P ) = e(Ue + k1e
P + reQIDA

, Ppub),
where re = H1(ce, Se, Ue). if not, he rejects the ci-
phertext. He then searches for a query H2(k2e

) in list
L2. If no such query is found, B takes a random pair
(k2e

, k3e
) ∈ Z∗

q × {0, 1}n such that no (., k3e
) already

exists in L2 and inserts (k2e
, k3e

) into L2. He finally uses
the corresponding k3e

to find me = Dk3e
(ce) and returns

me. If no message has been returned, return ⊥.

WhenA observes a ciphertext (ce, Se, Ue, σe) for identi-
ties IDi and IDj , he may want to ask B for the unsigncryp-

tion of the ciphertext. B steps through the list L3 with en-
tries (Te, ke) as following: splits ke into k1e

, k2e
. B verifies

if e(σePpub + reSe, P ) = e(Ue + k1e
P + reQIDA

, Ppub),
where re = H1(ce, Se, Ue). if not, he moves to the next
element in L3 and begins again, else searches for a query
H2(k2e

) in list L2. If no such query is found, B takes a
random pair (k2e

, k3e
) ∈ Z∗

q ×{0, 1}n such that no (., k3e
)

already exists in L2 and inserts (k2e
, k3e

) into L2. He fi-
nally uses the corresponding k3e

to find me = Dk3e
(ce)

and returns me. If no message has been returned, return ⊥.
If A previously asked the hash value H1(ce, Se, Ue), there
is a probability of at most 1/2k that B answered re. The
simulation fails if L1 contains a tuple (ce, Se, Ue, re). We
can find that the probability to reject a valid ciphertext does
not exceed qu/2k.

After a polynomially bounded number of queries, A
chooses a pair of identities on which he wishes to be chal-
lenged. With a probability at least 1/C2

qH0
this pair of target

identities will be (IDi, IDj). If A asks the private key of
IDi or IDj before choosing his target identities, then B
fails because he is unable to answer the question. If A ac-
tually chooses to be challenged on IDi and IDj , then he
cannot ask IDi nor IDj ’s private keys in the second stage.
If A does not choose IDi and IDj as target identities, then
B fails.

When A produces his two plaintexts m0 and m1,
B chooses a random bit b ∈R {0, 1} and signcrypts
mb. To do so, B follows the steps below. (1) Ran-
domly chooses ye, r

∗
e ∈R Z∗

q . (2) Sets S∗
e = yePpub

and U∗
e = r∗eP + r∗eyeP − r∗eQIDA

. (3) Computes
T ∗

e = e(−S∗
e , QIDB

)h(where h is B’s candidate for the
DBDH problem). (4) Runs the H3 simulation algorithm
to find ke = H3(T ∗

e ) and split ke into k1e
,k2e

. (5) Sets
k3e

= H2(k2e
)(H2 is the simulator) and computes c∗b =

Ek3e
(mb). (6) Computes σ∗

e = k1e
+ r∗e . (7) Verifies as

above if L1 already contains an entry (c∗b , S
∗
e , U∗

e , r) such
that r �= r∗e . If not, he puts the tuple (c∗b , S

∗
e , U∗

e , r∗e) into
L1. In the opposite case, B repeats the process until find-
ing a tuple (c∗b , S

∗
e , U∗

e , r∗e) whose first three elements do
not figure in an entry of L1. Once he has admissible el-
ements (S∗

e , U∗
e , σ∗

e , r∗e). B just has to send the ciphertext
(c∗b , S

∗
e , U∗

e , σ∗
e) to A.

A then performs a second series of queries which is
treated in the same way as the first one. At the end of the
simulation, he produces a bit b′ for which he believes the re-
lation ciphertext = Signcrypt(mb′ , dIDi

, IDj) holds. At
this moment, if b = b′, B then answers 1 as a result because
his candidate h allowed him to produce a ciphertext that ap-
peared to A as a valid signcrypted text of mb. If b �= b′, B
then answers 0.

Let us now consider how our simulation could fail i.e.
describe events that could cause A’s view to differ when
run by B from its view in a real attack. It is clear that the
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simulations for H0, H1, H2 and H3 are indistinguishable
from real random oracles. Because errors of On-line sign-
crypt is a consequence of off-line signcrypt. We analyze
them together. The only possibilities for introducing an
error here are defining H1(ce, Se, Ue) when it is already
defined. Since Se and Ue take their values uniformly at
random in G1, the chance of one of these events occurring
is at most (q1 + qs)/2k for each query. The probability for
unsigncrypt simulator to reject a valid ciphertext does not
exceed qu/2k as mentioned before. We saw that B fails if
A asks the private key associated to IDi or IDj during the
first stage. We know that there are C2

qH0
ways to choose

the pair (IDi, IDj). Among those C2
qH0

pairs of identities,
at least one of them will never be the subject of a key
extraction query from A. Then, with a probability greater
than 1/C2

qH0
A will not ask the questions Keygen(IDi)

and Keygen(IDj). Further, with a probability exactly
1/C2

qH0
A chooses to be challenged on the pair (IDi, IDj)

and this must allow B to solve his decisional problem if A
wins the IND-IDSC-CCA game.

Since

p1 = P [b′ = b|σ = Signcrypt(mb, dIDi
, IDj)]

= (ε + 1)/2− (q1 + qs + qu)/2k

p0 = P [b′ = i|h ∈R G2] = 1/2(i = 0, 1)

We then have

Adv[B] = |Pa,b,c∈RZ∗
q
[1← B(P, aP, bP, cP, e(P, P )abc)]

−Pa,b,c∈RZ∗
q ,h∈RG2 [1← B(P, aP, bP, cP, h)]|

=
|p1 − p0|
(C2

qH0
)2

=
ε− (q1 + qs + qu)/2k−1

2(C2
qH0

)2

> 2(ε− (q1 + qs + qu)/2k−1)/q4
H0

The unforgeability against adaptive chosen messages at-
tacks [9], defined in Definition 5, derives from the secu-
rity of the scheme in [19], under the computational Diffie-
Hellman assumption. Due to space limitation, we omit the
proof in this version of the paper. One can show that an at-
tacker that is able to forge a signcrypted message must be
able to forge a signature for the scheme in [19].

6. Application

A wireless sensor network(WSN) is composed of a large
number of sensor nodes that are densely deployed either in-
side the phenomenon or very close to it. A sensor node will

communicate with other nodes or a destination (sink) node
frequently. PKI is not suitable for WSN secure commu-
nication because of the certificate overhead. Our ID-based
Scheme may be applied for sending encrypted data in WSN,
there is no need to bind a public key to its owners identity
since those are one single thing. Because of limited com-
putation power and network bandwidth in WSN, some effi-
cient security algorithms for secure mobile communications
are needed. Our Scheme achieves both ciphertext size effi-
ciency and computation efficiency, so it’s a good candidate
for WSN secure communication.

7. Conclusion

In this paper, we have proposed an ID-based on-line/off-
line signcryption scheme. In our scheme, the on-line com-
putation is very efficient. Our scheme is proved secure
against existential forgery under adaptive chosen message
attacks based on the random oracle model assuming that
CDH problem is hard, and it’s also secure against adaptive
chosen ciphertext attacks under the notion of indistinguisha-
bility of ciphertext on the random oracle model assuming
that DBDH problem is hard. We also give some applica-
tion. The scheme may be suitable for WSN secure com-
munication, because of the computation and ciphertext size
efficiency. Our future work involves proposing a generic
ID-based on-line/off-line signcryption scheme.
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